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Abstract

Background: Metagenomics is the study of microbial organisms using sequencing applied directly to
environmental samples. Technological advances in next-generation sequencing methods are fueling a rapid
increase in the number and scope of metagenome projects. While metagenomics provides information on the
gene content, metatranscriptomics aims at understanding gene expression patterns in microbial communities. The
initial computational analysis of a metagenome or metatranscriptome addresses three questions: (1) Who is out

there? (2) What are they doing? and (3) How do different datasets compare? There is a need for new
computational tools to answer these questions. In 2007, the program MEGAN (MEtaGenome ANalyzer) was
released, as a standalone interactive tool for analyzing the taxonomic content of a single metagenome dataset.
The program has subsequently been extended to support comparative analyses of multiple datasets.

Results: The focus of this paper is to report on new features of MEGAN that allow the functional analysis of
multiple metagenomes (and metatranscriptomes) based on the SEED hierarchy and KEGG pathways. We have
compared our results with the MG-RAST service for different datasets.

Conclusions: The MEGAN program now allows the interactive analysis and comparison of the taxonomical and
functional content of multiple datasets. As a stand-alone tool, MEGAN provides an alternative to web portals for
scientists that have concerns about uploading their unpublished data to a website.

Background
Metagenomics seeks to understand microbial commu-
nities by DNA sequencing. Deeper sequencing and bet-
ter reference databases are advancing the potential and
success of such analyses. While metagenomics provides
information on the gene content of a microbial commu-
nity, metatranscriptomics promises to reveal the actual
metabolic activities of this community at a specific time
and place, and how those activities change in response
to environmental forces or biotic interactions.

A number of different systems and resources for
metagenome or similar analysis, which are offered in the
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form of databases, web portals, web services and basic
stand-alone programs [1-11]. These resources are mainly
focused on the analysis of individual metagenomes and
currently do not have the capacity for rapid and highly
interactive comparison of multiple datasets. Further-
more, many of these resources are suitable only for
taxonomic analysis. In our experience, only the MG-
RAST web server [1,11] currently provides a readily use-
able service for analyzing a new metagenomic dataset.
However, while web portals are attractive because they
offer large computational resources for data analysis,
some scientists have concerns about uploading their
unpublished data to a website. To address this problem
of taxonomic analysis, the program MEGAN [12] was
published in 2007, as the first stand-alone interactive
tool for analyzing the taxonomic content of a dataset.
A subsequent version of the program was developed
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that allows one to compare the taxonomic content of
different datasets [13,14]. MEGAN is easy to install and
use, and requires only a BLAST output file as input to
operate. The program is designed to allow both high-
level analysis that summarizes data at different ranks of
the NCBI taxonomy, and detailed analysis that drills
down to individual reads and their BLAST matches. The
goal of this paper is to describe new features of
MEGAN that allow the functional analysis of a micro-
bial community. This type of analysis can assist in
understanding biochemical processes or in estimating
the influence of environmental changes on biospheres.
The next major release of MEGAN allows the functional
analysis of metagenomic and metatranscriptomic data-
sets using the SEED classification, based on the given
BLAST file. For comparative purposes, one can simulta-
neously map multiple datasets onto the SEED hierarchy
and also compute distance matrices on datasets based
on their SEED content.

For the pathway analysis, the field of systems biology
already possesses a high-quality database, namely the
Kyoto Encyclopedia for Genes and Genomes (KEGQ)
[15]. MEGAN provides a KEGG analysis window that
reports which KEGG pathways are present in a dataset
and allows one to then inspect these pathways; for
example, MEGAN can capture all reads that are mapped
to a given pathway of interest.
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Results and discussion

SEED analysis with MEGAN

MEGAN performs a taxonomic analysis of a dataset by
mapping reads onto different taxa in the NCBI taxon-
omy, depending on the phylogenetic footprint of the
gene that a read contains (using the lowest common
ancesstor algorithm, as described in [12]). The result is
displayed as a rooted tree where the nodes represent the
different taxa and are scaled and labeled by the number
of reads assigned to the taxon.

Now, as a new feature, MEGAN uses the SEED classi-
fication [1] for functional analysis. In this classification,
genes are assigned to functional roles and different func-
tional roles are grouped into subsystems. The SEED
classification can be represented by a rooted tree where
the internal nodes represent the different subsystems
and where the leaves represent the functional roles.
Note that the tree is “multi-labeled” in the sense that
different leaves may represent the same functional role,
if a role occurs in different subsystems. The current
SEED tree has about 10,000 nodes.

To perform a functional analysis, MEGAN assigns
each read to the functional role of the highest scoring
gene in a BLAST comparison against a protein database.
Figure 1 shows a part of the functional analysis of a
marine metagenome sample. The program reports the
numbers of reads assigned to each functional role.

Monosaccharides 1850
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Organic acids 729

Carbohydrates 0

Central carbohydrate metabolism 3934

CO2 fixation 1316

Di- and oligosaccharides 793

One-carbon metabolism 1794

Polysaccharides 42

Aminosugars 340

Glycoside hydrolases 102

Figure 1 SEED-based functional assignment. Part of a SEED-based functional analysis of a marine metagenome sample. Each item represents
a functional role in the SEED and is labeled by the number of reads assigned to this.
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KEGG analysis with MEGAN

To perform a KEGG analysis, MEGAN attempts to
match each read to a KEGG orthology (KO) accession
number, using the best hit to a reference sequence for
which a KO accession number is known. MEGAN then
calculates the number of hits to each KEGG pathway
and reports these numbers to the user. The user can
request to see the hits to a given pathway and an appro-
priate image of the pathway is generated by coloring the
pathways based on the KEGG mapping. MEGAN allows
one to analyze several datasets together, using different
colors to show which parts of a pathway are present in
which datasets. Because different genes that are present
in different organisms in a consortium of microbes will
often not operate together in a single pathway, MEGAN
allows one to restrict the pathway analysis to a set of
one or more taxa in the NCBI taxonomy [15].

Comparing functional content of different datasets

MEGAN supports the simultaneous analysis and com-
parison of the taxonomic content and now also the
functional content of multiple datasets in several ways.
The functional content of a set of metagenomes can be
simulteniously opened and compared using a new
SEED-based tree view (see Figure 2). Furthermore a
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collection of datasets can be compared using six differ-
ent ecological indices, the UniFrac measure [2] and dif-
ferent distance analysis techniques (see [14] for details).
As an example Figure 3, shows the comparison of eight
Bergen marine samples based on their functional con-
tent using Goodall’s index. Finally it is also possible
to compare pathways present in multiple microbial com-
munities using MEGAN’s KEGGviewer. One can com-
pare multiple datasets using different colors see Figure 4.

MEGAN and MG-RAST
A first comparison between MEGAN and MG-RAST
was performed with a small subset of an FLX-titanium
pyrosequencing dataset (Roche-454) obtained from a
hydrothermal vent microbial community. Out of a total
of 1408 sequences, MG-RAST assigned 831 functions
and MEGAN 727; the latter amounts to 88% of the
assignments from MG-RAST. Figure 5 shows the com-
parison of assignments on the highest SEED subsystem
hierarchy. Both tools assign a very similar number of
sequences to most of the subsystems, although some
subsystems vary by a factor of 2 or more.

In addition, we have tested our program on a pub-
lished dataset (the Timel-Bagl-DNA sample from the
Bergen marine datasets, see [16] for details). Out of a
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Figure 2 SEED-based functional comparison. Part of a SEED-based functional comparison of eight marine samples.
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Figure 3 Network comparison based on functional content. Network comparison of eight marine samples based on functional content.
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total of 209, 073 sequences MG-RAST assigned 86, 167
functions and MEGAN 97, 748; here MEGAN has more
assignments. Figure 6 shows the comparison of
MEGAN and MG-RAST assignments for these data. In
both cases, we see that the number of reads assigned to
different subsystems by MG-RAST and MEGAN are
very similar, but with some large differences. These dif-
ferences are to be expected, as MEGAN and MG-RAST
use different reference databases for their analysis. In
the MEGAN analysis, we used the March’10 version of
the NCBI-NR (non-redundant) protein database [17],

whereas MG-RAST (version 2) used an expert-anno-
tated, NR database build from all organisms curated in
the SEED.
For pathway analyses using KEGG metabolic maps
We have performed pathway analyses for pooled DNA
samples from the PLM-Bergen datasets. To compare
MEGAN against MG-RAST, we have concentrated on
two different pathways, namely the ‘citrate cycle (TCA
cycle)’ and ‘photosynthesis’.

The citrate cycle (TCA cycle): The citric acid cycle is of
central importance for cells that use oxygen as part of
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Figure 4 MEGAN’s KEGGviewer. MEGAN's KEGGviewer, showing a comparison of the ‘citrate cycle’ for a
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Figure 5 Comparison of MEGAN and MG-RAST assignments using a small unpublished dataset. Absolute comparison of MEGAN and
MG-RAST assignments for a small unpublished dataset of 1408 sequence reads.

cellular respiration. We compared the results for this cycle
produced by both tools (MEGAN and MG-RAST) using
pooled DNA samples from the PLM-Bergen datasets. The
resulting pathway graphs (Figure 7) look very similar in
both the cases when we consider only the presence or
absence of enzymes. MG-RAST only colors the enzyme
nodes if they are present (labelled in green in Figure 7a) in
the pathways, but MEGAN’s KEGGviewer is able to scale
the color of the enzymes according to their read abun-
dances (scaled in yellow to red in Figure 7b). This color
gradient can help in understanding the enzyme kinetics, as
the abundance of reads assigned to an enzyme can be pro-
portional to the turnover frequency (TOF) associated with
that enzyme. If we assume that the TCA cycle is the most
prominent cycle of a cell, then all the enzymes are sup-
posed to be present with some level of abundance. Here,
we can see some nodes (EC 1.2.7.1, EC 2.3.3.8, EC
1.1.1.41, EC 1.3.5.1) are absent in the MG-RAST analysis,
but are present with a very low read abundance in
MEGAN’s KEGGviewer.

Photosynthesis: For all the datasets considered, for
the photosynthesis KEGG map, MG-RAST only pro-
vides hits associated with ‘F-type ATPase’, ‘Cyto-
chrome b6/f complex (PetC)’ and ‘Photosynthetic
electron transport (PetH)’. For example, using the four

pooled DNA samples from the PLM-Bergen datasets,
the MG-RAST server states that all the ‘F-type
ATPase’ enzymes are present (labeled in green in Fig-
ure 8a). But with MEGAN’s KEGGviewer we can also
see the Photosystem I or II, ‘Cytochrome b6/f complex
(PetC)” and reads associated with ‘Photosynthetic elec-
tron transport (PetH) (scaled in yellow to red in
Figure 8b).

These results show the advantages of MEGAN’s
KEGGviewer for KEGG-based functional analysis.

Conclusions

Here we have presented the functional assignment mod-
ule of MEGAN. Using two examples, we show that
MEGAN and SEED obtain comparable results to MG-
RAST. With this new version of MEGAN, researchers
can perform a functional analysis using the SEED classi-
fication. Because MEGAN performs this analysis directly
from the BLAST input file, no additional calculations
are required. Thus, MEGAN provides a stand-alone
alternative to the MG-RAST server. In future work, we
plan to integrate MEGAN into the MG-RAST portal.
This will bring together the highly interactive features of
MEGAN and the computational power of MG-RAST
together.
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Figure 6 Comparison of MEGAN and MG-RAST assignments using a published marine sample. Absolute comparison of MEGAN and
MG-RAST assignments for a published marine sample (Time1-Bag1-DNA sample from the Bergen marine datasets) of 209, 073 sequence reads.
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Data preparation Bergen, Norway (see [16] for details). In this paper, we
For the first case study, we used a small subset consisting ~ refer to these as the PLM-Bergen datasets. All metagen-
of 1408 sequences from an FLX-titanium pyrosequencing ~omes and metatranscriptomes were aligned against
dataset (Roche-454) obtained from a hydrothermal vent ~the NCBI-NR database using the BLASTX tool [18].
microbial community. We used eight marine datasets  The results were then imported into MEGAN [12] (with
from Plymouth Marine Laboratory, consisting of four ~ default parameters), using the ‘Import from BLAST’
metagenomes (DNA) and four metatranscriptomes option and saved as MEGAN own ‘rma files’.
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Functional Assignment Based on MEGAN-SEED

MEGAN places each read of a given dataset onto one of
the taxa (or “nodes”) of the NCBI taxonomy, based on
the BLAST matches provided for the read, using the
LCA algorithm. For functional assignment in a similar
fashion, MEGAN provides a hierarchical representation
using the SEED classification. Normally, reads are
mapped to the NCBI taxonomy, and the program pro-
vides the exact numbers of reads assigned to any given
node and the number of hits to any nodes in the subtree
rooted at the node. In a similar fashion for the func-
tional analysis, reads are mapped to SEED subsystems
using the ‘seed2ncbi.gz’ file from the SEED server.

Multiple metagenome comparison using the functional
content

Multiple Comparison Tree-view

After opening all the samples in MEGAN, we compared
the taxonomic content using the ‘Compare’ menu item to
obtain the comparison in a new window. Choosing the
‘SEED’ menu from the comparison window allowed us to
get a functional comparison of the samples directly in a
new window (Figure 2).

Multiple Comparison Network-view

To compare six PLM-Bergen marine samples, based on
their functional content, we chose ‘Networks’ from the
‘Option’ menu of MEGAN’s SEEDviewer to see the net-
work comparison view of multiple datasets that are
under consideration (Figure 3). Moreover, one has six
different choices of distance measures to compute the
networks (see [14] for details).

Comparison of MEGAN and MG-RAST assignments

MG-RAST is a leading service for functional annotation.
To test the functional assignment of MEGAN, we com-
pared MEGAN’s functional assignment with MG-

RAST’s assignment in two datasets which are described
using two case studies below.

We first performed MEGAN-SEED annotations on an
unpublished dataset of 1408 sequences (454 FLX-titanium
pyrosequencing) of a metatranscriptome obtained from a
hydrothermal vent microbial community and compared
them with the parallel assignments obtained by MG-
RAST. We then performed the same study with a pub-
lished marine dataset (the Timel-Bagl-DNA sample from
the Bergen datasets; 209, 073 sequences) and compared
the results with MG-RAST’s assignment.

Pathway analyses based on KEGG

MEGAN includes a module called ‘KEGGviewer’ for the
analysis of metagenomic data in the context of path-
ways. It is designed to consume a list of RefSeq acces-
sion numbers and maps them to KEGG orthologies (KO
numbers). The functionality of this program has been
compared to MG-RAST, which also provides basic path-
way analysis methods for some of the above mentioned
PLM-Bergen marine samples by selecting different
metabolic pathways.
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