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Abstract

Background: The cost efficient two-stage design is often used in genome-wide association studies (GWASs) in
searching for genetic loci underlying the susceptibility for complex diseases. Replication-based analysis, which
considers data from each stage separately, often suffers from loss of efficiency. Joint test that combines data from
both stages has been proposed and widely used to improve efficiency. However, existing joint analyses are based
on test statistics derived under an assumed genetic model, and thus might not have robust performance when
the assumed genetic model is not appropriate.

Results: In this paper, we propose joint analyses based on two robust tests, MERT and MAX3, for GWASs under a
two-stage design. We developed computationally efficient procedures and formulas for significant level evaluation
and power calculation. The performances of the proposed approaches are investigated through the extensive
simulation studies and a real example. Numerical results show that the joint analysis based on the MAX3 test
statistic has the best overall performance.

Conclusions: MAX3 joint analysis is the most robust procedure among the considered joint analyses, and we
recommend using it in a two-stage genome-wide association study.

Background
The two-stage design is often adopted in genome-wide
association studies (GWASs) to search for genetic
variants underlying susceptibility for complex diseases.
The advantages of the two-stage design have been inves-
tigated extensively (see e.g., [1-12]). In a typical two-stage
design for GWASs, a proportion of the available samples
are genotyped at the initial stage on a large number of
single nucleotide polymorphisms (SNPs) using a com-
mercial genotyping platform. Based on association test
results obtained at this stage, a small percentage of SNPs
are selected and further genotyped on the remaining
samples in the second stage. To analyze data generated
from such a two-stage design, the joint analysis strategy
has been recommended, which combines the test statis-
tics from both stages as the final test statistic, and is
shown to be more powerful than the replication-based
analysis that only utilizes the second stage data [12].

The efficiency of joint analysis based on the allele-
frequency-difference-based test (AFDT) was evaluated in
detail in comparison to the replication-based analysis [12].
It is commonly adopted as a single marker test in GWASs.
The AFDT is valid when Hardy-Weinberg equilibrium
(HWE) holds in the target population, and is powerful
when the underlying genetic models are additive or multi-
plicative. The Cochran-Armitage trend test (CATT)
[13,14] derived under the additive (in log scale) genetic
risk model is also used in single-maker analysis, which is
optimal when the underlying additive genetic model is
true. However, both tests are not so powerful compared
with other methods such as MAX3 [15] when the underly-
ing genetic model is not additive. Since in most cases there
is no evidence suggesting that the additive risk model is
most appropriate for the underlying disease model, espe-
cially in the typical GWASs where we most likely evaluate
only the tagging SNPs, but not the causal SNPs directly.
Thus, it is advantageous to adopt a more robust single
marker test that has a relatively good performance under
all possible disease models. To this end, two types of such
robust tests, the MERT (maximin efficiency robust test)
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[15,16] and MAX3 (the maximum values of CATTs under
recessive, additive and dominant models) have been
recently considered [15,17]. Nevertheless, their perfor-
mances under the two-stage design have not been thor-
oughly investigated.
In this report we propose two types of joint test statis-

tics for the two-stage design based on the two robust
tests, MERT and MAX3. We derive closed-form formula
to calculate the power of the MERT-based joint analysis,
and propose a computationally efficient Monte Carlo
procedure to evaluate the significance level of the
MAX3-based joint analysis. Facilitated by these two pro-
cedures, we evaluate the performances of the two robust
test based joint analyses, in comparison with the ones
based on AFDT, under various two-stage design setups
and disease models.

Methods
Notations
Suppose that r cases and s controls are randomly
sampled from the source population in a GWAS.
Denote the number of SNPs genotyped and the propor-
tion of the subjects in Stage 1 by m and π, respectively.
Throughout, we only consider biallelic SNPs with two
alleles G and g, with G being the risk allele. Then there
are three genotypes: gg, Gg, and GG. Using the disease
risk at gg as the baseline, we define the relative risks of
Gg and GG as l1 = f1/f0 and l2 = f2/f0, respectively,
where f0 = Pr(case|gg) > 0, f1 = Pr(case|Gg), f2 = Pr(case|
GG) are the penetrances. Let K = Pr(case) be the disease
prevalence. Denote the genotype frequencies in case
population as p0 = Pr(gg|case) = Pr(gg)f0/K, p1 = Pr(Gg|
case) = Pr(Gg)f1/K, p2 = Pr(GG|case) = Pr(GG)f2/K and
in control population as q0 = Pr(gg|control) = Pr(gg)
(1-f0)/(1-K), q1 = Pr(Gg|control) = Pr(Gg)(1-f1)/(1-K),
q2 = Pr(GG|control) = Pr(GG)(1-f2)/(1-K). Then the null
hypothesis of no association is H0 : pi = qi, i = 0,1,2,
which is equivalent to H0 : l1 = l2 = 1. The alternative
hypothesis is H1 : l2 ≥ l1 ≥ 1 with l2 > 1. The com-
monly used three genetic models, recessive, additive and
dominant models are corresponding to l2 > l1 = 1,
2l1 = l2 +1 and l1 = l2 > 1, respectively. We assume
that SNPs with p-values less than g in Stage 1 will be
further investigated in Stage 2 and a be the whole gen-
ome-wide type I error.
The notations for genotype frequencies in case popu-

lation and control population of Stage 1 and Stage 2 are
given in Table 1. It should be noted that p1i = p2i and
q1i = q2i for i = 0,1,2 in the table using the first sub-
script on behalf of Stage 1 or Stage 2 since they are the
population parameters. However, the estimates of p1i
and q1i for i = 0,1,2 based on the data of Stage 1 and
those of p2i and q2i for i = 0,1,2 based on the data of

Stage 2 might be different although the data of Stage 1
and Stage 2 are drawn from the same source population.

Allele-Frequency-Difference-Based Joint Analysis
Denote the risk allele frequencies in case population and
control population by θ and ϖ, respectively. Let ̂1 and
̂1 be their maximum likelihood estimates in Stage 1,
respectively. Then the test statistic for Stage 1 is
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The threshold for selecting SNPs in Stage 1 is b1 =
F-1(1-g/2), where F(·) is the cumulative standard normal
distribution function. Similarly, we can get the maximum
likelihood estimates of the risk allele frequencies in case
population and control population using the data from
Stage 2, denoted by ̂2 and ̂ 2. Then the test statistic
for Stage 2 can be written as
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The joint statistic is Z Z ZJ = + − 1 21 . The

Bonferroni correction threshold (bJ) for ZJ is the solu-
tion of the equation Pr , /H 10

Z > >( ) =b Z b mJ J1  ,
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So the power of the joint test under the alternative

hypothesis is given by Pr ,H 11
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Table 1 Genotype frequencies in case population and
control population for both stages

cases controls

gg Gg GG gg Gg GG

Stage 1 p10 p11 p12 q10 q11 q12
Stage 2 p20 p21 p22 q20 q21 q22
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The calculation of Pr ,H 11
Z > >( )b Z bJ J1 is based on

two-fold integration which can be computed using the
built-in function, “pmvnorm”, in the R package
“mvtnorm” [18-20].
The above approach is slightly different from the one

considered in [12], where the authors constructed the
test statistics by estimating the variance of the differences
of allele frequency between case population and control
population using the cases and controls separately under
the null hypothesis. In our joint analysis, we estimated
the variance using the combined data of case sample and
control sample. Results (not show here) show that the
two approaches have very similar performance.

Cochran-Armitage Trend Test under the Additive Model-
Based Joint Analysis
Cochran-Armitage trend test under the additive model
(CATTA) (see e.g., [13,15]) is often used in the genetic
association studies including GWASs. Denote CATTA for

both stages by T A
1 and T A

2 , respectively. Then the thresh-

old for selecting SNPs in Stage 1 is d1 = F-1(1-g/2). The

joint test statistic is T T TJ
A A A= + − 1 21 . The thresh-

old (dJ) for TJ
A can be obtained by solving the equation

Pr , /H0
T d T d mA

J
A
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analysis is Pr ,H1
T d T dA

J
A

J1 1> >( ) , which can be calcu-

lated again using the R package “mvtnorm”. The joint dis-

tributions of T TA
J
A

1 , ’( ) under the null and alternative

hypotheses are given in Appendix A in Additional file 1.

MERT-Based Joint Analysis
MERT was originally proposed in [16] to find robust
test statistic in situations when multiple alternative
models are plausible. It was used to define a robust test
for single-marker analysis [15]. Here we apply the test

to two-stage design. Similar to T A
1 and T A

2 , we can
obtain CATTs T R

1 and T R
2 under the recessive model

and CATTs T D
1 and T D

2 under the dominant model
for both stages. So MERT for both stages are
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respectively, where 1
RD and 2

RD are the correlation
coefficients of T R

1 and T D
1 , and T A

2 and T D
2 under

the null hypothesis, respectively, which are shown
in Appendix B in Additional file 1. The joint analysis
based on MERT can be defined as
T T TJ

mert mert mert= + − 1 21 . The threshold for
selecting SNPs in Stage 1 is u1 = F-1(1-g/2). To control
the false positive rate of the joint analysis, we can obtain
the threshold uJ, which is the solution to the equation

Pr , / .H0
T u T u mmert

J
mert
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The power of the test is given by

Pr ,H1
T u T umert

J
mert

J1 1> >( ) , whose numerical

values can be calculated using the R package
“mvtnorm”. The joint distributions of T Tmert

J
mert

1 , ’( ) under
the null and alternative hypotheses are derived in
Appendix B in Additional file 1.

MAX3-Based Joint Analysis
MAX3, the maximal value of CATT under three
genetic models, is another commonly used robust
test in the current GWASs (see e.g., [7,15,17]). Once

we have T T TR A D
1 1 1, ,( ) and T T TR A D

2 2 2, ,( ) , the test

statistic in Stage 1 is T T T TR A D
1 1 1 1
max max , ,= { }

and the joint analysis based on MAX3 can be defined as
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R
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J
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and T T TJ
D D D= + − 1 21 . For a given significance

level g in Stage 1, the threshold (v1) can be obtained by
solving the equation
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According to Chapter 6 of [21], we have
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Appendix C in Additional file 1. Because
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, we can obtain v1 using

the R package “mvtnorm”. After that, we use the follow-
ing computationally efficient algorithm to approximate
the threshold (vJ) for the joint analysis:
1) Generate B identical and independently distri-

buted bivariate normal random variates
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Once we have v1 and vJ, we generate the data under
the alternative hypothesis to calculate the power
empirically. In the simulation studies, we generate
10,000 data sets under the alternative hypothesis. For

the ith data set (i = 1, 2. ..., 10000), we calculate T1
max

and TJ
max, denote them again by T i1

max and TJi
max,

respectively. Then the empirical power is

# , ; , , ,max maxT v T v ii Ji J1 1 1 2 10000

10000

> > ={ } .

Results
Simulation Setup
In order to mimic the real GWAS, we choose the simula-
tion parameters similar to [12,22]. In a typical GWAS,
there are thousands of individuals randomly chosen from
the source population and the number of SNPs being
examined in Stage 1 is usually from 0.1 million to 1 mil-
lion. Based on the results of Stage 1 (p-values), the num-
ber of SNPs to be genotyped in Stage 2 is in tens or
hundreds. For example, in a diabetes mellitus GWAS [7],
there were 392,935 SNPs genotyped on 1,363 subjects in
Stage 1, and 57 SNPs were genotyped in Stage 2 after
removing those SNPs with p-values greater than 0.0001
based on the data of Stage 1. In a GWAS, the significance
level in the whole genome is often set to be 0.05, and the
Bonferroni-correction is often used to adjust for multiple
comparisons and to control the false positive rate. So, in
our simulation studies, we set the number of SNPs at
Stage 1 m = 500,000 and the p-value threshold for signifi-
cant SNPs to be 0.05/m = 1 ×10-7. The proportion of
subjects genotyped in Stage 1 is set to be 0.5, 0.4 and 0.3,
and the p-value threshold for SNPs selection at the end
of Stage 1 be 0.0001 and 0.0002. The disease prevalence
is set to be K = 0.1. Throughout our simulation proce-
dures, we assume that Hardy-Weinberg equilibrium
(HWE) holds in the general population. Furthermore, the
risk allele is assumed to be the minor allele, with fre-
quency (MAF) equal to 0.15, 0.25, 0.35 and 0.45. The con-
sidered genetic models are the recessive, additive, and
dominant models. We specified different genotype relative
risks l1 and l2 for the three genetic models (see details in
Table 2, 3, 4 and 5). The critical values for MAX3 joint
analysis are simulated, while thresholds for other three
joint analysis are exactly calculated based on their asymp-
totic distributions under the null hypothesis where the
genotype probabilities (p0, p1, p2) for cases and (q0, q1, q2)
for controls are calculated by p0 = q0 = Pr(gg) = (1-MAF)2,
p1 = q1 = Pr(Gg) = 2 × MAF × (1-MAF) and p2 = q2 = Pr
(GG) = MAF2. Under the alternative hypothesis, the geno-
type frequencies can be obtained using the formulas given
in the Notations Subsection and f0 = K/[Pr(gg) + l1 Pr(Gg)
+ l2 Pr(GG)]. More details could be referred to [23] and
[24]. The genotype counts in case sample and control
sample were generated from a multinomial distribution.
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Simulation Results
For convenience, we refer to the aforementioned four
joint analysis approaches as, respectively, ALLEJ (allele-
frequency-difference-based joint analysis), CATAJ
(Cochran-Armitage trend test under the additive model-
based joint analysis), MERTJ (MERT-based joint analy-
sis), MAX3J (MAX3-based joint analysis). Table 2, 3, 4
and 5 report powers of the four joint analysis methods

corresponding to MAF equal to 0.15, 0.25, 0.35 and
0.45, respectively. From these tables, we have the follow-
ing observations. Under the recessive model, MERTJ
and MAX3J are more powerful than ALLEJ and CATAJ,
with MAX3J being most powerful among the four meth-
ods under consideration. In some cases, the advantage of
MAX3J is quite impressive. For example, in Table 2, with
π = 0.5, g = 0.0001, the powers of ALLEJ, CATAJ, MERTJ

Table 2 Power comparison for MAF = 0.15 (K = 0.1, a =
0.05, m = 5 × 105)

π g ALLEJ CATAJ MERTJ MAX3J

Recessive Model 0.5 0.0001 0.070 0.058 0.385 0.759

r = s = 5000 0.0002 0.076 0.064 0.420 0.798

l1 = 1, l2 = 2 0.4 0.0001 0.049 0.042 0.273 0.583

0.0002 0.058 0.048 0.317 0.646

0.3 0.0001 0.029 0.025 0.155 0.346

0.0002 0.036 0.031 0.193 0.423

Additive Model 0.5 0.0001 0.601 0.613 0.440 0.555

r = s = 2000 0.0002 0.643 0.655 0.477 0.599

l1 = 1.4, l2 = 1.8 0.4 0.0001 0.450 0.460 0.317 0.406

0.0002 0.507 0.517 0.364 0.451

0.3 0.0001 0.271 0.277 0.183 0.226

0.0002 0.326 0.334 0.226 0.281

Dominant Model 0.5 0.0001 0.679 0.711 0.356 0.726

r = s = 2000 0.0002 0.720 0.752 0.388 0.768

l1 = l2 = 1.5 0.4 0.0001 0.520 0.551 0.254 0.552

0.0002 0.579 0.611 0.293 0.621

0.3 0.0001 0.322 0.345 0.146 0.339

0.0002 0.383 0.408 0.181 0.400

Table 3 Power comparison for MAF = 0.25 (K = 0.1, a =
0.05, m = 5 × 105)

π g ALLEJ CATAJ MERTJ MAX3J

Recessive Model 0.5 0.0001 0.075 0.066 0.220 0.517

r = s = 5000 0.0002 0.083 0.073 0.242 0.546

l1 = 1, l2 = 1.5 0.4 0.0001 0.053 0.047 0.154 0.365

0.0002 0.062 0.055 0.180 0.408

0.3 0.0001 0.031 0.028 0.087 0.197

0.0002 0.039 0.035 0.110 0.254

Additive Model 0.5 0.0001 0.835 0.846 0.782 0.799

r = s = 2000 0.0002 0.868 0.878 0.820 0.838

l1 = 1.4, l2 = 1.8 0.4 0.0001 0.687 0.700 0.625 0.639

0.0002 0.742 0.754 0.683 0.700

0.3 0.0001 0.462 0.474 0.405 0.413

0.0002 0.530 0.542 0.472 0.476

Dominant Model 0.5 0.0001 0.717 0.757 0.511 0.826

r = s = 2000 0.0002 0.758 0.796 0.551 0.853

l1 = l2 = 1.5 0.4 0.0001 0.557 0.597 0.375 0.651

0.0002 0.617 0.656 0.427 0.726

0.3 0.0001 0.350 0.382 0.221 0.425

0.0002 0.413 0.447 0.270 0.495

Table 4 Power comparison for MAF = 0.35 (K = 0.1, a =
0.05, m = 5 × 105)

π g ALLEJ CATAJ MERTJ MAX3J

Recessive Model 0.5 0.0001 0.420 0.384 0.536 0.824

r = s = 4000 0.0002 0.456 0.418 0.578 0.860

l1 = 1, l2 = 1.5 0.4 0.0001 0.302 0.274 0.393 0.657

0.0002 0.348 0.317 0.447 0.717

0.3 0.0001 0.175 0.158 0.231 0.436

0.0002 0.216 0.196 0.282 0.492

Additive Model 0.5 0.0001 0.891 0.900 0.882 0.864

r = s = 2000 0.0002 0.916 0.925 0.909 0.895

l1 = 1.4, l2 = 1.8 0.4 0.0001 0.760 0.773 0.747 0.715

0.0002 0.809 0.821 0.797 0.767

0.3 0.0001 0.537 0.551 0.522 0.481

0.0002 0.604 0.618 0.590 0.548

Dominant Model 0.5 0.0001 0.558 0.607 0.464 0.758

r = s = 2000 0.0002 0.600 0.649 0.502 0.806

l1 = l2 = 1.5 0.4 0.0001 0.413 0.455 0.337 0.599

0.0002 0.468 0.512 0.385 0.660

0.3 0.0001 0.246 0.274 0.197 0.374

0.0002 0.298 0.330 0.242 0.437

Table 5 Power comparison for MAF = 0.45 (K = 0.1, a =
0.05, m = 5 × 105)

π g ALLEJ CATAJ MERTJ MAX3J

Recessive Model 0.5 0.0001 0.282 0.253 0.263 0.542

r = s = 2000 0.0002 0.308 0.277 0.288 0.572

l1 = 1, l2 = 1.5 0.4 0.0001 0.199 0.178 0.184 0.380

0.0002 0.231 0.207 0.215 0.442

0.3 0.0001 0.114 0.101 0.104 0.220

0.0002 0.142 0.127 0.131 0.263

Additive Model 0.5 0.0001 0.886 0.896 0.894 0.854

r = s = 2000 0.0002 0.912 0.921 0.919 0.881

l1 = 1.4, l2 = 1.8 0.4 0.0001 0.753 0.767 0.765 0.701

0.0002 0.803 0.815 0.813 0.760

0.3 0.0001 0.529 0.543 0.542 0.473

0.0002 0.597 0.610 0.609 0.545

Dominant Model 0.5 0.0001 0.279 0.317 0.302 0.590

r = s = 2000 0.0002 0.305 0.346 0.329 0.626

l1 = l2 = 1.5 0.4 0.0001 0.197 0.225 0.214 0.428

0.0002 0.229 0.260 0.248 0.483

0.3 0.0001 0.112 0.128 0.123 0.241

0.0002 0.140 0.160 0.153 0.291
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and MAX3J are 0.070, 0.058, 0.385 and 0.759, respectively.
Under the additive model, CATAJ and ALLEJ have com-
parable power and are more powerful than the other two
tests. However, the power difference between CATAJ and
MAX3J is mostly at the level of 6.6%, with the largest dis-
crepancy of 7%. Under the dominant model, CATAJ and
MAX3J are more powerful than ALLEJ and MERTJ. Both
tests have comparable power when MAF = 0.15, and
MAX3J is much more powerful than CATAJ when MAF =
0.25, 0.35 and 0.45. In summary, it appears that MAX3J
has the best overall performance.

A Real Example: Type 2 Diabetes Mellitus
Type 2 diabetes mellitus is one of the most common
diseases, and has been found to be associated with
environmental factors and genetic variants. A two-stage
GWAS for type 2 diabetes mellitus was reported in [7].
In this study, 392,935 SNPs were genotyped on 1,363
subjects in Stage 1. Based on the statistical significance
level of 1 × 10-4, 57 SNPs were selected and further
screened on 2,617 cases and 2,894 controls in Stage 2.
We applied the above four considered methods to two
SNPs, rs1005316 and rs2876711, which were not
reported in their Table 1, but were shown in their
Appendix. Table 6 gives the genotype counts and
p-values of these two SNPs. We found a genome-wide
significant association between rs2876711 and the out-
come. Although the association between rs2876711 and
type 2 diabetes mellitus has not been reported by [7],
our results show that we should be concerned with this
SNP and its neighborhood area. Additional experiments
should be further conducted to validate this association.

Discussion and Conclusions
In genetic association studies, the underlying genetic
inheritance model is often unknown, and thus hinders the
use of methods such as CATT, which has to be derived
under an assumed genetic model. Robust tests, such as
MERT and MAX3, had been proposed to relax the depen-
dence on the underlying genetic models. Extending these
tests to a two-stage setting, we construct two robust joint
analyses based on MERT and MAX3. Numerical results
show that MAX3J has the best overall performance among
the four considered joint analysis approaches. For type 2

diabetes mellitus, based on MAX3J, we found that SNP
rs2876711 was significantly associated with type 2 diabetes
mellitus besides their findings.
Pearson Chi-square test is a robust test that was used

in genetic association studies (see e.g., [25]). Recently, a
comprehensive power comparison between MAX3 and
Pearson Chi-square test and Cochran-Armitage trend
test under the additive model was conducted in [17].
They reported that MAX3 has the most robust perfor-
mances. The proposed joint analysis combing the test
statistics of both stages considers the between-stage het-
erogeneity. It is intractable for Pearson Chi-square test
to consider the relative risk heterogeneity of both stages,
especially when the relative risk in Stage 1 is larger than
one and that in Stage 2 is less than one.
Recently, a joint analysis based on genetic model

selection [26] to overcome the genetic model uncer-
tainty was proposed in [22]. Based on the data in Stage
1, they used Hardy-Weinberg disequilibrium trend test
studied in [27] to determine a score that corresponds to
a genetic model. This score was then used to construct
the trend test based on the data of Stage 2. Results (not
shown here) show that the proposed joint analysis has
comparable power. Therefore, the proposed MAX3J can
be used as an alternative procedure in two-stage gen-
ome-wide association studies.

Additional material

Additional file 1: Appendix for the main text. The file (including
Appendix A, B, C) is a Microsoft Word document. Appendix A gives a
detailed description of the joint distribution of the additive trend test
statistic T A

1 in Stage 1 and the joint additive trend test statistic TJ
A.

Appendix B gives a detailed description of the correlation coefficient
between the recessive trend test statistic and the dominant trend test
statistic under the null hypothesis, and the joint distribution of T mert

1
and TJ

mert. Appendix C gives a detailed description of the correlation
coefficient between the recessive trend test statistic and the additive
trend test statistic, and the correlation coefficient between the additive
trend test statistic and the dominant trend test statistic.

Abbreviations
GWAS: genome-wide association study; SNP: single nucleotide
polymorphism; MAF: minor allele frequency; AFDT: allele-frequency-
difference-based test; CATT: Cochran-Armitage trend test; MERT: maximin
efficiency robust test; MAX3: maximum values of Cochran-Armitage trend

Table 6 Genotype counts and p-values of SNPs rs1005316 and rs2876711 for type 2 diabetes mellitus

SNP ID r0 r1 r2 s0 s1 s2 ALLEJ CATAJ MERTJ MAX3J

rs1005316 Stage 1 13 224 457 44 211 399 6.13 × 10-5 7.78 × 10-6 3.87 × 10-6 8.12 × 10-7

Stage 2 89 669 1708 89 913 1856

rs2876711 Stage 1 99 322 272 121 351 182 2.92 × 10-7 2.07 × 10-8 5.97 × 10-8 3.10 × 10-8

Stage 2 389 1191 989 484 1404 987

Note: r0, r1, and r2 denote the number of individuals carrying genotype gg, Gg, and GG in case sample, respectively; s0, s1, and s2 denote the number of
individuals carrying genotype gg, Gg, and GG in control sample, respectively.

Pan et al. BMC Bioinformatics 2011, 12:9
http://www.biomedcentral.com/1471-2105/12/9

Page 6 of 7

http://www.biomedcentral.com/content/supplementary/1471-2105-12-9-S1.DOC


tests under recessive, additive and dominant models; ALLEJ: allele-frequency-
difference-based joint analysis; CATAJ: Cochran-Armitage trend test under
the additive model-based joint analysis; MERTJ: MERT-based joint analysis;
MAX3J: MAX3-based joint analysis.
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