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Abstract

processes.

statistical framework on which to study gene duplication.

Background: The abundance of new genomic data provides the opportunity to map the location of gene
duplication and loss events on a species phylogeny. The first methods for mapping gene duplications and losses
were based on a parsimony criterion, finding the mapping that minimizes the number of duplication and loss
events. Probabilistic modeling of gene duplication and loss is relatively new and has largely focused on birth-death

Results: We introduce a new maximum likelihood model that estimates the speciation and gene duplication and
loss events in a gene tree within a species tree with branch lengths. We also provide an, in practice, efficient
algorithm that computes optimal evolutionary scenarios for this model. We implemented the algorithm in the
program DrML and verified its performance with empirical and simulated data.

Conclusions: In test data sets, DrML finds optimal gene duplication and loss scenarios within minutes, even when

the gene trees contain sequences from several hundred species. In many cases, these optimal scenarios differ from
the Ica-mapping that results from a parsimony gene tree reconciliation. Thus, DrML provides a new, practical

Background
One of the fundamental problems in evolutionary biology
is to determine the genomic mechanisms that generate
phenotypic and species diversity. Gene duplications play
a critical role in acquiring new gene functions and, con-
sequently, adaptive innovations (e.g., [1-3]). Recent sur-
veys of genomic data have revealed tremendous variation
in gene content and copy number across species (e.g.,
[4,5]). Scientists are now challenged to place this varia-
tion in an evolutionary context, that is, to determine
where in evolutionary history the gene duplications took
place. This is the first step in linking the genomic
changes to phenotypic changes or shifts in diversification
rates.

Gene tree—species tree reconciliation provides a direct
approach to infer the patterns and processes of gene
duplication and loss within the evolutionary history of
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species. Evolutionary processes such as gene duplication
and loss, lateral transfer, recombination, and incomplete
lineage sorting (deep coalescence) create incongruence
between the gene trees and the phylogenies of species in
which the genes evolve (e.g., [6]). Gene tree—species tree
reconciliation problems seek to infer and map the evolu-
tionary events that caused the incongruence. In this
paper, we introduce a novel, and in practice, efficiently
computable maximum likelihood approach for reconcil-
ing gene tree and species tree topologies based on gene
duplications and losses, and we demonstrate its perfor-
mance using simulated and empirical data sets.

Related work

The first model to reconcile gene trees with species
trees was the gene duplication model, which was intro-
duced by Goodman et al. [7] (see also [8]). In the gene
duplication model, a gene tree can be embedded into a
species tree through least common ancestor mapping
(lca-mapping), which maps every node in the gene tree
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to the most recent node in the species tree that could
have contained the ancestral gene (Figure 1). A node in
the gene tree represents a duplication if it has a child
with the same lca-mapping. This mapping also repre-
sents the most recent possible location of the gene
duplication and/or loss, and it represents the most parsi-
monious reconciliation hypothesis in terms of gene
duplications and losses. In other words, the lca-mapping
implies the fewest number of gene duplications, or
duplications and losses needed to reconcile the gene
trees with the species tree.

Minimizing the number of gene duplications and
losses through lca-mapping appears to produce relatively
accurate mappings of gene duplications and losses when
the rates of gene duplication and loss are slow [9,10],
and it can be computed in linear time [11,12]. Moreover
the parsimony criterion has been used effectively in phy-
logenetic inference, in which, given a collection of gene
trees, the goal is to find the species tree that minimizes
the number of duplications or duplications and losses
(e.g., [13-18]). However, there are usually many other
possible locations of duplication and loss events besides
the ones implied by the lca-mapping (e.g., [10]), and
some of the most biologically interesting genes, such as
the MHC gene family or the olfactory receptor genes,
have high rates of duplication and loss. Furthermore,
the parsimony criterion fails to consider evolutionary
time, which is typically represented by the branch
lengths on the species tree. For example, if a duplication
could have occurred on two branches, one representing
one million years and the other representing 100 million
years, all else being equal, it would be much more likely
that the duplication occurred during the one hundred
million year interval. Yet, a parsimony model would not
consider this information. Finally, it is difficult to incor-
porate the parsimony criterion into a rigorous statistical
framework to examine evolutionary hypotheses asso-
ciated with gene duplication.

There has been much recent interest in likelihood-
based approaches for reconciling gene trees and species
trees, much of which has focused on coalescence models
to describe incomplete lineage sorting (e.g., [19,20]).
Probabilistic modeling of gene duplication and loss is
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relatively new and has largely focused on birth-death
processes [9,21-24]. Although these approaches and
models are promising, they represent a narrow range of
potential models, and are computationally complex.

Contributions

We describe a novel, efficiently computable maximum-
likelihood model-based approach for gene tree reconci-
liation. Our initial model infers evolutionary scenarios
from a gene tree and a species tree with branch lengths,
which may represent the time between neighboring
speciation events. Our model allows the use of almost
any discrete distribution to model gene duplications
throughout the species tree. More precisely, we assume
that for every branch of the species tree there is a given
discrete distribution, which is parameterized by its
length. The branch length defines the probability of hav-
ing n gene duplications on this branch. Based on this
model, we define the following maximum likelihood pro-
blem: given a gene tree and a species tree, find the gene
tree reconciliation with the maximum likelihood.

To address and ultimately solve this complex problem,
we model formally the notion of an evolutionary sce-
nario (the evolution of a gene tree) and prove its equiva-
lence to the model of DLS-trees [25]. Despite the
complexity of the possible scenarios of gene duplication
and loss, we provide an in practice efficient algorithm
for the maximum likelihood problem based on dynamic
programming, and use it to reconstruct the optimal pla-
cement of gene duplications and optimal evolutionary
scenarios. We show that the dynamic programming
approach can be efficiently applied in almost all
instances (> 99.7% of our simulation experiments) of the
maximum likelihood problem. Additionally, we provide
a branch and bound solution for the few remaining
instances that are not solved by the dynamic program-
ming approach.

We developed DrML, a prototype implementation of
the algorithms in Python, and demonstrate its perfor-
mance on empirical and simulated data. DrML identifies
the maximum likelihood gene tree reconciliation in a
few minutes on problems with several hundreds of spe-
cies and gene sequences.

events.

c s G R(G,S)
Ica reconciled embedding
— —_— —
mapping tree . \
abcbcabc abcbcabc abcabebec

Figure 1 LCA-reconciliation. Example of a reconciliation based on a parsimony between the gene tree G and the species tree S. The
reconciled tree defines the evolutionary scenario with the minimal number of gene duplications and gene losses. R(G, S) has two gene
duplications, denoted by squares, and three gene losses, denoted by circles and dot lines. The red horizontal bars in R(G, S) denote speciation
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Methods

Basic notation and preliminaries

A gene tree is a rooted, binary, and directed tree whose
leaves are labelled by the species names. A species tree is
a gene tree whose leaves are uniquely labelled. Let T be
a gene tree. For a node v € T we denote by T(v) the
subtree of T that is rooted at v. By root(7T) we denote
the root of T. A node is called internal if it has two chil-
dren. By L(T) we denote the set of leaves of T, and by
L(T) we denote the set of leaf labels of T. In this paper
we assume that L(G) € L(S) for a gene tree G and a spe-
cies tree S.

We define < to be the partial order on the set of
nodes of T, where x < y if y is a node on the path
between the root of T and x. The least common ancestor
of a non-empty subset of nodes X € T, denoted by Ica
(X), is the unique smallest upper bound of X under <.
Mapping is a function m from the nodes of gene tree G
into the nodes of a species tree S that preserves the leaf
labels, and satisfies: (1) for all 4, ve G, if u < v then m
(#) < m(v), and (2) for all g e G, lca(m(L(G(g)))) < m(g).
The special case of a mapping, where the equality holds
in the second condition, is called /[ca-mapping and
denoted by m*. An internal node g € G is called lca-
speciation if and only if its children are not mapped into
m*(g).

Modeling evolutionary scenarios

Informally an evolutionary scenario is equivalent to an
embedding of a gene tree into a species tree (see Figure 1).
A gene can be lost or duplicated into new copies by a
gene duplication or speciation event. Both speciation and
duplication create two copies of a gene. However, the
duplication event occurs in one species and produces two
copies of the gene (called paralogs) in the same species,
while the speciation creates two new species, each with a
single copy of the gene (called orthologs). In order to
model the evolutionary scenario, we first need to state
whether an internal node of the gene tree represents a spe-
ciation or a duplication event. Additionally, we have to
“locate” these events from the gene tree in the species tree.
The locations are described by mappings.

Next, we present the evolutionary scenario called
reconciliation.

Definition 1 (reconciliation). A pair R = {m, X), where m
is a mapping and ¥ is a set of nodes from G, is called
reconciliation if G is lca-speciation and m(g) = m*(g), for
each g e X. The elements of X are called speciations (in R).

Let R = (m, X) be a reconciliation. Note that the spe-
ciations are internal in G. It should be clear from the
introduction that other internal nodes of G will be
called duplications. We define dupg(s) to be the number
of duplication nodes for which the mapping m is equal
to s. Similarly, we define specg(s) to be the number of
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speciation nodes. By R* we denote the [ca-reconciliation
(m* T*), where X* is the set of all Ica-speciations.

A reconciliation can be used to model an evolutionary
scenario that does not contain instances of the follow-
ing: (1) a duplication and an immediate loss of one of
the descendant copies, or (2) a gene which is lost after a
speciation event in all new formed species. Such cases
cannot be detected because there is no existing evidence
of the loss events.

It is not difficult to see that there is one-to-one corre-
spondence between reconciliations and semi-normal
DLS-trees where DLS-tree is a formal model of evolu-
tionary scenario in the duplication-loss model intro-
duced in [25]. Semi-normal DLS-trees cover the most
important and representative part of the scenarios
space. The example of reconciliations is presented in
Figure 2. In general, the number of possible reconcilia-
tions is exponential in the size of gene and species trees.
Gorecki et al. [25] provide more details on properties of
evolutionary scenarios and the DLS-trees.

Model and problem

From now on we will use an extended notion of the
species tree with branch lengths. For a node s € S we
denote by |s| the branch length associated with s. Infor-
mally, |s| can be treated like a branch length of the edge
connecting s with the parent of s. Note, that the root
has no edge of this property. However, the notion of the
tree could be easily extended to having the root edge.

Let P(z, d|\) denote the probability that d duplications
occurred during the time period 7 under the assumption
of a constant duplication rate L. Without loss of generality,

e—l‘[(lr)d
T

The likelihood of a given reconciliation R of a species tree
S and a gene tree G is defined by:

we use the Poisson distribution: P(r,d |y) =

L(S’ G) R) = HSESP(|S|’ dupR(S)l}\‘) (1)

Definition 2 (optimal reconciliation). Given a species
tree S with branch lengths and a gene tree G, we call the
reconciliation R optimal if it maximizes the likelihood L
(S, G, R) in the set of all reconciliations of S and G.

Problem 1 (Maximum Likelihood Estimation -MLE).
Instance: A species tree S with branch lengths and a gene
tree G. Find: The likelihood of an optimal reconciliation.

Problem 2 (Duplication-Speciation Setting - DSS).
Instance: A species tree S with branch lengths and a gene
tree G. Find: For each s | S find dupg(s) and specg(s)
such that R is an optimal reconciliation.

Problem 3 (Maximum Likelihood Scenario- MLS).
Instance: A species tree S with branch lengths and a gene
tree G. Find: An optimal reconciliation.
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Figure 2 Reconciliations. Reconciliations for the gene tree G and the species tree S. Only two mappings from G to S exist: the lca-mapping m*,
and the mapping my. There are 4 possible reconciliations: R*, Ry, R, and Rr. The diagram presents the embeddings of G, S, in which T, T;, T, and
T¢ corresponds to R*, Ry, R, and Ry, respectively. Only node x is the Ica-speciation.

b
m’ - lca-mapping R’ = m’,{x}? R,=™m’,7?

Solutions

We present a dynamic programming (DP) formula for
solving the majority of instances of the MLE problem (a
complete solution is presented after introduction of
hard instances). This formula can be naturally extended
to reconstruct duplication-speciation settings (the DSS
problem). First we introduce necessary definitions
related to reconciliations. For a mapping m from G into
S, let ¢(m,s) be the number of internal nodes of G that
are mapped into S(s) under m (formally ¢(m, s) := |{g: ¢
is internal in G such that m(g) < s}|). Now we define a
notion of acceptable triplet, which is used to define
reconciliations in the algorithm.

Definition 3.Let G be a gene tree and S be a species
tree. A triplet (0, k1,ky) is called acceptable for a node s
€ S and its children s; and s, iff there exists a reconci-
liation (m, L) such that under mthe following conditions
are satisfied: (i) G has exactly o speciation nodes
mapped into s, and (ii) the number of internal nodes of
G, which are mapped into S(si), equals ki for k = 1,2.
The set of all acceptable triplets for given nodes s, s; and
Sy is denoted by Acc(s, s1, $2).

Algorithm DP1

For a given S and G return M(root(S), |L(G)| —1) where
M:S x N = R U{—oo} is defined as follows, for s € S and
Kk =0 ... p(m* s) (and M(s,k) := —o in other cases): (i) if
s is a leaf then: M(s, k) := P(|s|, k|A), (ii) if s is an inter-
nal node with two children s; and s, then M(s,x) equals:

max
8,0,K,K,K,

log p(s,6) + M(sy, &1) + M(s5, %) )

where p(s,0) denotes the probability of ¢ duplications
on branch that terminates in s (for example, P(|s|,0|))),
0=0..K 0=0..specg:s), K = K1 +ky+0 + 0 and (o,
K1, Koy € Acc(s, S, S9).

Algorithm DP1 describes a DP formula for the MLE
problem, which we detail in the following. Consider
embeddings that are located in a subtree S(s), for some
reconciliations. Informally, M(s,x) denotes the maximal
likelihood value in the set of all reconciliations under
the following conditions: (i) only the embedding (a part
of reconciled tree) located in S(s) is evaluated for the
log-likelihood, (ii)  is the total number of duplication
and speciation nodes, which are located in this part of

embedding, (iii) J is the number of duplication nodes
associated with s, and (iv) o is the number of speciation
nodes associated with s.

As mentioned earlier, the DP formula reconstructs the
settings of duplication and speciation nodes, or the
numbers of these events associated with the nodes of
the species tree (see DSS problem). Formally, a DS set-
ting, or shorter a setting, is defined as a pair of two
functions dup, spec: S > N, called distribution of dupli-
cations and distribution of speciations, respectively. The
distributions of duplications can be reconstructed for
internal nodes of S from values of variable J in formula
(2), and for leaves from x. Similarly, we can use variable
o (or 0 in case of leaves) for reconstructing the distribu-
tion of speciations. We call a setting (dup, spec) valid
(for G and S) if there exists a reconciliation R (of G and
S) such that dup = dupy and spec = specg. The follow-
ing theorem states an appealing property of the MLE
problem.

Theorem 1.If at least one of the DS settings recon-
structed from Algorithm DP1 is valid then L(S, G, R) is
equal to M(root(S), |L(G)| —1), where R is an optimal
reconciliation.

In general, Algorithm DP1 may result in values that
are larger than the likelihood of the optimal reconcilia-
tion. However, we show later that such instances, which
we call hard, are extremely rare and occurring in only
0.1 — 0.4% of random gene tree simulations. The general
solution is described later in the paragraph about hard
instances. Algorithm DP1 solves a different problem
than the DP algorithm presented in [21]. Arvestad et al.
[21] present a solution for computing the likelihood
only when the reconciliation is given. In contrast, our
approach has the following properties: (1) we maximize
the likelihood over all reconciliations (Algorithm DP1)
requires a gene tree and a species tree with branch
lengths only), (2) we use a flexible model of gene dupli-
cation based on aggregating duplications on the species
tree edges, which differs from a birth-death process.
Reconstruction reconciliation — MLS problem
We briefly introduce the general idea of our algorithm
for reconstructing a reconciliation from a setting (dup,
spec). This algorithm is enumerating all variants with an
additional filtering, which is given by some constraints
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depending on the setting and the properties of the sce-
narios. This approach requires exponential time in the
worst case. However, as we demonstrate, it can be suc-
cessfully applied to the majority of cases.

Algorithm DSR, presented below, first allocates specia-
tion nodes (X) and then duplications nodes (D) with
mappings. However, before reconstructing mappings of
the duplication nodes some of the speciation configura-
tions can be rejected. We now briefly explain a filter
process used in the 2nd step of the main loop. Consider
internal nodes g and g’ in G such that g< g’and g’ X.
Then m(g) <m(g’), where m is the mapping. In other
words, the mapping of G is ‘locked’ by the mapping of
g’ Let a(Z, s) denote the number of nodes in G that are
locked by s € S (formally o(s, £) = |{g ¢ L(G): there
exists g’e X such that G <g’ and m*(g) <s}|).

Algorithm DSR is utilized to determine whether a
given setting is valid and to reconstruct all reconcilia-
tions (with a straightforward modification).

Algorithm DSR

Input: Gene tree G, species tree S and DS setting (dup,
spec). Output: A reconciliation R of G and S such that
(dup, spec) = (dupg, specg) (if exists). For each subset X
of X* that satisfies the distribution spec set members of
¥ to be speciations and inherit their mappings from the
lca-reconcilation. Execute 1-3 for each X:

1. Let D be the set of all internal nodes of G that are
not in X. Set all members of D to be duplications.

2. Reject X if there exists s € S such that (i) a(s, X)
> ,<s spec(a) + dup(a) (too many locked below s) or
(if) p(m* s) — als, Z) — spec(s) < dup(s) (too few for s-
duplications).

3. Allocate mappings for the nodes in D according to
the distribution dup. If the allocation was found return
(m, X) where m is the reconstructed mapping.
Acceptable configuration
First, we explain: why we do not enumerate all possible
triples of (5, K1, k) under the conditions given in the
formula (2) instead of constraining them to Acc.

As an example, consider the gene tree ((a, b), ((a, (a,
a)),b)) and the species tree S = (a, b). The lca reconcilia-
tion consists of: 1 duplication and 2 speciation nodes
associated with the root of S. Observe that there is no
reconciliation where the root has 2 duplications and 2
speciation nodes. Similarly, there is no reconciliation
with 4 duplications and 1 speciation node in the root.
However, without the Acc constraint the DP formula
could result in a likelihood computed for one of these
invalid duplication-speciation settings. Consequently,
only reconciliation based configurations are required to
increase significantly the number of valid settings recon-
structed from the DP formula.

For the previous example and nodes ab, a and b we
have the following acceptable triplets: (2,2,0) (lca-
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reconciliation), (1,2,0), (1,1, 0), (1,0,0), (0, 2,0}, (0,1,0)
and (0,0,0).

To solve the general problem of acceptability we for-
mulate a problem SeqPair.

Problem 4 (SeqPair).

Instance: Integers o« 2 0, § > 0 and a sequence A of
pairs of nonnegative integers: {01, B1), ..., (O, Bs). Find:
The lengtho ), of the longest subsequence of A

sati%/ingz a;, Sa andZﬂi LSB.
SeqPair can be solved with with the DP formula simi-

lar to the DP solution of the Knapsack problem [26].
However, in our case the algorithm is polynomial due to

the constraint s+ (s—1)+ X 0; + Xi; B;  L(G) | -1
This inequality can be deduced from the applications of

SeqPair to sets of size s of <-incomparable lca-specia-
tions from G. With this constraint the algorithm com-

pletes in at most 7% |L(G)|® steps.

Now we show how to utilize the solution of SeqPair.
For a given reconciliation, s € S and its children s; and
s, let G; be the maximal set of maximal disjoint subtrees
of G such that for T € G, the nodes of T are lca-
mapped (that is, under lca-mapping) into nodes of S(s;)
for i =1 or i = 2. Such T is called an s;-tree. There are
specg+(s) speciation nodes in G lca-mapped into s. For
each such node g, the two subtrees rooted at children of
G are elements of G,, while one of them is an s;-tree
and the second is an s,-tree. Such subtrees will be called
dual. Note that not all trees in G, are dual. Such trees
are called free.

In our example of the gene tree ((a, b), (@, (a, a)), b)),
if s is the root of (a, ) then G, contains 2 pairs of dual
subtrees.

Lemma 1.Let G, contain only dual trees:
T where T} are T? are dual and T} is an s-tree. Let y]
be the number of internal nodes of T . Then (0,k1,k2) €
Acc(s, s1, 59) Kj€ {0,....2yl} forj=12and o e {0, ...0%
where 0* is the solution of the Seq-Pair problem for k1, ko

and a sequence 0fpairs:< Y173 > eens < yslpec(s), yfpec(s) > .

In the example: T!' =4, T? =b,T) =((a,a),a) (with
two internal nodes) and T22 =b. Thus the sequence of
pairs is: (0, 0), (2,0) and the solutions are: 6* = 1 if o
{0,1}, =0and o* =2 if ¢ = 2, § = 0. From Lemma 1
we can easily reconstruct all seven acceptable triplets.
The next lemma solves a general case.

Lemma 2.For j = 1,2 let yg be the number of internal
nodes of all free s;-trees in Gs and for i > 0 lety] be
defined like in the previous lemma (for dual trees). Then
(Oyk1hg) € Acc(s, 51, 82) iff ;€ {0,.... %5 g yl}forj =12
and o € {0, .. ., o*} and where for some-
qe {0,,,,,y§}andqe {0,,,,,;/5}, o* is the solution of
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the SeqPair problem for k1—p, Ky — q, and a sequence of

pairs: < j/ll, 7/12 > Ry < ?’slpec(s)' yszpeC(S) > ’

Consider a new example: G= (((a, a), (b, b)), ((b, b), b)) and
a species tree (a, b). There is one free tree for G,,,(g): T = ((b,
b), b) and one pair of dual trees: T,! = (a,a), T{ = (b,b) - In
our case: y3 =0, y2 =0, y; =1 and y? =1. Thus,0*=1
for k3= 1 and x, € {1, 2, 3} and o* = 0 otherwise.

We analyze the complexity of a single Acc query.
Reconstruction of the dual and free trees requires lca-
mapping and can be easily computed only once in linear
time O(|G| + |S]) [27]. From Lemma 2 we need at most
|L(G)|* SeqPair queries to solve a single Acc query. All
SeqPair queries share the same sequence of pairs. It can
be shown that the queries can be answered in constant
time after a single preprocessing that construct the DP-
array (see the solution of SeqPair). Thus, a single Acc

query can be solved in at most i?_ |L(G))? +|L(G) |
7

steps.

Finally, we analyze the complexity of Algorithm DP1.
Computing Acc for all nodes has time complexity O(|S||
G|?). If the Acc queries are cached then the time com-
plexity of Algorithm DP1 is O(|S||G|*) from (2). The
space complexity is determined by: (i) the DP formula
(M): |S||G], (ii) the dictionary of Acc queries for a given
node s: |G|? (note that only maximal ¢ from query
should be stored) and (iii) the SegPair DP-array: |G|>.
Hard instances
There are hard instances of the MLE problem that can-
not be resolved with the DP formula (2) (discussed after
Theorem 1). Here, we solve the general MLE problem
(that also covers the hard instances) by developing a
branch and bound algorithm with recursive applications
of a DP formula, which is similar to the previous one.
First we describe the DP formula that computes the
likelihood in constrained sets of reconciliations. Then,
we introduce the branch and bound algorithm.

DP with constraints for MLE

We begin with the definition of constrained reconcilia-
tions. The constraint is defined by two sets of internal
nodes of G: F € ¥* and L. The elements of F and L are
called raised and locked, respectively. By Rec(F, L) we
denote the set of all reconciliations R = (m, X) such that
(i) m*|. = m|; (locked node remain locked), (ii) LnXZ* =
LnX (locked lca-speciations remain speciations), (iii)
and F are disjoint (raised lca-speciations must be dupli-
cation in R). Thus, Rec(F, L) contains reconciliations
such that the properties of locked nodes (like mappings,
being speciation/duplication) are preserved while the
raised lca-speciation nodes are duplications. Under this
definition, the set of locked nodes can be extended by
adding further nodes which share the same “locking”
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properties. Without loss of generality we assume that L
is closed under the following conditions: (i) if ge L n %,
g—oce¢Xand m(g) > m(c)thence L, (i)if Ge L\ X
and g— c € X then c € € L, where — denotes a child
relation in the tree; that is, a — b iff b is a child of a.
The closure operation will be denoted by | .

Algorithm DP2

For a given S ,G, F € X* and L return Mg ;(root(S), |L
(G)| —= 1) where Mg;: S x R > NU{- oo} is defined as
follows, for s € S and k = A(s)... p(m* s) (and Mg, (s, k)
:= —oo in other cases): (i) if s is a leaf then: Mg, (s,x) :=
P(|s|, k|A), (ii) if s is an internal node with two children
s1 and s, then Mg (s, k) equals:

max
8,0,K,K,K,

log p(s,8) + Mg, (s1,7c1) + Mg (55, K,)

where 6 = |L; \ Z*|... k = A(s1) — Mso) — [Ls N Z*|, 0 =
|Ls N Z* |... specgs (s) = |[Z* \ F|, kK = K1+ ko + O + I, p
(s,0) is defined in Alg. DP1, (0,ky,K2) € Acc(s, $1, S3, F,
L), where Acc(s, s1,85, F, L) is the set of acceptable tri-
ples for s in the set of reconciliations Rec(F,L), Ly = L N
m*(s) is the set of locked nodes whose lca-mapping is
s, and A (8) = |Uge 1,me(@<s G \ L(G)| is the number of
s-blocked nodes, that is, internal nodes whose parent is
locked and lca-mapped into S(s).

Algorithm DP2 describes the constrained variant of
DP1, where the reconciliations are limited by raised and
locked nodes. Computing acceptable triplets in this ver-
sion is similar to the schema given by Lemma 2 and
therefore omitted for brevity. However, it is more com-
plex due to locked and raised nodes. Formally, formulat-
ing an analogous lemma for the constrained case the
following differences must be adopted: (i) dual trees for
locked speciations are omitted, (ii) dual trees for raised
lca-speciations become free trees, and (iii) all s; and s,-
blocked nodes are excluded from all free and dual trees.
A formal presentation of the lemma is omitted for brev-
ity. Note that Algorithm DP2 has the same time com-
plexity as Algorithm DP1.

Branch and bound algorithm for MLE

The concept of this algorithm is based on the branch
and bound schema, whis is adequately adapted for the
constrained DP. We assume that extDP(F, L) denotes
Algorithm DP2 with the validation of settings (see pre-
vious sections), that is, it returns either the maximum
likelihood estimation if there exists a valid setting (resol-
ving case) or returns —e otherwise (non-resolving). In a
single step of the BB solution there are defined sets of
locked L and raised F lca-speciations. We take a non-
raised and non-locked lca-speciation s and compute
extDP(F U {s},L) and extDP(F,L U {s}) . Depending on
four possible cases (resolving, non-resolving) we either
return a value or recursively apply BB procedure with
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modified F and L. Note that this approach has an expo-
nential runtime. We omit technical details for brevity.

Results

Algorithm implementation

The described programs were implemented as a proto-
type Python program, called DrML (available at http://
bioputer.mimuw.edu.pl/~gorecki/drml/). Specifically,
DrML takes a gene tree topology and its corresponding
species tree with branch lengths and identify the optimal
evolutionary scenarios (scenarios with the highest likeli-
hood) based on the duplication-loss model. Although it
is possible to use a broad variety of different distribu-
tions to describe the placement of gene duplications
events with our algorithms, in DrML we use a Poisson
distribution. This assumes a constant rate of duplication
throughout the tree, although again, this assumption
can be removed by using our algorithm with other dis-
tributions. Further detail about the implementation can
be found on the DrML web page.

Simulated data analysis

We first tested the performance of DrML with randomly
generated species and gene trees. For each #n = 10,14,...,
198, we randomly generated 6000 species trees with #
leaves. The branch lengths of the species trees were
sampled from a uniform distribution across the interval
[1...20]. For each species tree, we also generated a ran-
dom gene tree topology with n 1€21.25 leaves. Tests of
“DP time (all)” were performed with 100 replicate pairs
of random species and gene trees.

Empirical analysis

We also examined the performance of DrML using a gene
tree from the TreeFam database [28], specifically accession
TF105503 (RING-box protein 1) from TreeFam 7.0. We
used a species tree generated from TreeFam, with the
branch lengths obtained from diversification dates in the
TreeTime database [29]. To root the gene trees, we first
identified all most parsimonious rootings (the rootings
that minimize the number of duplications) using Urec
[30]. All parsimony rootings have the same DS settings,
and the corresponding optimal lca-reconciliations are
almost identical [31]. Thus, we arbitrary choose one of the
parsimonious rootings. For the analysis, we set the dupli-
cation rate (1) to 0.005 following the estimated rate of
gene duplication and loss in the vertebrate genome by
Cotton and Page [32].

Discussion

Simulation analysis

DrML performs well with the simulated data sets even
for large trees with almost 400 leaves in the trees; the
algorithm still finished in less than 90 seconds on
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average. The hard instances occurred in only 0.3% of
the simulated data sets (Figure 3). In the middle dia-
gram of Figure 3, the peaks in time represent the expo-
nential implementation of MLR problem. This situation
may occur when some special cases of hard instances
have dense composition of possible duplications. How-
ever, among the nearly 300,000 randomly generated data
sets, this occurred only 3 times.

Empirical analysis

For our empirical example, DrML found an optimal
reconciliation (logML = -29.412) with one optimal DS
setting and one reconciliation. The optimal reconcilia-
tion contained 3 duplications that are not found in the
lca-reconciliation. These duplications were found on
long branches in the species tree, suggesting, as we
would expect, that the longer branches are more likely
to contain duplications in likelihood reconciliations.

Conclusions

Our algorithms provide, in practice, a highly efficient
and exact approach to infer maximum likelihood based
gene tree reconciliations for a novel set of models. In
contrast to parsimony based gene tree reconciliations
[7,8], these algorithms can incorporate evolutionary time
(species tree branch lengths) into gene tree reconcilia-
tions. As we demonstrate in our empirical example
(Figure 3), the optimal reconciliations from our like-
lihood approach can differ from the parsimony reconci-
liations, and we suggest they may be more accurate when
genes have high rates of duplication and loss [9,10].

Our approach also is fundamentally distinct from pre-
viously described models based on the birth-death process
[21-23]. Not only can our approach incorporate a greater
range of possible distributions for the duplication and loss
process, in general, while the birth-death models infer a
branching process for the gene trees, our modeling
approach directly aggregates duplications on the edges of
a species tree. Also, unlike other modeling approaches
[22,23], we assume that the gene tree topology is fixed; we
do not incorporate nucleotide substitution models or
attempt to simultaneously infer the gene tree topology and
reconciliation. Thus, although our approach may be more
easily misled by gene tree error, our approach is computa-
tionally much less complex in practice.

The models and algorithms described in this paper
provide the foundation for a rigorous statistical frame-
work to test assumptions about the rates and patterns
of gene duplication and loss. In fact, a key feature of
our algorithmic approach is that it provides a generic
modeling framework in which to compare the likelihood
of different distributions of gene duplication and loss
throughout evolutionary history. The main disadvantage
of a likelihood-based approach compared to parsimony
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is the computational cost associated with the likelihood
function. However, our analyses of simulated and empiri-
cal data sets demonstrate that our likelihood approach is
computationally feasible even for trees with hundreds of
taxa. We note that all models are imperfect representa-
tions of actual processes, and furthermore, it is difficult
to predict the best model for any specific problem or
data set. While the fit of different models will depend on
the complex, and largely unknown, selective constraints
guiding a gene’s evolution, the utility of a model is also a
function of its statistical power and robustness to viola-
tions of its assumptions. Much future work, involving
both simulation experiments and analyses of empirical
data sets, is needed to fully characterize and compare the
performance of these different modeling approaches.
Still, the availability of new modeling options will only
enrich the study of gene family evolution by providing
new opportunities for model comparison studies.

Directions for future research include: (i) allowing soft
multifurcations in gene and species trees, (ii) improving
the performance of the prototype program in case of
hard instances and (iii) characterizing the performance
of this approach through gene tree simulations.

Acknowledgements
Financial support was partially provided by MNiSW grant N301 065236 and
by NSF awards #0830012 and #1017189.

This article has been published as part of BMC Bioinformatics Volume 12
Supplement 1, 2011: Selected articles from the Ninth Asia Pacific
Bioinformatics Conference (APBC 2011). The full contents of the supplement
are available online at http://www.biomedcentral.com/1471-2105/127
issue=ST1.

Author details

'Institute of Informatics, Warsaw University, Warsaw, 02-097, Poland.
2Departmem of Biology, University of Florida, Gainesville, 32611, USA.
*Department of Computer Science, lowa State University, Ames, 50011, USA.

Authors’ contributions

PG and OE were responsible for developing the solution. PG was developing
the code and running the experiments. PG and JGB performed the
experimental evaluation and the analysis of the results. All authors
contributed to the writing of the paper, read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 15 February 2011

References
1. Ohno S: Evolution by gene duplication Springer-Verlag; 1970.

2. Lynch M, Conery JS: The evolutionary demography of duplicate genes. J
Struct Funct Genomics 2003, 3(1-4):35-44.

3. Taylor JS, Raes J: Duplication and divergence: the evolution of new
genes and old ideas. Annu Rev Genet 2004, 38:615-43.

4. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H,

Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL,

Gonzélez JR, Gratacos M, Huang J, Kalaitzopoulos D, Komura D,

MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K,
Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J,
Zerjal T, Zhang J, Ar-mengol L, Conrad DF, Estivill X, Tyler-Smith C,

Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME: Global


http://www.biomedcentral.com/1471-2105/12?issue=S1
http://www.biomedcentral.com/1471-2105/12?issue=S1
http://www.ncbi.nlm.nih.gov/pubmed/12836683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15568988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15568988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17122850?dopt=Abstract

Gorecki et al. BVIC Bioinformatics 2011, 12(Suppl 1):515
http://www.biomedcentral.com/1471-2105/12/5S1/515

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

variation in copy number in the human genome. Nature 2006,
444(7118):444-54.

Demuth JP, De Bie T, Stajich JE, Cristianini N, Hahn MW: The Evolution of
Mammalian Gene Families. Plos One 2006, 1.

Maddison W: Gene trees in species trees. Systematic Biology 1997,
46(3):523-536.

Goodman M, Czelusniak J, Moore GW, Romero-Herrera AE, Matsuda G:
Fitting the Gene Lineage into its Species Lineage, a Parsimony Strategy
lllustrated by Cladograms Constructed from Globin Sequences.
Systematic Zoology 1979, 28(2):132-163.

Page RDM: Maps between trees and cladistic analysis of historical
associations among genes, organisms, and areas. Systematic Biology 1994,
43:58-77.

Akerborg O, Sennblad B, Arvestad L, Lagergren J: Simultaneous Bayesian
gene tree reconstruction and reconciliation analysis. Proc Natl Acad Sci U
S A 2009, 106(14):5714-5719.

Doyon JP, Chauve C, Hamel S: Space of gene/species tree reconciliations
and parsimonious models. J Comput Biol 2009, 16:1399-1418.

Zhang L: On a Mirkin-Muchnik-Smith conjecture for comparing
molecular phylogenies. Journal of Computational Biology 1997,
4(2):177-187.

Ma B, Li M, Zhang L: From Gene Trees to Species Trees. SIAM Journal on
Computing 2000, 30(3):729-752.

Slowinski JB, Knight A, Rooney AP: Inferring species trees from gene trees:
a phylogenetic analysis of the Elapidae (Serpentes) based on the amino
acid sequences of venom proteins. Mol Phylogenet Evol 1997, 8(3):349-62.
Page RD: Extracting species trees from complex gene trees: reconciled
trees and vertebrate phy-logeny. Mol Phylogenet Evol 2000, 14:89-106.
Cotton JA, Page RDM: Going nuclear: gene family evolution and
vertebrate phylogeny reconciled. Proc Biol Sci 2002, 269(1500):1555-61.
Martin AP, Burg TM: Perils of paralogy: using HSP70 genes for inferring
organismal phyloge-nies. Syst Biol 2002, 51(4):570-87.

Sanderson MJ, McMahon MM: Inferring angiosperm phylogeny from EST
data with widespread gene duplication. BMC Evol Biol 2007, 7(Suppl 1):S3.
McGowen MR, Clark C, Gatesy J: The vestigial olfactory receptor
subgenome of odontocete whales: phylogenetic congruence between
gene-tree reconciliation and supermatrix methods. Syst Biol 2008,
57(4):574-90.

Degnan JH, Salter LA: Gene tree distributions under the coalescent
process. Evolution 2005, 59:24-37.

Liu L, Pearl DK: Species trees from gene trees: reconstructing Bayesian
posterior distributions of a species phylogeny using estimated gene tree
distributions. Syst Biol 2007, 56(3):504-14.

Arvestad L, Berglund AC, Lagergren J, Sennblad B: Bayesian gene/species
tree reconciliation and or-thology analysis using MCMC. Bioinformatics
2003, 19(Suppl 1):i7-15.

Arvestad L, Berglund AC, Lagergren J, Sennblad B: Gene tree
reconstruction and orthology analysis based on an integrated model for
duplications and sequence evolution. In RECOMB Edited by Bourne PE,
Gusfield D, ACM 2004, 326-335.

Arvestad L, Lagergren J, Sennblad B: The gene evolution model and
computing its associated probabilities. J. ACM 2009, 56(2).

Doyon JP, Hamel S, Chauve C: An efficient method for exploring the
space of gene tree / species tree reconciliations in a probabilistic
framework. LIRMM technical report 2010, RR-10002.

Gorecki P, Tiuryn J: DLS-trees: A model of evolutionary scenarios. Theor.
Comput. Sci 2006, 359(1-3):378-399.

Garey MR, Johnson DS: In Computers and Intractability: A Guide to the Theory
of NP-Completeness W. H. Freeman 1979.

Bender MA, Farach-Colton M: The LCA Problem Revisited. In LATIN 1776
Lecture Notes in Computer Science. Edited by Gonnet GH, Panario D, Viola
A, Springer 2000, 88-94.

Ruan J, Li H, Chen Z, Coghlan A, Coin LUM, Guo Y, Hériché JK, Hu Y,
Kristiansen K, Li R, Liu T, Moses A, Qin J, Vang S, Vilella AJ, Ureta-Vidal A,
Bolund L, Wang J, Durbin R: TreeFam: 2008 Update. Nucleic Acids Res 2008,
36(Database issue):D735-40.

Hedges SB, Dudley J, Kumar S: TimeTree: a public knowledge-base of
divergence times among organisms. Bioinformatics 2006, 22(23):2971-2.
Gorecki P, Tiuryn J: URec: a system for unrooted reconciliation.
Bioinformatics 2007, 23(4):511-512.

32.

Page 9 of 9

Gorecki P, Tiuryn J: Inferring phylogeny from whole genomes.
Bioinformatics 2007, 23(2):e116-22.

Cotton JA, Page RDM: Rates and patterns of gene duplication and loss in
the human genome. Proc Biol Sci 2005, 272(1560):277-83.

doi:10.1186/1471-2105-12-S1-S15

Cite this article as: Gorecki et al: Maximum likelihood models and
algorithms for gene tree evolution with duplications and losses. BMC
Bioinformatics 2011 12(Suppl 1):S15.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/17122850?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19299507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19299507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19754270?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19754270?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9228616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9228616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9417893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9417893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9417893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10631044?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10631044?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12184825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12184825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12228000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12228000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17288576?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17288576?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18686195?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18686195?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18686195?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15792224?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15792224?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17562474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17562474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17562474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12855432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12855432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18056084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17021158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17021158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17182699?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17237078?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15705552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15705552?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Related work
	Contributions

	Methods
	Basic notation and preliminaries
	Modeling evolutionary scenarios
	Model and problem

	Solutions
	Algorithm DP1
	Reconstruction reconciliation – MLS problem
	Algorithm DSR
	Acceptable configuration
	Hard instances
	DP with constraints for MLE
	Algorithm DP2
	Branch and bound algorithm for MLE


	Results
	Algorithm implementation
	Simulated data analysis
	Empirical analysis

	Discussion
	Simulation analysis
	Empirical analysis

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

