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Abstract

Background: Measuring similarities between tree structured data is important for analysis of RNA secondary
structures, phylogenetic trees, glycan structures, and vascular trees. The edit distance is one of the most widely
used measures for comparison of tree structured data. However, it is known that computation of the edit distance
for rooted unordered trees is NP-hard. Furthermore, there is almost no available software tool that can compute
the exact edit distance for unordered trees.

Results: In this paper, we present a practical method for computing the edit distance between rooted unordered
trees. In this method, the edit distance problem for unordered trees is transformed into the maximum clique
problem and then efficient solvers for the maximum clique problem are applied. We applied the proposed method
to similar structure search for glycan structures. The result suggests that our proposed method can efficiently
compute the edit distance for moderate size unordered trees. It also suggests that the proposed method has the
accuracy comparative to those by the edit distance for ordered trees and by an existing method for glycan search.

Conclusions: The proposed method is simple but useful for computation of the edit distance between unordered
trees. The object code is available upon request.

Background
Analysis of tree structured data is important in bioinfor-
matics because there exist various kinds of tree struc-
tured biological data, which include RNA secondary
structures [1,2], phylogenetic trees [3-5], glycans (i.e.,
sugar chains) [6-9], and vascular trees [10,11]. Various
techniques have been applied to analyses of these tree
structured data. Though machine learning techniques
have been extensively applied to analysis of glycan struc-
tures [7-9], it is still important to develop simple com-
parison/search methods because machine learning
methods are not appropriate for fast search of similar
objects. Indeed, in analysis of biological sequences, such
sequence search/comparison tools as FASTA, BLAST

and SSEAECH are still widely used. Therefore, it is
worthy to develop search/comparison methods for tree
structured data. In order to compare tree structured
data, it is required to define some measure of similarity
or dissimilarity between two trees. Among various mea-
sures, the tree edit distance is the most fundamental and
has been extensively studied [12]. It measures the dis-
tance between two trees by means of the minimum cost
sequence of edit operations that transforms one tree
into another tree, where an edit operation is either a
deletion of a node, an insertion of a node, or a substitu-
tion of a label of a node. For the tree edit distance pro-
blem for ordered trees, Tai developed an O(n6) time
algorithm [13], where n is the number of nodes in a lar-
ger input tree. Several improvements followed from this
work. Demaine et al. recently developed an O(n3) time
algorithm and showed that this bound is optimal under
some computation strategy [14].
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The tree edit distance between ordered trees is useful
if the ordering among children has an important mean-
ing (e.g., for RNA secondary structures). However, in
some applications, it is preferable to regard input trees
as unordered trees. At least, in many applications, more
flexible matching can be made possible if input trees are
regarded as unordered trees and thus the chance that
similar data is missed can be decreased. It is to be noted
that edit distance for unordered trees is always smaller
than that for ordered trees. Unfortunately, Zhang et al.
proved that the tree edit distance problem for unordered
trees is NP-hard [15]. Furthermore, Zhang and Jiang
proved that it is MAX SNP-hard [16], which means that
there exists no polynomial time approximation scheme
unless P=NP. In order to cope with this hardness,
Akutsu et al. developed a fixed parameter algorithm
which works in O(2.62k · poly(n)) time [17], where k is
the maximum allowed edit distance. Their algorithm
might be useful for comparison of very similar trees
(i.e., k is small). However, it is not useful for comparison
of non-similar trees. Horesh et al. developed an A* algo-
rithm [3]. Their algorithm works efficiently for moderate
size trees. However, their algorithm can only handle unit
cost cases (i.e., the cost of each edit operation is 1).
Some alternatives to the tree edit distance for unordered
trees have been proposed [6,12,18,19]. However, none of
them is widely accepted as a measure of similarity for
unordered trees. Therefore, it is still needed to develop
a practical method for calculating tree edit distance
between unordered trees.
In this paper, we propose a practical method using

algorithms for computing the maximum clique. The
idea of the method is simple: the edit distance problem
is reduced to the maximum clique problem and then
practical solvers for the maximum clique problem are
applied. The maximum clique problem is a fundamental
problem in computer science and is to find a complete
subgraph of the maximum number of vertices in a given
undirected graph. Though the maximum clique problem
is proven to be NP-hard, several practical algorithms
have been developed and successfully applied for practi-
cal problems [20-23]. By utilizing such algorithms
[20,21], we can solve the edit distance problem for
unordered trees of moderate size (i.e., trees with 30 ~
45 nodes). Though similar reductions have been pro-
posed for similar edit distance problems [24,25], to our
knowledge, it is the first method that exactly solves the
proper tree edit distance problem for unordered trees
using maximum clique, where we use the fastest maxi-
mum clique algorithms [21,22] developed by one of the
authors and his collaborators. Furthermore, to our
knowledge, it is the first practical method for computing
the unordered tree edit distance with general editing
cost functions.

In order to evaluate the proposed method, we perform
computational experiments using glycan structure data
stored in the KEGG database [26]. The result suggests
that our proposed method can efficiently compute the
edit distance for moderate size unordered trees. It also
suggests that the proposed method has the accuracy
comparative to those by the edit distance for ordered
trees and by an existing method for glycan search.

Methods
Tree edit distance
Here, we briefly review tree edit distance and edit dis-
tance mapping (see also Figure 1) for rooted, labelled
and unordered trees [12,15,16].
Let T be a rooted unordered tree. We assume that

each node v has a label ℓ(v) over an alphabet Σ. r(T), V
(T), and E(T) denote the root of T, the set of nodes in
T, and the set of edges in T, respectively. For a node v Î
V(T), anc(v) denotes the set of ancestors of v. In the fol-
lowing, n denotes the number of nodes in a larger input
tree (i.e., n = max{|V(T1)|, |V(T2)|}).
An edit operation on a tree T is either a deletion, an

insertion, or a substitution, where each operation is
defined as follows (see also Figure 1):
Deletion: Delete a non-root node v in T with parent

u, making the children of v become children of u. The
children are inserted in the place of v into the set of the
children of u.
Insertion: Inverse of delete. Insert a node v as a child

of u in T, making v the parent of some of the children
of u.
Substitution: Change the label of a node v in T.
For each of edit operations, the cost is defined as

follows:
g(a, b): cost of substituting a node with label a to label

b,
g(a, Î): cost of deleting a node labeled with a,
g(Î, a): cost of inserting a node labeled with a.
The edit distance dist(T1, T2) between two unordered

trees T1 and T2 is defined as the cost of the minimum
cost sequence of edit operations that transforms T1 to
T2. In this paper, we adopt the following standard
assumption so that dist(T1, T2) becomes a distance
metric [12,15]:
• g(a, b) ≥ 0 for any (a, b) Î Σ′ × Σ′,
• g(a, a) = 0 for any a Î Σ′,
• g(a, b) = g(b, a) for any (a, b) Î Σ′ × Σ′,
• g(a, c) ≤ g(a, b) + g(b, c) for any a,b,c Î Σ′ × Σ′ × Σ′,
where Σ′ = ΣU {Î}. We call T2 a subtree of T1 if T2 is

obtained from T1 only by deletion operations. It should
be noted that this definition of subtree is different from
a subgraph of a tree.
There exists a close relationship between the edit

distance and the edit distance mapping (or just
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mapping) [12,15]. M ⊆ V (T1) × V(T2) is called a map-
ping if the following conditions are satisfied for any
two pairs (u1, v1), (u2, v2) Î M:
(i) u1 = u2 iff v1 = v2,
(ii) u1 Î anc(u2) iff v1 Î anc(v2).
Let I1 and I2 be the sets of nodes in V(T1) and V(T2)

not appearing in M, respectively. Then, the following
relation holds [12,15]:

dist T T v v u v
M

v I v I

1 2

1 2

, min , , ,( ) = ( ) ∈( ) + ∈ ( )( ) + ( ) ( )( )
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Here we define a score function f(u, v) for (u, v) Î V
(T1) × V(T2) by
f(u, v) = g(ℓ(u), Î) + g(Î, ℓ(v)) - g(ℓ(u), ℓ(v)).
It is seen that f(u, v) = f(v, u) ≥ 0 holds. It should also

be noted that under the unit cost model (i.e., g(a, b) = 1
for all a ≠ b), f(v, v) = 2 and f(u, v) = 1 hold for ℓ(u) ≠
ℓ(v). Let score(M) be the score of a mapping M defined
by score(M) = ∑(u,v)ÎM f(u, v). Let MOPT be the mapping
with the maximum score. Then, we can see from the
definition that the following property holds [17]:

dist T T u v score M
u V T v V T

OPT1 2

1 2

, , ,( ) = ( ) ∈( ) + ∈ ( )( ) − (
∈ ( ) ∈ ( )
∑ ∑   )) , (1)

assuming that the root of T1 corresponds to the root
of T2 in MOPT, where this assumption can be removed if
we add dummy nodes having the same label to T1 and
T2 as the new roots.

Reduction to maximum clique
Let G(V, E) be an undirected graph. Then, a subgraph G′
(V′, E′) of G(V, E) is called a clique if it is a complete sub-
graph (i.e., {{vi,vj} | vi, vj Î V′, vi ≠ vj } = E′). The maxi-
mum clique problem is to find a maximum clique (i.e., a

clique with the maximum number of vertices) in a given
undirected graph. Though the maximum clique problem
is known to be NP-hard, several practical algorithms
have been developed [20-23]. In some cases, weighted
versions of the maximum clique problem are utilized.
Among such variants, we consider the case that weights
are given to vertices. Let w(v) denote the weight of a ver-
tex v in G(V, E). Then, a weighted version of the maxi-
mum clique problem is to find a clique G′(V′, E′) which
maximizes ∑vÎV′w(v). In this paper, we call this variant the
maximum vertex weighted clique problem, whereas the
maximum clique problem denotes the original one.
Our proposed method is based on a simple reduction

from the edit distance problem for unordered trees to
the maximum clique problem. Based on Eq. (1), for cal-
culating the tree edit distance, it is enough to find a
mapping M which maximizes ∑(u, v)ÎMf(u, v). In order
to find such a mapping, we construct an undirected
graph G(V,E) from two input trees T1 and T2 by
V = {(u, v) | u ÎV(T1), u ≠ r (T1), v ÎV(T2), v ≠ r(T2)},
E = {{(u1,v1), (u2,v2 )} | u1 ≠ u2, v1 ≠ v2, u1Îanc(u2) iff

v1 Î anc(v2), u2 Î anc(u1) iff v2 Î anc(v1)},
where the first two conditions and the last two condi-

tions in the definition of E correspond to conditions
(i) and (ii) for the edit distance mapping, respectively. We
can see that there is a one-to-one correspondence between
the set of cliques and the set of edit distance mappings,
where we let r(T1) correspond to r(T2) (because the root
cannot be deleted or inserted). Here, we assign weight w
(x) to each vertex x = (u, v) ÎV by w(x) = f(u, v). Then, we
can see from Eq. (1) that the tree edit distance can be
obtained by finding a maximum vertex weighted clique.
It is to be noted that if we consider the case of g(a, Î) =

g(Î, a) = 1, g(a, a) = 0 for all a Î Σ, and g(a, b) = 2 for all
a ≠ b, we have f(v, v) = 2 and f(u, v) = 0 for ℓ(u) ≠ ℓ(v),
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Figure 1 Example of tree edit operations and edit distance mapping under the unit cost model. T2 is obtained from T1 by deletion of
node (labeled with) e, insertion of node k and substitution of node f. The corresponding mapping M is shown by broken curves.
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and thus we can use a non-weighted version of maximum
clique algorithms (see Figure 2). In such a case, the
resulting mapping gives a largest common subtree (a tree
with the largest number of nodes which is a subtree of
both T1 and T2) [17].

Maximum clique algorithms
In this study, we use algorithms for both the maximum
clique problem and the maximum vertex weighted cli-
que problem. For both problems, Tomita and his colla-
borators have been developing several algorithms.
Recent studies on comparison with other existing algo-
rithms suggest that their algorithms are fastest in most
cases [22]. Based on several preliminary experiments, we
chose MCQ and MWCQ as algorithms for the maxi-
mum clique problem and the maximum vertex weighted
clique problem, respectively, where MWCQ is basically
an extended version of MCQ. Details of MCQ and
MWCQ are given in [21] and [20], respectively.
Though there are some theoretical studies on related

algorithms [23], the worst case time complexities of
MCQ and MWCQ are left open. Therefore, we cannot
discuss the time complexity of our proposed method,
whereas it is straight-forward to see that the graph
obtained by reduction from input trees has O(|V(T1)| ×
|V(T2)|) nodes and O(|V(T1)|

2 × |V(T2)|
2) edges.

Results
We implemented the above mentioned maximum cli-
que-based method (MCQ-based method) and maximum
vertex weighted clique-based method (MWCQ-based
method) using C language. We performed computa-
tional experiments using a PC with Intel Core 2 Duo
2.8 GHz CPU and 3.48 GB RAM running under the
Cygwin/Widnows XP operating system. As tree struc-
tures, we used glycan structures obtained from KEGG/
Glycan database [26].

Results on efficiency
First we examined the computational efficiency of
MWCQ-based method, where we used the standard
weighting scheme (i.e., f(v, v) = 2 and f(u, v) = 1 for ℓ(u)
≠ ℓ(v)) corresponding to the unit cost edit distance. We
randomly selected 100 pairs of glycan structures with a
specified range of the total number of nodes (i.e., the
sum of the numbers of nodes in T1 and T2) and mea-
sured the average CPU time (user time) per pair. Unba-
lanced cases in which the size of one structure was not
larger than 1/3 of the other structure were excluded.
For each of the ranges in 60 ~ 79, we took the average
over 20 pairs because there did not exist an enough
number of pairs, where we could use 18 pairs among 20
pairs for the range of 65 ~ 69 because there were two
very bad cases for which the program could not output
a solution within 10 minutes. For the ranges of 80 ~ 84
and 85 ~ 89, we could use only 9 and 5 pairs, respec-
tively. The result is shown in Table 1. From this table, it
is seen that the proposed method works efficiently for
moderate size trees (i.e., trees with 30 ~ 45 nodes),
which means that the proposed method works efficiently
for most glycan structures.
Next we examined the computational efficiency of

MCQ-based method, which corresponds to the case of
computation of the largest common subtree (i.e., f(v, v)
= 2 and f(u, v) = 0 for ℓ(u) ≠ ℓ(v)). As in the case of
MWCQ-based method, we randomly selected 100 pairs
of glycan structures with a specified range of the total
number of nodes and measured the average CPU time,
where we used a fewer number of pairs when the num-
ber of nodes was no less than 60 as in the case of
MWCQ-based method. The result is shown in Table 2.
From this table, it is seen that MCQ-based method
works very fast for most glycan structures. It is to be
noted that CPU time does not necessarily increase as
the size of input trees because the size of transformed
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Figure 2 Example of the reduction from tree edit distance to maximum clique. We consider the case of g(a, Î) = g(Î, a) = 1, g(a, a) = 0,
and g(a, b) = 2 for a ≠ b (i.e., f(v, v) = 2 and f(u, v) = 0 for ℓ(u) ≠ℓ(v)). In the left figure, both label and node ID are shown above and below
parts of each node, respectively. Vertices with f(ui, vj) = 0 are omitted in the right figure. The maximum clique shown by bold lines in the right
figure corresponds to the optimal edit distance mapping shown by broken lines in the left figure.
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clique instances strongly depends on the distribution of
identical labels in input trees and thus does not so
much depend on the size of input trees.
Though MCQ-based method is very fast, it makes

extensive use of identity of node labels (node pairs with-
out non-identical labels are ignored and thus the number
of remaining nodes in G(V, E) becomes very small). On
the other hand, MWCQ-based method takes all node
pairs between T1 and T2 into account and thus is not
very fast. Compared with an existing method [3], MCQ-
based method is much faster but solves an easier problem
(it seems from their results that their method can be
applied to comparison of trees with up to 90 nodes (sum
of two input trees) though CPU time is not shown in
[3]). On the other hand, it seems from Table 1 that
MWCQ-based method has a similar performance with
that in [3] though [3] solves non-labeled cases whereas
we solved labeled cases. However, MWCQ-based method
has a merit: it can handle general editing cost functions
whereas the method in [3] can only handle the unit edit-
ing cost.

Results on similar structure search
Though the ordered and unordered tree edit distances
are widely-accepted (dis)similarity measures on trees, we
performed computational experiments in order to exam-
ine how it is useful for similarity search for glycans. We
used a dataset compiled by Yamanishi et al. [9] on four
properties on glycans, where we used 355 structures
among 356 glycan structures listed in their list since we
could not obtain one structure. Though this dataset is
prepared for evaluating machine learning methods, we
applied it to evaluation of search methods. We compared
the following four similarity search methods: global gly-
can alignment and local glycan alignment implemented
in the KCaM glycan search tool (version of Sept. 2004
with the default parameters) [6], unit cost ordered tree
edit distance, and unit cost unordered tree edit distance
(i.e., MWCQ-based method). Glycan alignment scores
were introduced for efficient comparison of glycan struc-
tures. Though it is based on tree edit distance, the dele-
tion (and corresponding insertion) operation is simplified
so that only one child and its descendants can survive if a
node is deleted. Therefore, there is a possibility that simi-
lar structures are missed by glycan alignment.
We evaluated the performance of similarity search

using the AUC score [27]. In order to apply the AUC
score, we need positive and negative samples. For that
purpose, each pair of sequences in the dataset is
regarded as a positive sample if the distance (resp.,
alignment score) is smaller (resp., greater) than a given
threshold. Otherwise, it is regarded as a negative sample.
Each positive sample is classified into either true positive
or false positive according to whether sequences in the
pair belong to the same class. Similarly, each negative
sample is classified into either false negative or true
negative according to whether sequences in the pair
belong to the same class. Then, true positive rate and
false positive rate are defined as the ratio of the number
of true positive samples to the number of true positive
and false negative samples and the ratio of the number
of false positive samples to the number of false positive
and true negative samples, respectively. The ROC (Recei-
ver Operating Characteristic) curve is a graphical plot of
the true positive rate vs. the false positive rate obtained
by varying the threshold. The AUC (Area Under Curve)
score is defined as the area under the ROC curve: AUC
scores of 1 and 0.5 correspond to complete classification
and random classification, respectively. The resulting
ROC curves are shown in Figure 3 and Figure 4, and
the resulting AUC scores are shown in Table 3. It
should be mentioned that we could not obtain meaning-
ful AUC scores for plasma and serum datasets (i.e.,
AUC scores for these data sets were less than 0.65
though the local alignment method produced better
results). Since it seems that these data sets are not

Table 1 CPU time on maximum vertex weighted clique-
based method

total number of nodes average CPU time (sec.)

30 ~ 34 0.004340

35 ~ 39 0.004990

40 ~ 44 0.015200

45 ~ 49 0.050800

50 ~ 54 0.473000

55 ~ 59 2.160000

60 ~ 64 3.020000

65 ~ 69 15.300000

70 ~ 74 4.380000

75 ~ 79 2.610000

80 ~ 84 7.930000

85 ~ 89 232.000000

Table 2 CPU time on maximum clique-based method

total number of nodes average CPU time (sec.)

30 ~ 34 0.010400

35 ~ 39 0.000191

40 ~ 44 0.000203

45 ~ 49 0.001100

50 ~ 54 0.000780

55 ~ 59 0.004530

60 ~ 64 0.125000

65 ~ 69 4.600000

70 ~ 75 0.016400

75 ~ 79 0.032800

80 ~ 84 0.000087

85 ~ 89 0.000032
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appropriate for simple search, Table 3 lists AUC scores
only for leukemia and erythrocyte datasets. It is seen
from the table that the tree edit distance measures are
better than the alignment scores for leukemia data but
are worse for erythrocyte data. It is also seen that the

AUC scores for ordered tree edit distance are very close
to the AUC scores for unordered tree edit distance.
Though we cannot conclude that the unordered tree
edit distance is better than other similarity measures for
glycan search, it is comparative to other measures.
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Figure 3 ROC curve for leukemia dataset.
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Figure 4 ROC curve for erythrocyte dataset.
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In order to see more differences between ordered tree
edit distance and unordered tree edit distance, we com-
puted ordered tree edit distances when the order of chil-
dren of every node was reversed in one of the input
trees. The results are also shown in Table 3 (denoted as
“reversed ordered tree”), Figure 3, and Figure 4 (denoted
as ‘reverse’). For the result on the erythrocyte dataset, it
is seen that the difference between ordered tree edit dis-
tance and unordered tree edit distance becomes larger
(i.e., the difference increases from 0.004 to 0.008)
though it is still small. Though we do not clearly under-
stand the reason of this small difference, it might be
because a single path in each glycan structure is relevant
for the features studied in this paper.
The total CPU time for computing the distances (or

scores) between all pairs of glycans in the dataset is also
shown for each method in Table 3. Though the proposed
clique-based method took more CPU time than other
methods, the differences were not very large. It should be
mentioned that we used a clique-based method for

computing ordered tree edit distance for simplicity of
implementation and thus CPU time on ordered tree edit
distance would be much larger here than that by an effi-
cient dynamic programming-based algorithm [14], but
that is not relevant because CPU time for unordered tree
edit distance is fast enough in Table 3.
Here, we briefly explain the methodological differences

among measures. Figure 5 illustrates the difference
between unordered tree edit distance and ordered tree
edit distance. As shown in Figure 5, suppose that there
exist two trees T1 and T2 with roots r1 and r2. Suppose
further that r1 has two subtrees A and B, and r2 has two
subtrees B′ and A′ in these orders, where A and A′ (B and
B′, respectively) are similar to each other, and A is larger
than B. If two trees are regarded as ordered, ordered tree
edit mapping takes only matching between A and A′ into
account. Otherwise, unordered tree mapping takes
matchings between A and A′, and between B and B′ into
account. Figure 6 illustrates the difference of the deletion
operation between tree edit and glycan alignment. In tree
edit, all children of the deleted node u become children
of the parent v of u. However, in glycan alignment, only
one child can be a child of v and the other children are
deleted along with their descendants, where the surviving
child is chosen so that the resulting score is maximized.
It is seen from these figures that the tree edit distance for
unordered trees provides the most flexible matching.

Conclusions
In this paper, we have proposed a clique-based method
for computing the tree edit distance between rooted

Table 3 Comparison of glycan similarity measures via
AUC score

AUC score CPU time (sec.)

leukemia erythrocyte

global alignment score [6] 0.686 0.797 10.08

local alignment score [6] 0.623 0.822 10.18

ordered tree edit distance 0.729 0.773 38.02

unordered tree edit distance 0.731 0.777 48.33

reversed ordered tree 0.730 0.769 37.92

unordered tree
matching

ordered tree
matching

T1 T2

r 1

A
B

r 2

A’
B’

r 1
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B
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Figure 5 Comparison of unordered and ordered tree edit distances.
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unordered trees. We implemented two versions: one
using a maximum clique (MCQ) algorithm [21] and the
other one using a maximum vertex weighted clique
(MWCQ) algorithm [20].
The former one is faster than an existing A* algorithm

[3]. However, it uses a non-standard editing cost scheme
and thus is not more useful than the A* algorithm. The
efficiency of the latter one is similar to that of the A*
algorithm. However, it has two merits: it can handle
general cost distances whereas the A* algorithm can
only handle the unit cost distance, improvements of
maximum clique algorithms lead to improvements of
the efficiency of edit distance computation.
We also compared the unordered edit distance with

ordered edit distance, global and local glycan alignment
scores for glycan similarity search. Though the result
did not show clear advantage of the unordered edit dis-
tance, it was comparative to these three measures. It is
to be noted that the unit cost model was used for edit
distance measures whereas score functions specialized
for glycans were used for glycan alignments. Therefore,
if we use editing costs specialized for glycans, we may
obtain better performances. Such a development is left
as future work.
Finally we again note that the edit distances for both

ordered and unordered trees are already established
measures for calculating the (dis)similarity between trees
[12]. Therefore, application of the proposed method is
not limited to glycan structures. It might be applied to
analysis of various tree structure data if each tree con-
sists of up to several tens of nodes.
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