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Abstract

clustering process considerably.

improved on 75% of 100 dermoscopy image dataset.

Background: Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other
pigmented skin lesions. In current practice, dermatologists determine lesion area by manually drawing lesion
borders. Therefore, automated assessment tools for dermoscopy images have become an important research field
mainly because of inter- and intra-observer variations in human interpretation. One of the most important steps in
dermoscopy image analysis is automated detection of lesion borders. To our knowledge, in our 2010 study we
achieved one of the highest accuracy rates in the automated lesion border detection field by using modified
density based clustering algorithm. In the previous study, we proposed a novel method which removes redundant
computations in well-known spatial density based clustering algorithm, DBSCAN; thus, in turn it speeds up

Findings: Our previous study was heavily dependent on the pre-processing step which creates a binary image
from original image. In this study, we embed a new distance measure to the existing algorithm. This provides
twofold benefits. First, since new approach removes pre-processing step, it directly works on color images instead
of binary ones. Thus, very important color information is not lost. Second, accuracy of delineated lesion borders is

Conclusion: Previous and improved methods are tested within the same dermoscopy dataset along with the
same set of dermatologist drawn ground truth images. Results revealed that the improved method directly works
on color images without any pre-processing and generates more accurate results than existing method.

Introduction

Skin cancer is one of the most common cancer types.
Three most commonly seen skin cancer types are mela-
noma, basal cell cancer, and squamous cell cancer
which are named after the type of skin cells from which
cancer arises [1]. Skin cancer is the most commonly
diagnosed cancer and rarely fatal, except for melanoma
[2]. Melanoma is the most rapidly increasing cancer in
the world and is the sixth most common cancer in the
U.S [4]. In 2010, there were estimated 68,130 new cases
in the US. Unfortunately, an estimated 8,700 of these
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cases were fatal [3]. Although survival rate is increasing,
death rate from malignant melanoma is exponentially
increasing as well [4]. Early diagnosis is crucial for the
treatment, because malignant melanoma is very invasive
when it affects melanocyte. Melanoma develops in the
epidermis. An often-used mnemonic for early signs of
melanoma is “ABCDE”, where A corresponds to asym-
metry, B is borders (irregular), C is color, D corresponds
to diameter (greater than 6 mm —0.24 inch), and E cor-
responds to evolving over time. Since it is found
between the outer layer of the skin (the epidermis) and
the next layer (the dermis), it is clearly visible by human
eyes. Therefore, the diseased area can be cured by using
a surgical excision operation.

Dermoscopy is one of the major imaging techniques
for detecting skin lesion area. It is found that, by using
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dermoscopy techniques, the sensitivity of finding the
lesion area increases up to 20% [5]. Dermoscopy images
give dermatologists confidence in determining the
lesion. Combining dermoscopy techniques and compu-
ter aided diagnosis (CAD) techniques is a very impor-
tant research field. In order to prevent time loss and
intra- and inter-observer variations, researchers try to
utilize computerized techniques. The borders of most
melanomas are often indistinct which make visual identi-
fication very difficult. Over time, the lesion may grow or
the pigmentation in the lesion may darken. The previous
border of the same lesion region must be compared with
the current border of the same lesion side by side to eval-
uate it. Therefore, dermoscopy and drawing lesion bor-
ders on dermoscopy images are critical. In current
practice, dermatologists visually check the dermoscopy
images and draw the lesion border manually which is a
tedious process. Moreover, the delineated lesion border
drawn by different dermatologists may not be the same.
Sometimes this difference may reach 24% [6]. This is the
motivation for CAD techniques to help dermatologists to
reduce possible differences, and standardize the results
by alleviating inter- and intra-observer variations, and
accelerate the process [7].

At the first stage of dermoscopy image analysis, border
detection is usually applied [8]. Since the human eye
does not perceive minor color and shape changes, there
are many factors that make automated border detection
complex. For instance, low contrast between the sur-
rounding skin and the lesion, fuzzy and irregular lesion
border, and intrinsic artifacts such as cutaneous features
(air bubbles, blood vessels, hairs and black frames) are
some of the complex cases [7]. According to Celebi et al.
[16] automated border detection can be divided into four
sections: pre-processing, segmentation, post-processing,
and evaluation. The pre-processing step involves color
space transformation [9], contrast enhancement [10] and
artifacts removal [11]. The segmentation step involves
partitioning of an image into disjoint regions [12]. The
post-processing is used to obtain the lesion border [8].
The evaluation involves the evaluation of the border
detection results made by the dermatologist.

The DBSCAN clustering algorithm, introduced in 1996
[14], is generally used for discovering clusters in large
spatial databases with noise. A recent approach for lesion
border detection in dermoscopy images, fast density-
based lesion detection [13], obtained one of the most
accurate results. In that study [13], a modified version of
prominent density based clustering algorithm, DBSCAN
with the pre-processing step. This approach is a fast den-
sity based lesion detection (FDBLD) which removes
redundant computations in DBSCAN by selectively pick-
ing querying points, core points (see section FDBLD for
algorithmic details).
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In this paper, the focus is on FDBLD to further
improve accuracy of the algorithm for detection of lesion
border in dermoscopy images. FDBLD is highly depended
on pre-processing step. In the pre-processing step the
intermeans algorithm is used to create a binary image
[17]. Since a binary image and Manhattan distance are
used in FDBLD, one of the most important components
of ABCDE mnemonic, C (color) is missed. Moreover,
previous approach is heavily dependent on the results of
the pre-processing step. If another segmentation techni-
que is used for pre-processing, even for the same image
FDBLD tends to generate different results. Therefore, the
primary focus on this study is two-fold: first, removing
dependency of FDBLD in the pre-processing step; thus,
using color information, and second, improving accuracy
of the results. To achieve this, new distance measure is
incorporated in to FDBLD.

In the following section DBSCAN and FDBLD algo-
rithms are introduced. Next, normalized distance is intro-
duced, and updated FDBLD is introduced. Finally, the
experiments and results section compares normalize dis-
tance embedded FDBLD (ND-FDBLD) against FDBLD.

Density-based clustering: DBSCAN

DBSCAN [14] is a notable clustering algorithm. It
requires two parameters namely epsilon (¢) and a mini-
mum number of points (MinPts). DBSCAN is based on
a key idea: to form a new cluster or grow an existing
cluster the g-neighborhood of a point should contain at
least a minimum number of points, MinPts. Neighbors
of a point P are those points that are close to the point
P. The neighborhood of a point is determined by choice
of a distance function regarding two points in search
space, such as Euclidean. Searching for e-neighborhood
requires a region query, which is, in 2D, to look for
neighboring points in e-radius around a query point.
The major advantage of DBSCAN is that it can follow
the arbitrary shapes of the clusters and requires only a
distance function and two input parameters: € and
MinPts. A detailed theoretical formulation is given in
[14].

Once the two parameters ¢ and MinPts are set,
DBSCAN starts to cluster data points from an arbitrarily
chosen point P. It begins with finding the neighbors of
point P in e-neighborhood, i.e., all points that are directly
density reachable from point P (see Figure 1). If the neigh-
borhood is sparsely populated, i.e., it has fewer neighbors
than MinPts, point P is labeled as noise. Otherwise, a new
cluster is initiated and all points in e-neighborhood of
point P are marked by the new cluster’s label. Next, the
neighborhoods of all P’s neighbors are examined iteratively
to check if new candidates can be added into the cluster. If
a cluster cannot be expanded further, DBSCAN chooses
another arbitrary unlabeled point (if any such point exists)
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Figure 1 Density-reachability and density-connectivity.

\, p and q density-

q \

connected to
) each other by o

)

and repeats the same procedure to form another cluster.
These search-and-create procedures are iterated until all
data points in the dataset have been labeled as noise or
with a cluster label. The major drawback of DBSCAN is
that for a dataset containing # points, # region queries are
required to fire during cluster creation.

Regarding a thresholded (binary) image I, let its
dimension be N x N. For a pixel p, let p, and p, denote
its position where top-left corner is (0, 0) of . Let c,, =
{0,1} represent the value of pixel p at (p,,p,). Also, let
foreground be zero-valued pixels, c,, = 0. The e-neigh-
borhood of a pixel p, denoted by NEps(p), is defined by

NEps(p)={qe I|dist(p,q) < },

where dist() is Euclidean distance, which gives dis-
tance between pixels p and q, and given as

diSt(p,q) = \/(px _qx)2 +(py _qy)2~

By having NEps(p) one can create a cluster if |[NEps(p)|
> MinPts. This final check guarantees that the e-neighbor-
hood of p is dense enough to form and expand a cluster.
As mentioned above, this process continues until all pixels
are queried. Finally, noise in dataset (pixels without any
cluster label) is assumed not to be part of the foreground.
The following summarizes DBSCAN algorithm:

a) Eps: Maximum radius of the neighborhood to be
considered while forming clusters.

b) MinPts: Minimum number of points required to
form a cluster.

c) Eps-neighborhood: A point q is said to be in the
Eps-neighborhood of the point p, if the distance
between p and q is less than or equal to Eps.

d) Core points and Border points: Points inside the
cluster are called core points and points on the border
of the cluster are called border points.

e) Directly density-reachable: A point q is directly
density-reachable from a point p w.r.t € and MinPts, if q
belongs to the Eps-neighborhood of p and the number

of points in the ¢ -neighborhood of p is greater than or
equal to MinPts (see Figure 1). If p and q are core
points, then directly density-reachable is symmetric i.e.,
p is directly density-reachable from q and vice versa.
However, this condition fails if either p or q is a border
point.

f) Density-reachable: A point p is density-reachable
from a point q w.r.t € and MinPts, if there exists a set of
points between q and p such that every point in this set
is directly density-reachable from the preceding one.

g) Density-connected: If there exists a point x such
that the points, p and q are both density-reachable from
x, then p is said to be density-connected to q w.r.t € and
MinPts (see Figure 1).

h) Noise: Noise is a set of points in a database that
does not belong to any cluster. These points are also
called outliers.

i) Distance Function: Distance function is used for
determining how much closer two objects are from each
other by using all attributes.

This clustering algorithm follows the procedure of
finding all points density-reachable from an arbitrary
starting point, depending on the & and MinPts. If the
starting point is a core point then the procedure begins
building a cluster. Core point is a point which has more
than MinPts points around its e-neighborhood. On the
other hand, if the processed point is a border point the
algorithm cannot go further, i.e., DBSCAN cannot find
any point density-reachable from the starting point. This
procedure is followed until all of the points in the Eps-
neighborhood are touched or visited at least once. After
all of the points in a cluster are visited, the algorithm
chooses a new arbitrary starting point to generate other
clusters.

Boundary based clustering: FDBLD

DBSCAN spends most of its computational time in
region queries. As mentioned in the previous section,
the major drawback of DBSCAN for a dataset contain-
ing n points, n region queries are required to complete
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clustering. Therefore, any improvement in decreasing
the number of neighborhood searches would be benefi-
cial in terms of the efficiency of the algorithm. To this
end, FDBLD targets the problem of the excessive num-
ber of region queries fired in clustering process. For
instance, a very large number of region queries becomes
more problematic in the case of applications like virtual
slides [18].

Although FDBLD can be generalized for higher
dimensional datasets, the applications in 2D are a pri-
mary focus of this study. The idea of FDBLD in 2D is to
rely on the cluster’s boundary, which is a novel concept.
Having these boundaries, we can identify those points
that are likely to change current shape, the border of
the cluster. In DBSCAN as well as in FDBLD, the area
of a cluster always expands out and never shrinks. In
the case of queries that cannot affect the cluster’s area,
looking for the e-neighborhood is treated as unnecessary
and omitted in FDBLD. This improvement certainly is
very advantageous for the running time of the algorithm
since unnecessary computations are removed. The idea
behind determining the border of a cluster is derived
from the border of a primitive cluster.

Definition 1: Primitive cluster, PC, is a cluster formed
by a core point and bounded by a convex hull.

As seen in [14], each cluster formation starts with a
core point, which is also the method to create core
point candidates. To keep the boundary of a cluster, we
represent ¢ -neighborhood of each core point with a
convex hull, which is a special simple polygon. The con-
vex hull encloses all points found in the neighborhood
including query point p. Figure 2 shows a primitive clus-
ter around the center point p, which is a core point for
the given problem. Once the query is fired around p, we
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Figure 2 Convex hull which represents a primitive cluster. MinPts =
5.

Page 4 of 10

find 9 points (excluding the query point itself) which are
more than MinPts of this sample. The convex hull
serves as a boundary of PC. Note that the schema seen
in Figure 2 can be observed at any time during the clus-
ter expansion.

Expanding cluster in FDBLD

Clustering involves the expansion of the first PC. Once
the first core point in the dataset forms a convex hull, it
becomes initial boundary of a cluster. Afterward, each of
the convex hulls of core points is combined with main
body of the cluster. Principally, this operation corre-
sponds to the union of two polygons.

Adding a convex area can expand the cluster in var-
ious ways. Figure 3 shows how a newly found convex
hull joins the main body of a cluster in three steps. The
¢ -neighborhood query (dashed line) in Figure 3 (a) a
query (red) point satisfies the MinPts condition; thus,
four new points will be added into the existing cluster.
Edges of the primitive cluster around the red point, the
convex hull in Figure 3 (b), change the boundary of the
current cluster by merging with the current cluster. The
final appearance of the cluster’s boundary is indicated in
Figure 3 (c). The expansion of cluster iteratively con-
tinues by examining other points in the region of lead-
ing points until no more unlabeled point is found. The
points that are not associated with any cluster are
labeled as noise, as it is in DBSCAN.

A simple polygon is the first step in the cluster forma-
tion and does not consider donut-like clusters. PCs itera-
tively form polygon I' around data points. In Figure 4 (a),
assume that PC1 is the first PC formed in the dataset.
Since at this time there is no I' to be merged, PC1
becomes I at the same time. Once PC2 is obtained, it is
unionized with IT" to expand it. After two more iterations
for PC3 and PC4, the final T is given in Figure 4 (b).
Although one polygon is enough for the boundary of a
simple cluster(SC), more simple polygons are needed to
represent donut-like clusters.

Selecting leading points

FDBLD differs from DBSCAN in selecting points in order
to expand a cluster. Throughout clustering, DBSCAN
fires e-neighborhood query for each point P in seed list
of a growing cluster regardless of its impact on current
contours of the cluster. It means that e-neighborhood
queries of the points that cannot alter the boundary of a
cluster would waste computational time. Obviously,
some of the queries would make changes to the shape
while others that are relatively far (¢ far or e-width) from
the edges would not. On the other hand, it is important
to note that most of the expansions made by a query are
not final, and these changes will not be seen in the latest
structure of the cluster.
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Figure 3 Expanding a cluster

FDBLD only fires queries that potentially change the
boundaries of a cluster rather than firing queries for each
in the dataset. To select the leading points, the outlined
algorithm keeps the boundaries of the polygons that
delineate the cluster body. Speed ups gained with FDBLD
compared to DBSCAN is given in our previous study.
Interested readers are referred to [13] and [22]. Contrary
to DBSCAN, we do not inspect the status of the points,
whether they are core or border points, where the label
of these points does not have any contributions in terms
of the result of clustering. In FDBLD, the cluster body
can enlarge only through points that are qualified for
e-neighborhood queries. Hence, if a point is close enough
to a cluster boundary, we fire a e-neighborhood search
around it, otherwise no query will be fired for it. Note;
however, it does not mean that every query will alter the
shape of a cluster. Therefore, we maintain the set of
points that are likely to change the boundaries of a
cluster.

As seen in the simple cluster in Figure 5, the leading data
points are only found in the border region (blue region in
Figure 5) including the points on the edges of the outer
polygon. The points in the yellow area cannot modify the
boundary of growing cluster due to the e-neighborhood.
For instance, point P and its e-neighborhood dashed circle
of Figure 5 cannot alter the boundary of the cluster; thus,
this query will be skipped. Actually, all of the queries for
the points in the yellow region in Figure 5 will be skipped

(a) (b)

Figure 4 Unionized convex hulls generate a polygon.

since they cannot alter the cluster. For this reason, the
region of leading points, which includes all leading points,
can be imagined as an e-width inner band (blue region in
Figure 5) around the I" of the cluster C.

FDBLD algorithm

The algorithm of FDBLD in 2D is given in Figure 6.
Output is the number of clusters found in the image.
The major function of FDBLD is Expand which is given
in Figure 7. The boundary of each cluster is obtained
from Cls variable, which includes at least one simple
polygon.

By firing e-neighborhood query around Pxl, CxHull
calculates the boundary of Primitive Cluster, PriCls. If
the first PriCls is a null pointer structure, Expand
returns false for this query pixel. Otherwise, the cluster
Cls is formed from PriCls. The next step is to expand as
long as the list of boundary pixels is not empty. Union
reshapes the current Cls by unionizing PriCls and Cls.
Finally, update functions take a list of boundary pixels
and current cluster Cls, and return updated boundary
pixels. Usually many of pixels are removed from the list
because of expansion of the Cls.

Normalized distance

In this section, a modified normalized distance measure
in Euclidean space, which also includes spatial proper-
ties of points (pixels in this case), is proposed. The

Figure 5 Leading points (blue region).
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Algorithm FDBL D(Binary Image, £, MinPTS)
Binaryimage 1snot UNCLASSIFIED
ForeGrd=All zzro-value pixels
Clusld = nextId(NOISE);
FOR i FROM 1 TO ForeGrd size DO
pxl =ForeGrd.get(i);
IF px1.C11d =UNCLASSIFIED THEN
IF Expand(ForeGrd.pxl Clusld e MinPts)
THEN
Clusld = nextId(Clusld);
ENDIF
ENDIF
END FOR
END; // FDBLD

Figure 6 Algorithm FDBLD.

following is a proposed modified normalized distance
measure for RGB color space and pixel coordinates:

(A0)° +(4ap)*
wy(( =1)*+(h-1)%)

Qi) = w5(AR)? + w,(AG)? + ws(AB)?
(ij)= 3w, 2552 "

where d(i,j) represents normalized Euclidean distance
between pixels i and j. In the equation, w3, wy, and ws are
weights for individual R, G, and B channels respectively,
where initially wz=w,y=ws=1. We introduce different
weights for different color channels (for future uses)
since in some application domains certain color channels
have more significant impacts than others. However, w;
is weight for RGB color channels against (x,y) coordi-
nates and w, is weight for (x,y) coordinates for pixels
against RGB color channels, where 1/w; + 1/w, = 1, by
default w; = w,. For instance, in some cases if spatial
position (x,y coordinate) is more important than color
information, then w; should be greater than w,. In that
case, the difference in pixel positions will have a greater

Boolean Expand(ForeGrd, Bxl, Clusld, &, MinPts)
PriCls =CxHull(Pxl, €, MnPts); /First Pri.Cls.
IF PriCls.size = 0 RETURNFALSE;
ELSE // Core point, PriCls becomes Cls
Cls =PriCls// Cls is a regular cluster
Update(BoundPx1,Cls);
WHILE BoundPxl.size >0
Pxl =BoundPxlnex t();
PriCls = CxHull(Pxl, €, MnPts);
Union(PriCls,Cls);
Update(BoundPx1.Cl3);
END WHILE;
ENDIF

RETURN True;

Figure 7 Function expand for FDBLD.
A
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impact on distance calculation. AR, AG, AB, Ax, Ay in
order represents RGB channel differences and x, y spatial
coordinate differences between two pixels. 3 x 2557 is
RGB channel normalization constant. ® is width and h is
height of image for normalization of spatial distance
(AXP+ AYD).

If we generalize the modified normalized distance mea-
sure for multispectral images, it becomes as following:

2 (G (ae) ()’

ali))= 101C wy(( 1)+ (h-1)7)

where k is the multispectral channel number, n is the
total number of channels, ACy represents channel k the
difference between i and j, wy represents weights for

each channel where zn Wy, = 1. In this way, both
k=1

color and spatial position information are included in a
single distance metric. With this distance measure, it
becomes possible to differentiate even the same colored
pixels in different locations.

Figure 8 illustrates the importance of normalized dis-
tance measure over results. Figure 8 a) shows an exemp-
lary dermoscopy image of a lesion which has low
contrast between the surrounding skin and the lesion
and also a fuzzy and irregular lesion border. Figure 8 b)
illustrates the result drawn by a dermatologist whereas
Figure 8 c) illustrates the result generated by FDBLD
with Manhattan distance while Figure 8 d) illustrates the
result generated by ND-FDBLD. As clearly seen from this
example, the simple normalized distance measure was
specifically designed for lesion border detections (ND-
FDBLD) outperforms FDBLD. Figure 8 e) shows the
result of FDBLD with Euclidean distance (after prepro-
cessing is applied). Figure 8 f) and g) illustrate how ND-
FDBLD behaves with different weights.

Moreover, the normalized distance (ND) makes a find-
ing common ¢ value for all images very simple. € inter-
val is found in a few trials. With FDBLD without pre-
processing, it is not possible to find common ¢ interval
which generates satisfactory results for all images. With
ND, FDBLD works directly on color images without any
pre-processing (intermeans segmentation) step.

Experiments and results

Initially, we studied on determining the two main para-
meters, MinPts and Eps, of clustering algorithm. An
empirical process was used to determine these two para-
meters. We randomly selected 16 dermoscopy images in
order to find the correct values for MinPts and Epsilon.
After the parameters are determined, new ND embedded
FDBLD is tested on 100 dermoscopy images. Table 1
illustrates the difference between ND embedded FDBLD
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8) Original dermoscopy image

) Drawn by dermatologist

<) FLBLDwith Mashattandistnce

@)ND-FDELD (Sama weight on RGB 2ndXY)

)  FDBLDwith Euclidiandistance

f) ND-FCBLD (RGB has mors weight)

g) ND-FLELD (XY has more weighf)

Figure 8 Results generated by FDBLD with different distance measures
.

and FDBLD in Mete et al. [11]. The first column of the
table is image ID’s of 100 dermoscopy images. Each
object in an image is labeled after applying the clustering
algorithm. The results indicate two labels, cancer and
non-cancer. For this comparison, precision, recall, and
border error are used. We calculated these measurements

by using the formula below.
Precision=tp/(tp+fp) , Recall= tp/(tp+fn)

Border error (BE) measure, which is also called XOR
measure, was first developed by Gao et al. [17]. This
measure quantifies the percentage of border detection
error. It is the most commonly used measure and
accepted by the skin lesion detection researchers. Thus,
XOR measure is more important for skin lesion detec-
tion researchers than precision and recall. It was first
used by Hance et al. [19]. Schaefer et al. [20][21] also
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Table 1 Comparison between ND-FDBLD and FDBLD with respect to error rate, precision, and recall

Img.ID ND-FDBLD FDBLD Img.ID ND-FDBLD FDBLD

B. Err. Pre. Rec. B. Err. Pre. Rec. B. Err. Pre. Rec. B. Err. Pre. Rec.

1 0.05 0.96 0.99 0.03 1.00 0.88 51 0.09 1.00 091 0.03 1.00 093
2 0.08 092 0.98 0.02 094 0.86 52 0.08 1.00 092 0.05 1.00 083
3 0.08 0.96 0.96 0.09 0.89 0.76 53 0.04 1.00 0.96 0.02 0.99 0.90
4 0.04 097 1.00 0.08 098 0.79 54 0.04 097 1.00 0.09 1.00 0.73
5 0.06 0.95 0.99 0.04 1.00 0.76 55 0.05 0.96 1.00 0.08 1.00 0.75
6 0.04 0.98 0.98 0.05 098 0.86 56 0.03 0.99 097 0.05 1.00 0.81
7 0.06 095 0.99 0.08 093 087 57 0.05 1.00 0.95 0.06 1.00 0.83
8 0.04 0.96 1.00 0.05 0.89 0.85 58 0.03 1.00 097 0.05 1.00 083
9 0.04 097 098 0.06 1.00 0.84 59 0.05 1.00 0.95 0.01 1.00 0.96
10 0.06 0.94 1.00 0.06 1.00 0.86 60 0.05 0.98 097 0.03 1.00 091
1 0.10 091 1.00 0.04 1.00 0.84 61 0.06 095 1.00 0.14 1.00 0.62
12 0.03 0.98 1.00 0.04 0.96 0.89 62 0.03 0.99 098 0.07 1.00 081
13 0.04 0.96 1.00 0.03 1.00 0.88 63 0.02 098 0.99 0.06 1.00 0.81
14 0.08 093 1.00 0.03 1.00 0.85 64 0.03 1.00 097 0.03 1.00 0.81
15 0.02 0.98 0.99 0.02 1.00 093 65 0.01 1.00 0.99 0.01 1.00 092
16 0.01 1.00 0.99 0.01 0.99 0.94 66 0.02 0.99 1.00 0.05 0.90 0.80
17 0.06 0.94 1.00 0.08 1.00 0.57 67 0.03 097 1.00 0.05 1.00 0.77
18 0.06 0.96 098 0.1 1.00 0.68 68 0.02 098 1.00 0.04 1.00 0.81
19 0.13 0.89 1.00 0.13 1.00 0.72 69 0.01 1.00 0.99 0.01 1.00 0.90
20 0.02 1.00 098 0.05 1.00 071 70 0.03 1.00 097 0.02 1.00 0.80
21 0.03 0.99 0.98 0.05 1.00 0.80 71 0.03 0.98 0.99 0.06 1.00 0.68
22 0.01 0.99 0.99 0.04 1.00 0.76 72 0.04 0.96 1.00 0.10 1.00 0.68
23 0.02 0.99 0.99 0.04 1.00 0.85 73 0.05 0.99 0.96 0.05 094 0.77
24 0.02 0.98 1.00 0.06 1.00 071 74 0.01 0.99 1.00 0.02 0.99 0.85
25 0.03 1.00 097 0.05 1.00 0.87 75 0.07 0.94 1.00 0.08 1.00 0.65
26 0.04 1.00 097 0.05 1.00 0.85 76 040 0.72 1.00 0.1 1.00 0.71
27 0.04 097 0.98 0.07 1.00 0.82 77 0.01 0.99 1.00 0.03 1.00 0.73
28 0.03 0.99 0.99 0.06 1.00 0.82 78 0.1 0.90 1.00 0.13 1.00 0.62
29 0.05 0.96 0.99 0.07 1.00 0.76 79 0.14 0.88 1.00 0.12 1.00 0.69
30 0.02 098 1.00 0.05 1.00 0.80 80 0.04 0.96 1.00 0.07 1.00 063
31 033 0.75 1.00 033 1.00 0.52 81 0.01 1.00 1.00 0.02 1.00 061
32 0.04 0.96 1.00 0.08 1.00 0.76 82 0.14 0.88 1.00 0.12 1.00 0.74
33 0.06 094 1.00 0.06 1.00 0.70 83 0.05 0.96 1.00 0.1 1.00 0.52
34 0.04 097 0.99 0.08 1.00 0.79 84 0.01 0.99 1.00 0.03 1.00 0.78
35 0.05 098 097 0.06 1.00 0.83 85 0.04 097 0.99 0.08 1.00 0.76
36 0.11 0.90 1.00 0.07 1.00 0.77 86 0.05 0.98 097 0.09 098 0.76
37 003 098 1.00 0.09 1.00 0.80 87 0.03 0.98 0.99 0.07 1.00 0.73
38 0.04 0.96 1.00 0.02 0.99 0.90 88 0.02 0.98 1.00 0.06 1.00 0.55
39 0.03 098 0.99 0.03 1.00 0.90 89 0.03 0.99 098 0.04 0.89 0.90
40 0.01 1.00 0.99 0.02 1.00 092 920 0.07 0.95 098 0.17 1.00 0.55
41 0.03 0.99 0.97 0.05 1.00 0.82 91 0.03 097 1.00 0.08 1.00 061
42 0.02 1.00 0.98 0.03 1.00 0.88 92 0.06 097 098 0.05 1.00 0.88
43 0.02 1.00 0.98 0.06 1.00 0.76 93 0.02 0.98 1.00 0.02 1.00 0.90
44 0.04 1.00 0.96 0.02 1.00 0.86 94 0.06 0.96 098 0.15 1.00 0.65
45 0.01 0.99 1.00 0.04 1.00 0.82 95 0.01 1.00 0.99 0.03 1.00 0.66
46 0.04 0.96 1.00 0.08 1.00 0.73 96 0.06 0.98 0.96 0.09 1.00 0.74
47 0.02 1.00 0.98 0.03 1.00 0.85 97 031 0.76 1.00 0.23 1.00 0.65
48 0.04 097 1.00 0.08 1.00 0.73 98 0.04 0.96 0.99 0.05 1.00 083
49 0.05 0.96 1.00 0.15 1.00 0.73 929 0.05 095 1.00 0.12 1.00 0.64
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uses XOR measure for dermoscopy images, and it is
calculated by:

BE=[(AB®MB)/MB]x100

where @ is exclusive OR operator, essentially under-
lines disagreement between the target (ManualBorder,
MB) and predicted (AutomaticBorder, AB) regions.
Referring to information retrieval terminology, the nomi-
nator of the BE means summation of false positive (FP)
and false negative (EN). The denominator is obtained by
adding true positive (TP) to false negatives (EN). After
the pixels in an image are labeled, the number of true
prediction of the lesion area was named true positive, the
number of false prediction of lesion area as false positive,
the number of true prediction of non-lesion as true nega-
tive, and the number of false prediction of non-lesion as
false negative. Better results were obtained than FDBLD
in 75 images among 100 images. In Table 1, ND
embedded FDBLD is compared against the original
FDBLD on the same dataset. The three columns follow-
ing the first column show our results and the second
three columns represent results from Mete at al.[11].

As seen from Table 1, the proposed lesion border detec-
tion method is more accurate than FDBLD. However, as
seen from Figure 9, FDBLD outperforms our method in
two images which are image numbers 76 and 97. In these
images, there exists a cutaneous feature which is hair. In
these images, hair occludes the lesion area and they elon-
gate all the way down to the image borders which are con-
sidered as peripherals in the authors’ approach. Therefore,
hairs which intersect the lesion area and the regions resid-
ing between the hairs are included in the lesion area.
These cutaneous features will be taken in to consideration
in our future studies.
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Conclusions
A new distance measure, so-called normalized distance, is
embedded in the previous study which used a novel den-
sity based clustering algorithm for automated lesion bor-
der detection in dermoscopy images. This measure not
only considers pixel positions but also considers pixel col-
ors for distance computation. A recent study of the fast
density based lesion border detection (FDBLD) approach
by Mete et al.[13], was used as a basis for this study. Accu-
racy of the FDBLD was greatly dependent on the prepro-
cessing step. To improve accuracy of the FDBLD and
remove its dependency to the preprocessing step, a new
distance measure is integrated to the existing approach.
Results show that dependency of FDBLD to the pre-pro-
cessing step is discarded by integrating normalized dis-
tance measure to it. Moreover, efficiency of the FDBLD is
improved by achieving lower border error rates for auto-
mated lesion border detections in dermoscopy images.
The proposed method was tested on 100 dermoscopy
images. Results were compared with both FDBLD and
manually drawn lesion borders by dermatologists for the
same images. In order to measure the accuracy of the
obtained results, precision, recall, and border error rate
measures were used. The results show that normalized
distance measure embedded FDBLD better performs in
75% of dermoscopy images than the original study and
this new approach reduces overall border error rates.
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