
PROCEEDINGS Open Access

An efficient and extensible approach for
compressing phylogenetic trees
Suzanne J Matthews*, Tiffani L Williams

From Eighth Annual MCBIOS Conference. Computational Biology and Bioinformatics for a New Decade
College Station, TX, USA. 1-2 April 2011

Abstract

Background: Biologists require new algorithms to efficiently compress and store their large collections of
phylogenetic trees. Our previous work showed that TreeZip is a promising approach for compressing phylogenetic
trees. In this paper, we extend our TreeZip algorithm by handling trees with weighted branches. Furthermore, by
using the compressed TreeZip file as input, we have designed an extensible decompressor that can extract
subcollections of trees, compute majority and strict consensus trees, and merge tree collections using set
operations such as union, intersection, and set difference.

Results: On unweighted phylogenetic trees, TreeZip is able to compress Newick files in excess of 98%. On
weighted phylogenetic trees, TreeZip is able to compress a Newick file by at least 73%. TreeZip can be combined
with 7zip with little overhead, allowing space savings in excess of 99% (unweighted) and 92%(weighted). Unlike
TreeZip, 7zip is not immune to branch rotations, and performs worse as the level of variability in the Newick string
representation increases. Finally, since the TreeZip compressed text (TRZ) file contains all the semantic information
in a collection of trees, we can easily filter and decompress a subset of trees of interest (such as the set of unique
trees), or build the resulting consensus tree in a matter of seconds. We also show the ease of which set operations
can be performed on TRZ files, at speeds quicker than those performed on Newick or 7zip compressed Newick
files, and without loss of space savings.

Conclusions: TreeZip is an efficient approach for compressing large collections of phylogenetic trees. The semantic
and compact nature of the TRZ file allow it to be operated upon directly and quickly, without a need to
decompress the original Newick file. We believe that TreeZip will be vital for compressing and archiving trees in
the biological community.

Background
In a phylogenetic tree, living organisms occupy the leaves
and ancestral organisms are internal nodes, with the
edges of the tree denoting evolutionary relationships (see
Figure 1). The task of phylogenetics is to infer this tree
from observations (e.g., molecular sequences) obtained
from existing organisms of interest. To reconstruct a
phylogenetic tree, the most popular techniques (such as
MrBayes [1] and TNT [2]) often return tens to hundreds
of thousands of trees that represent equally-plausible or

closely-related hypotheses (or candidate trees) for how
the taxa evolved from a common ancestor. Given that
phylogenetic searches return tens to hundreds of thou-
sands of candidate evolutionary trees, biologists need
new techniques for managing and sharing these large
tree collections effectively. As biologists obtain more data
to produce evolutionary trees, phylogenetic techniques
must reconstruct larger trees, resulting in ever-larger col-
lections of candidate trees. Thus, there is a critical need
to develop phylogenetic compression techniques that
reduce the requirements of storing large tree collections
so that they can be shared easily with colleagues around
the world.

* Correspondence: sjm@cse.tamu.edu
Department of Computer Science and Engineering, Texas A&M University,
College Station, Texas, USA

Matthews and Williams BMC Bioinformatics 2011, 12(Suppl 10):S16
http://www.biomedcentral.com/1471-2105/12/S10/S16

© 2011 Matthews and Williams; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:sjm@cse.tamu.edu
http://creativecommons.org/licenses/by/2.0

We introduced TreeZip [3], a novel compression algo-
rithm that reduces the requirements over standard com-
pression algorithms (such as 7zip) for storing and
sharing large collections of evolutionary trees. Given
that many of the evolutionary relationships in a collec-
tion of phylogenetic trees are shared, the novelty of the
TreeZip approach is storing such relationships only
once in the compressed representation. TreeZip com-
presses a Newick file based on the semantic representa-
tion (i.e., tree bipartitions and unique topologies). The
Newick format [4] is the most widely used file format to
represent phylogenetic trees. In this format, the topology
of the evolutionary tree is represented using a notation
based on balanced parentheses (see Figure 2). A Newick
formatted tree uses nested parentheses to represent the
evolutionary relationships (or subtrees) within a phylo-
genetic tree. In a Newick file, each tree is located indivi-
dually on separate lines. Figure 2 shows two sets of
different, but equivalent Newick representations for the
three trees shown in Figure 1. Matching pairs of par-
entheses symbolize internal nodes in the evolutionary
tree.

However, the Newick representation of a tree is not
unique. For a particular tree with n taxa, there are O
(2n–1) different (but equivalent) Newick strings to repre-
sent its topology. Consequently, general-purpose data
compression techniques cannot leverage domain-specific
information regarding the Newick file. Thus, our Tree-
Zip approach shows that there is great potential for
obtaining good compression by utilizing the semantic
information in a Newick file of evolutionary trees.

Related work
Besides TreeZip, the only other known phylogenetic tree
compressor known by us is the Texas Analysis of Sym-
bolic Phylogenetic Information (TASPI) algorithm [5,6].
The benefits of TASPI include compressing phylogenetic
trees and computing their consensus. TreeZip shares
these benefits as well as the ability to handle branch
lengths, merge tree collections, and extract subsets of
trees directly from the compressed TreeZip file. Also,
the authors of TASPI state that their approach is not
robust to the O(2n–1) different Newick representations
of a phylogenetic tree. Our experimental results show

Figure 1 Example trees. A collection of three evolutionary trees on six taxa labeled A to F. Each edge ei represents an evolutionary relationship
(or bipartition) along with a value that represents the length of the branch.

Figure 2 Example Newick string representations. Newick representations for the phylogenetic trees shown in Figure 1. Two different, but
equivalent, Newick representations are given for each tree.

Matthews and Williams BMC Bioinformatics 2011, 12(Suppl 10):S16
http://www.biomedcentral.com/1471-2105/12/S10/S16

Page 2 of 12

that TreeZip’s performance is not impacted by these dif-
ferent Newick representations.

Our contributions
In this paper, we improve upon our TreeZip algorithm in
three significant ways. First, we extend TreeZip to handle
weighted phylogenetic trees containing branch lengths as
shown in Figure 1. Next, we show the extensibility of the
TreeZip compressed format when given a Newick file
representing a collection of t trees. That is, in addition to
extracting all of the trees contained in a compressed TRZ
file, we show how the TreeZip format can be used to per-
form additional extraction operations (such as returning
the set of unique trees) and constructing majority and
strict consensus trees. Our final extension shows how we
can use set operations (such as union, intersection and
set difference) on TRZ files to merge tree collections. We
experimentally study the performance of our TreeZip
algorithm in comparison to 7zip on four biological data
sets, including freshwater (20,000 trees over 150 taxa),
angiosperms (33,306 trees over 567 taxa), fish (90,002
trees over 264 taxa) and insects (150,000 trees over 525
taxa) tree collections. Of these datasets, the first three are
weighted (have branch lengths), while the last is
unweighted. Our largest (smallest) tree collection con-
sists of 150,000 (20,000) trees requiring 434 MB (67 MB)
of storage space. However, due to the storage require-
ments of weighted tree collections, our fish dataset con-
sisting of 90,002 264-taxa trees has the largest file size of
533 MB.
Overall, our results show that the compressed TreeZip

(TRZ) file is over 74% smaller than the original Newick
file on weighted collections. On unweighted collections, it
is 98% smaller. When TreeZip is coupled with 7zip, the
resulting TRZ+7zip file is on average 92% smaller on
weighted collections. On unweighted collections, the TRZ
+7zip file is in excess of 99.8% smaller than the original
Newick file. Given that there are O(2n–1) different Newick
representations for a phylogenetic tree, we study the
impact of these different, but equivalent representations
on both the TreeZip and 7zip approaches. The results
show that as the number of different Newick representa-
tions increases, there is a significant increase in 7zip’s
compressed representation. TreeZip, on the other hand, is
robust to changes in the Newick string representation of a
tree. Furthermore, not only does TreeZip produce a smal-
ler compressed file than 7zip, it often does so in a time
that is faster or comparable to 7zip.
Beyond decompressing a TRZ file to its original Newick

representation, our experiments provide exciting results
related to the flexibility of extracting additional informa-
tion from the compressed file. Of interest to biologists are
the unique set of trees that are contained in their tree col-
lection (or compressed TreeZip file). Moreover, we can

output the strict and majority consensus trees from the
phylogenetic data in the TRZ file in less than one second
on the tree collections studied in this paper. Since the
TRZ file is text, various set operations can be quickly and
efficiently performed on the TRZ representation of a
weighted (unweighted) collection of trees up to 5 (60)
times faster than on the Newick representation. Thus, our
results show that the TRZ file is an effective and extensible
compressed format that biologists can leverage to manage
their large tree collections.

Paper structure
The rest of this paper is organized as follows. In our Meth-
ods section, we describe the TreeZip algorithm, including
the mechanisms behind compression, decompression, and
our set operations functionality. We also describe our
experimental methodology. We describe and discuss our
experimental results in our Results and Discussion section.
Lastly, we summarize our findings in Conclusions.

Methods
The TreeZip algorithm is composed of two main parts:
compression and decompression. In the subsections that
follow, we first discuss the process of compression, in
which a Newick input file is transformed into the TreeZip
compressed format, or TRZ file. Next, we discuss decom-
pression, in which a TRZ file is used to reconstruct the
desired set of phylogenetic trees in Newick format. We
note here that since any phylogenetic tree with n taxa has
O(2n–1) equivalent Newick string representations, any one
of these equivalent Newick string representations can be
used as the decompressed version. We continue with a
description of the algorithm behind the TreeZip set opera-
tions. Unlike the compression and decompression func-
tions, the TreeZip set operations take as input two TRZ
files, and outputs a single TRZ file. In this manner, set
operations are performed in the context of a TRZ file,
without any loss of space savings. Lastly, we present a
summary of our experimental methodology.

Compression
In the Newick input file, each string i, which represents
tree Ti, is read and stored in a tree data structure. During
the depth-first traversal of input tree Ti, each of its biparti-
tions is fed through two universal hash functions, h1 and
h2[7]. There are 2(n – 1) total bipartitions contained in
each tree Ti, where n is the number of taxa. Thus, each of
the 6-taxa trees in Figure 1 contains 10 bipartitions. Both
of the universal hashing functions require as input a n-bit
bitstring representation of each bipartition in tree Ti. Taxa
are ordered lexicographically, where b0 represents the first
bit and the first taxon name in the ordering, b1 is the sec-
ond bit representing the taxon in the ordering, etc. For the
phylogenetic trees shown in Figure 1, the taxa ordering is

Matthews and Williams BMC Bioinformatics 2011, 12(Suppl 10):S16
http://www.biomedcentral.com/1471-2105/12/S10/S16

Page 3 of 12

A, B, C, D, E, and F. The bitstring 100000 represents the
bipartition A|BCDEF, which corresponds to edge e1 in
each of the three trees. In tree T0, edge e5 corresponds to
the bipartition ABC|DEF or bitstring 111000, which is
formed by performing an OR operation on the bitstrings
of its children represented by edges e3 and e4. The biparti-
tion DEF|ABC corresponds to the bitstring 000111, which
has a branch length of 0.21 denoted by edge e10 in tree T0.
Step 1: storing bipartitions in a hash table
The hash function h1 is used to generate the location
(index) for storing a bipartition in the hash table. h2 is
responsible for creating a unique and short bipartition
identifier (BID) for the bipartition so that the entire n-bit
bitstring does not have to be analyzed in order to insert
bipartitions into the hash table. Our two universal hash
functions are defined as follows: h B b r mi i1 1() mod= ∑
and h B b s mi i2 2() mod= ∑ . R = (r0, …, rn–1) is a list of ran-
dom numbers in the range of (0, …, m1 – 1), and S = (s0,
…, sn–1) is a list of random integers between (0, …, m2 –
1). B = (b0, …, bn–1) is a bipartition represented as an n-
bit bitstring. m1 represents the number of entries (or
locations) in the hash table. m2 represents the largest
bipartition ID (BID) given to a bipartition. bi represents
the ith bit of the n-bit bitstring representation of the
bipartition B.
Figure 3 shows how the bipartitions from Figure 1 are

stored in our hash table. Each entry represents a unique
bipartition and the hash line consists of a BID, its bit-
string representation, a list of trees that contain that
contain it, and the respective branch lengths for each of
trees. In this figure, R = (22, 45, 19, 27, 12, 20), S = (32,
42, 24, 31, 16, 26), m1 = 37, and m2 = 3, 701.
The first three lines of the compressed TRZ file repre-

sent the taxa names, the number of trees in the file, and
the number of unique bipartitions. Afterwards, we pro-
cess each hash table row which will represent a line in
the compressed file. There are three components (bit-
strings, tree ids, branch lengths) to a TRZ line. We also
note here that bipartitions stored in the TRZ file are
stored in sorted order according to the number of ones
they contain. Ties are broken lexicographically. This
guarantees that if two tree collections have equivalent
one-to-one corresponding sets of trees, the TRZ files of
the two collections will be identical despite differences
in the Newick string representations. Below, we describe
how TreeZip encodes each of these components.
Step 2: encoding bitstrings
Once all of the bipartitions are organized in the hash
table, we begin the process of writing the TRZ com-
pressed file, which is a plain text file. We run-length
encode our bitstrings. Run-length encoding is a form of
data compression in which runs of data (i.e, sequences in
which the same data value occurs in many consecutive
data elements) are stored as a single data value and

count, rather than as the original run. For the bitstring
110000 in Figure 3, we would have a run-length encoding
of 1:2⌴0:4, where each x : y element represents the data
value (x) and the number of repetitions (y). The ⌴ charac-
ter denotes a space. Since bitstrings can either contain
runs of 1s or 0s, we introduce two new symbols. 1: is
encoded as K, while 0: encoded as L. (We use characters
A through J for compressing our list of tree ids described
shortly.) Hence, we encode the bitstring 110000 as K2L4.
In our experiments, we considered taking every group of
7 bits in our bitstring and translating it to an ASCII char-
acter. However, we were able to get better compression
by using run-length encoding, which showed significant
benefits on our biological tree collections consisting of
hundreds of taxa.
Step 3: identifying and encoding the set of unique tree ids
Let represent the set of evolutionary trees of interest,
where | | = t . For a bipartition B, in represents the
set of the trees in that share that bipartition. out is
the set of trees that do not share bipartition B. Since
these sets are complements, their union comprises the
set . To minimize the amount of information present
in our TRZ output, we print out the contents of the
smaller of these two sets. If | | | | in out≤ , then we out-
put in . Otherwise, out is outputted. In our TRZ file,
we denote in and out lines with the ‘+’and ‘-’ symbol,
respectively.
Even with use of the smaller of the in or out sets,

the list of tree ids can get very large. This is due to the
fact that as t grows large, the number of bytes necessary
to store a single id also grows. We note first that a tree
T can be represented as a k-bit bitstring, where k is the
number of bipartitions discovered in the collection. If
we feed these k-bit bitstring representations into a
slightly modified version of the above hash functions,
we can obtain the set of unique trees, U, where |U| = u.
This set of unique trees are given the corresponding
tree ids of 0…u – 1, and will represent the total set of
trees in consideration with any bipartition. Duplicate
information is encoded and stored at the end of the
TRZ file.
Since the trees are inserted into the hash table in their

order of appearance in the Newick file, our lists of tree
ids will be in increasing order. As a result, we store the
differences between adjacent elements in our tree id list.
These differences are then run-length encoded. To elim-
inate the need for spaces between the run-length
encoded differences, the first digit of every element is
encoded as a character, with 0…9 represented by A…J.
Consider bitstring 000011, which is in row 30 (its h1
value) in our hash table shown in Figure 3 and has an
h2 value of 42. The out set will be used for this bipar-
tition, and its run-length encoded differences will be 2,
which will be encoded as C. Given the large number of

Matthews and Williams BMC Bioinformatics 2011, 12(Suppl 10):S16
http://www.biomedcentral.com/1471-2105/12/S10/S16

Page 4 of 12

shared bipartitions in a collection of trees that result
from a phylogenetic search, there will be many more
unique trees than unique bipartitions. Hence, encoding
the differences in the tree ids leverages the sharing
among the trees—especially since 1 is the most common
difference between adjacent elements in the tree id lists.
Step 4: encoding branch lengths
The last item to process on a hash line are the branch
lengths associated with a unique bipartition. Branch
lengths take the form x.y, where x is the integral and y
the mantissa. For this domain, branch lengths tend to be
very small (x = 0). Hence, we use this property to our
advantage by only encoding the integral in special cases
(x > 0). For these special cases, we store the integral sepa-
rately along with its related tree id. On the datasets
studied here, at least 99.6% of the branch lengths begin

with 0. The mantissa corresponds to a fixed number, k,
of digits. For our tree collections, k = 6. To encode the
mantissa, we take two digits at a time (since we can guar-
antee this value fits into a byte) and translate it into a
readable ASCII character. For example if we have a value
of 99 as input, we add 33 to create the corresponding
Extended ASCII readable character ä. It is necessary to
add 33 to any input value since the first 32 characters in
ASCII are non-printable, control characters. We tried dif-
ferent universal integer encodings (e.g., variable byte
encoding) [8], but given the range of integers represented
by k digits, the various integer encodings did not result
in a smaller compressed file. This is due to the fact that
when k = 6, universal codes become less effective than
straight binary as the size of the integers themselves
increase [8]. Furthermore, we achieve better compression

Figure 3 Internal hash table. Our hash table data structure for the phylogenetic trees shown in Figure 1.

Matthews and Williams BMC Bioinformatics 2011, 12(Suppl 10):S16
http://www.biomedcentral.com/1471-2105/12/S10/S16

Page 5 of 12

by feeding the resulting TRZ file to a general-purpose
compressor such as 7zip.
However, when using variable byte encoding for the

branch lengths, 7zip’s algorithm could not reduce the
file size any further and resulted in a much larger com-
pressed file.
Lastly, we note that branch lengths are not compacted

like tree ids since the branch lengths originate from an
infinite set of real numbers. Tree ids, on the other hand,
are drawn from a finite set of t tree ids ranging from 0
to t – 1.

Decompression
The two major steps of the decompression in TreeZip are
decoding the contents in the TRZ file and rebuilding the
collection of t trees. Decoding reconstructs the original
hash table information which consists of bipartition bit-
strings and the tree ids that contain them. When the TRZ
file is decoded, each line of the file is processed sequen-
tially. First, the taxa information is fed into TreeZip. Next,
the number of trees is read. Each bipartition is then read
sequentially.
Decompression data structures
To assist in bipartition collection, we maintain two data
structures M and N, both which are t × k matrices, where
k = 2n is the maximum number of bipartitions for a phylo-
genetic tree. The length of each matrix corresponds to the
number of trees specified in the TRZ file. Each row i in
matrix M corresponds to the bipartitions required to
rebuild tree Ti. The corresponding row in matrix N is the
list of associated branch lengths. For example, in Figure 3,
the bipartition at row 32 of our hash table (it’s h1 value) is
shared among all the trees. It is therefore added to every
row in M. To N, we add the value 0.32 to N[0], 0.42 to N
[1] and 0.31 to N[2], signifying that these are the asso-
ciated branch lengths for the corresponding bipartition in
M. On the other hand, the bipartitions 11100 and 001001
are contained only in trees T0 and T2 respectively, and
therefore will be added to M[0] and M[2]. Thus, we also
add branch lengths 0.34 and 0.11 to N[0] and N[2]. Since
each bipartition is processed in order in our TRZ file, we
are able to guarantee a one to one correspondence
between the values in M and N. We also maintain a sepa-
rate data structure that stores duplicate tree information
to assist in the construction for M and N.
Flexible decompression
Decoded bitstrings are the basic units for building trees.
Once the bitstrings, associated tree ids and branch lengths
are decoded, we can build the original trees one by one. In
order to build tree Ti, the tree building function receives
as input matrix row M[i] which contains the bipartitions
encoded as bitstrings for tree Ti, and matrix row N[i]
which contain the associated branch lengths for each
bipartition in M[i]. Each of the t trees is built starting

from tree T0 and ending with tree Tt–1, whose bipartitions
(branch lengths) are stored in M[0] (N[0]) and M[t – 1]
(N[t – 1]), respectively. The trees are reconstructed in the
same order that they were in the original Newick file.
However, given O(2n–1) possible Newick strings for a tree
Ti, the Newick representation that TreeZip outputs for
tree Ti will probably differ from the Newick string in the
original file. This is not a problem semantically since the
different strings represent the same tree.
To build tree Ti, it is initially represented as a star tree

on n taxa. A star tree is an bitstring representation consist-
ing of all 1’s. In the TRZ file, bipartitions are stored in
decreasing order of their bitstrings. This means the when
it is time to rebuild trees, the bipartitions that group
together the most taxa appear first. The bipartition that
groups together the fewest taxa appears last in the sorted
list of ‘1’ bit counts. For each bipartition i, a new internal
node in tree Ti is created using the bitstring in M[i], and
the associated weight is added using the value in N[i].
Hence, the taxa indicated by the ‘1’ bits become children
of the new internal node. The above process repeats until
all bipartitions are added to tree Ti.
The decompressor can also output sub-collections of

trees of interest to the user. For example, if the user was
interested in the set of unique trees in the collection
(rather than the entire collection), TreeZip can return this
set of trees of interest to the user. In addition, TreeZip has
built-in functionality to return the strict and majority-rule
consensus trees of an encoded collection of trees in a cou-
ple of seconds to the user. The strict and majority-rule
consensus trees are especially of interest to biologists,
since this is the summary tree structure that commonly
appears in publications. Furthermore, these subcollections
of trees can be produced directly from the TRZ file, with-
out a need to decompress the original collection. In other
words, operations can be performed directly on the TRZ
file without requiring a loss of space savings. This is not
the case with standard compression approaches which
produce unreadable binary output. In these cases, the ori-
ginal file must always be fully decompressed in order for
any operations to be performed, resulting in zero space
savings.

Set operations
One of our goals is to show that the TRZ file represents a
viable alternative archive format to the Newick file for
representing large collections of trees. If the same set of
operations can be performed on a TRZ file that can be
done on a Newick file, then we can argue that the two
file types are equivalent. In order to accomplish this goal,
we implemented a series of set operations that exploits
the textual structure of the TRZ file to produce sets of
trees of semantic interest. The set operation functions in
TreeZip takes as input two TRZ files and outputs a single

Matthews and Williams BMC Bioinformatics 2011, 12(Suppl 10):S16
http://www.biomedcentral.com/1471-2105/12/S10/S16

Page 6 of 12

TRZ file that represents the results of a particular set
operation. Here, we implement three set operations in
total: union, intersection, and set difference. The union
between two collections of trees is defined as the set of
unique trees that exist over both collections. The inter-
section between two collections is defined as the set of
unique trees that exist in the first collection and the
second collection. The set difference between two collec-
tions is defined as the set of unique trees that exist in the
first collection and not in the second. For example, con-
sider the collections stored in Files 1 and 2 in Table 1. In
this example, each file contains three trees for a total of
six trees labeled from 1 to 6. Trees 1 and 4 are identical.
All other trees are distinct from each other. The union
between the trees in files 1 and 2 consists of five trees
(trees 1, 2, 3, 5, and 6). The intersection consists of one
tree (tree 1), and the set difference consists of two trees
(trees 2 and 3).
TreeZip is able to perform these set operations (and

other operations) quickly since the set of unique biparti-
tions and trees are known and already encoded into the
TRZ file. TreeZip then uses this encoded information to
create a new TRZ file with the set of desired trees without
needing to rebuild the tree structures. On the other hand,
if one were to attempt to perform these operations on a
Newick file, the bipartitions from each tree will have to be
extracted and the relationships between the set of trees
will have to be discovered every single time. As tree collec-
tions grow large, this can pose a significant overhead.
Lastly, we stress again that these set operations can all be
performed on the input TRZ files without any loss of
space savings. This is of critical interest, as it shows the
viability of using the TRZ file as an alternative format for
storing trees. With standard compression methods, the
resulting binary file must always be decompressed in order
for any type of manipulation on the data to be performed.
As a result, these could not be considered as alternative
formats to the Newick file. The TRZ file on the other

hand is a viable format because set operations can be
performed on it. Furthermore, since there is no loss of
space savings, the TRZ file is a more efficient way of stor-
ing collections of trees.

Experimental methodology
Our implementation of TreeZip used in the following
experiments can be found at http://treezip.googlecode.
com. Experiments were conducted on a 2.5 Ghz Intel
Core 2 quad-core machine with 4 GB of RAM running
Ubuntu Linux 8.10. TreeZip is written in C++ and com-
piled with gcc 4.4.3 with the -02 compiler option.
Biological trees
Below, we provide a description of the four biological tree
collections used in this study. Our tree collections include
trees with weighted and unweighted branches. While
more details are provided in the references for our pub-
lished tree collections, weighted trees were obtained by
running a Bayesian phylogenetic analysis using MrBayes
[1]. The unweighted trees were derived from a maximum
parsimony analysis using TNT [2]. For each dataset, the
Newick tree file contains t trees in the input file. All of the
weighted collections we use for our experiments contain
binary trees. The unweighted insects dataset, however,
contains multifurcating (or non-binary) trees.
1. freshwater: 20,000 weighted trees obtained from an

analysis of 150 taxa (23 desert taxa and 127 others from
freshwater, marine, and oil habitats) [9]. The size of the
Newick file for this tree collection is 67 MB. There are
1,318 unique bipartitions out of 5, 960, 000 total
bipartitions.
2. angiosperms: 33,306 weighted trees obtained from an

analysis of a 567 taxa (560 angiosperms, seven outgroups)
[10]. The size of the Newick file for this tree collection is
429 MB. There are 3,011 unique bipartitions out of 37,
702, 392 total bipartitions.
3. fish: 90,002 weighted trees obtained from an analysis

264 fish taxa (an unpublished collection from M. Glasner’s
lab at Texas A&M University). Only binary trees are con-
tained in this dataset. The size of the Newick file for this
tree collection is 533 MB. There are 12,379 unique biparti-
tions out of 47, 341, 052 total bipartitions.
4. insects: 150,000 unweighted trees obtained from an

analysis 525 insect taxa [11]. The trees contained in this
set are multifurcating. The size of the Newick file for
this tree collection is 434 MB. There are 573 unique
bipartitions out of 157, 200, 000 total bipartitions.
Measuring performance
We compare TreeZip to the 7zip compression algorithm.
In our previous work [3], we found that 7zip is the most
effective method for compressing phylogenetic trees
amongst the standard compression methods (e.g. gzip,
bz2). We measure the performance of our TreeZip algo-
rithm in two primary ways: space savings and by using

Table 1 Two Sample Files of Weighted Trees

File 1

1. (((A : 0.12, B : 0.13) : 0.14, C : 0.15) : 0.16, (D : 0.17, (E : 0.18, F : 0.19) :
0.20) : 0.21);

2. (((A : 0.11, B : 0.34) : 0.29, D : 0.23) : 0.22, (C : 0.24, (E : 0.25, F : 0.26) :
0.27) : 0.28);

3. (((A : 0.29, B : 0.11) : 0.31, E : 0.33) : 0.15, (D : 0.38, (C : 0.36, F : 0.37) :
0.32) : 0.31);

File 2

4. (((E : 0.18, F : 0.19) : 0.20, D : 0.17) : 0.21, (C : 0.15, (A : 0.12, B : 0.13) :
0.14) : 0.16);

5. (((A : 0.34, B : 0.23) : 0.21, C : 0.53) : 0.24, (F : 0.41, (E : 0.13, D : 0.51) :
0.21) : 0.33);

6. (((A : 0.12, B; 0.43) : 0.21, C : 0.06) : 0.20, (E : 0.04, (D : 0.28, F : 0.33) :
0.02) : 0.41);

Matthews and Williams BMC Bioinformatics 2011, 12(Suppl 10):S16
http://www.biomedcentral.com/1471-2105/12/S10/S16

Page 7 of 12

http://treezip.googlecode.com
http://treezip.googlecode.com

different, but equivalent Newick strings. Please note that
7zip here represents a Newick file compressed with the
7zip compression scheme.
Space savings and running time We use the space
savings measure to evaluate the performance of Tree-
Zip in comparison to general-purpose compression
algorithms. The space savings S is calculated as

S = − ×1 100
compressed file size

original file size
. A higher space savings

percentage denotes better compression of the original
file. The goal is to get the level of space savings as
close to 100% as possible. A value of 0% indicates no
difference from the uncompressed, original Newick file.
We also use running time to calculate how long each
algorithm requires to compress and decompress a file.
Time is shown in seconds.
Different, but equivalent Newick representations As
mentioned previously, for any given tree of n taxa, there
are O(2n–1) Newick string representations associated
with it. Since general purpose compression methods
such as 7zip compress tree files by looking for redun-
dancy at the Newick string level, they are unable to effi-
ciently compress trees when there is a lack of
redundancy in the Newick string representations. To
illustrate this, we created a different, but equivalent
Newick file for each dataset. For a Newick file contain-
ing t trees, each tree receives a different, but equivalent
Newick representation. We note that using different, but
equivalent Newick representations does not change the
size of the resulting Newick file. For example, our fish
dataset consisting of 90,002 trees over 264 taxa requires
533 MB of storage space. The Newick file containing
different, but equivalent Newick strings still occupies
533 MB of disk space.

Results and discussion
In this section, we explore the compression and decom-
pression performance of 7zip, TreeZip, and TreeZip+7zip.
Our previous results [3] show that 7zip is the best general-
purpose compressor in comparison to gzip and bzip. The
TreeZip+7zip compressed format is the TreeZip (TRZ)
format which is then fed to 7zip for further compression.
Moreover, our previous study showed that TreeZip out-
performs TASPI. Since no implementation of TASPI is
available and since none of the trees we had available that
were used in the TASPI experiments had branch lengths,
we could not compare TreeZip to TASPI in the context of
this study.
Finally, each point in the plots represents the average

performance over three runs.

Compression performance
Figure 4 shows the performance of TreeZip’s compres-
sion algorithm. Figure 4(a) shows run-time information,
and Figure 4(b) shows space savings results. On the
freshwater and angiosperms datasets, TreeZip is faster
than 7zip. However, as the number of trees under consid-
eration increases in size, so does the amount of time
needed for compression. In terms of size, the TRZ file by
itself is larger than the 7zip file. However, we obtain an
average of 75% space savings on our weighted collections,
and about 99% space savings on our unweighted collec-
tion. The discrepancy in space savings between the
weighted and unweighted cases underlines the complex-
ity of compressing branch lengths. However, we note
that when the TRZ file is combined with 7zip, the TRZ
+7zip file has space savings on average of about 96%.
7zip by itself, on the other hand, averages about 93%
space savings.

 0
 50

 100
 150
 200
 250
 300
 350

freshwater
angiosperms

fish insects

T
im

e
(s

)

Data Set
(a)

TRZ+7z 7z TRZ

 70

 75

 80

 85

 90

 95

 100

freshwater
angiosperms

fish insects

S
pa

ce
 S

av
in

gs
 (

%
)

Data Set
(b)

TRZ+7z 7z TRZ

Figure 4 Compression performance. Compression performance for our biological datasets. In this figure, (a) shows running time of
compression approaches, while (b) shows space savings.

Matthews and Williams BMC Bioinformatics 2011, 12(Suppl 10):S16
http://www.biomedcentral.com/1471-2105/12/S10/S16

Page 8 of 12

To measure the effects of branch rotations on our data-
sets, we took each set of trees and gave them a random,
but equivalent Newick string representation. We refer to
this process as commuting the Newick representation.
Figure 5 shows the performance of the various compres-
sion schemes on different, but equivalent Newick string
representations. The TRZ and TRZ+7zip files did not
increase in file size. 7zip took up to 4.4 times longer on
this new file. Figure 5(a) shows the change in space sav-
ings of the different compression schemes between the
equivalent Newick files and the original files. Here, 100%
of the Newick strings in the file have been commuted. A
value of 1 signifies no change in file size. The space sav-
ings achieved by TreeZip and TreeZip+7zip does not
change, despite the use of different, but equivalent New-
ick strings. This highlights TreeZip’s robustness to
branch rotations. This is not the case for 7zip. On our
weighted sets (freshwater, angiosperms, fish), the size of
the 7zip compressed file became almost 4 times larger.
On the unweighted set (insects), the 7zip compressed file
becomes 61 times larger. This is equivalent of an increase
of the size of the 7zip compressed Newick file from 696
KB to 38 MB.
Figure 5(b) highlights the increased compressed file

sizes obtained by 7zip on different, but equivalent New-
ick string representations. The x-axis indicates the per-
cent of the original file that received commuted Newick
string representations. For each percentile, p percent of
the trees in the file contain a different, but equivalent
Newick string representation. The 0% mark is the origi-
nal Newick file. All the datasets have a universal value of
1 at this point, since there is no change in the compres-
sion quality. The 100% mark is equivalent to the files that

were used in Figure 5(a). As the number of Newick
strings that are randomly commuted increases, 7zip has a
corresponding decrease in compressed file size perfor-
mance. While TreeZip is slower than 7zip in terms of
execution speed, robustness to branch rotations provides
TreeZip with a significant advantage over general-
purpose compressors such as 7zip.

Decompression performance
Figure 6 shows the decompression performance of 7zip
and TreeZip-based decompressors. When decompressing
all of the trees in the compressed file to their original
Newick representation, 7zip is a faster decompressor than
the TreeZip-based approaches. For our two largest data-
sets (angiosperms and fish), 7zip is two orders of magni-
tude faster than TreeZip and TreeZip+7zip. However, a
major advantage of TreeZip is that its decompression algo-
rithm is flexible. TreeZip can return all of the trees that
are contained in a compressed file (similarly to 7zip), but
it can also return other types of output such as the set of
unique trees, the strict consensus tree, and the majority
consensus tree. Consensus trees plays a major role in sum-
marizing a phylogenetic analysis and having such an
operation that can work directly on compressed trees is an
added advantage. Furthermore, these operations can be
executed quickly in TreeZip. For example, on the datasets
studied here, strict and majority consensus trees can be
produced in less than second, which is significantly faster
than current consensus tree algorithms such as HashCS
[12] that work directly from a Newick tree file. Since the
7zip file is binary, none of these operations can be per-
formed easily on its compressed representation. In order
to find the set of unique trees in a 7zip file, this file would

 1

 10

 100

freshwater
angiosperms

fish insects

D
iff

er
en

t N
ew

ic
k/

O
rig

in
al

 N
ew

ic
k

Data Set
(a)

7z TRZ TRZ+7z

 1

 10

 100

0 20 40 60 80 100

D
iff

er
en

t N
ew

ic
k/

O
rig

in
al

 N
ew

ic
k

% Commuted Newick Strings
(b)

freshwater
angiosperms

fish
insects

Figure 5 Compression performance on different, but equivalent Newick strings. Compression performance for our biological datasets
using different, but equivalent Newick strings. (a) Unlike TreeZip and TreeZip+7zip, 7zip experiences an increase in compressed file size when
different, but equivalent Newick strings are introduced (100% commuted). TreeZip and TreeZip+7zip experience no change. (b) A closer look at
how the percent of different, but equivalent Newick strings affect the increase in file size of 7zip (p% commuted). As more Newick strings are
randomly commuted, the performance of 7zip becomes increasingly worse.

Matthews and Williams BMC Bioinformatics 2011, 12(Suppl 10):S16
http://www.biomedcentral.com/1471-2105/12/S10/S16

Page 9 of 12

have to be decompressed to the original Newick tree file
followed by executing a separate procedure to determine
the unique trees based on their Newick representations.

Set operations performance
Next, we evaluate the performance results of set opera-
tions on Newick files, Newick files compressed with 7zip,
TRZ files, and TRZ files compressed with 7zip. Each of
our four datasets consists of r runs of trees. That is, for
the freshwater dataset, two runs of MrBayes was required
to generate the 20,000 trees in the collection. For the
remaining datasets, r = 12 for the angiosperms trees, r =
2 for the fish trees, and r = 5 for the insects trees. Runs
are labeled from R0…Rr–1.
To create a single data sample for the set operation

experiments, we randomly create a bitstring B of length r,
where a 1 in location Bi states that trees from run Ri should
be used in the set operation experiments and a 0 means
that trees from that run will not be used. Using the bit-
string B as a guide, we create a vector S that contains the
identities of those runs that will participate in the set
operations experiment. For example, if B = 01011, then S0,
S1 and S2 would contain runs R1, R3 and R4, respectively.

We randomly generate a set operation (union, intersection,
or set difference) to apply to the trees represented by S0
and S1. Let U represent the result. Next, we take the result
U and apply a random set operation to it using trees from
S2. We continue in this manner until |S| – 1 set operations
have been applied randomly. The set operations and the
order in which they are applied are also recorded. For each
of our four datasets, the above procedure is repeated 100
times in order to create 100 data samples. Furthermore, for
a particular dataset, all set operation experiments applied
to the Newick, Newick+7zip, TRZ and TRZ+7zip files use
the same 100 data samples along with the same ordering of
how the set operations are applied to the data. Our plots
show the average running times and file sizes over these
100 data samples.
Figure 7 shows our performance results of set opera-

tions performed on Newick files, Newick files com-
pressed with 7zip, TRZ files, and TRZ files compressed
with 7zip. Figure 7(a) shows running time results. On
weighted trees, it is up to 3 times faster to perform set
operations on TRZ files over Newick files. On the
unweighted case, it is about 55 times faster. While there
is little overhead in combining the TRZ file with 7zip,

 0.01

 0.1

 1

 10

 100

 1000

 10000

 freshwater angiosperms fish insects

T
im

e
(s

)

Data Set

7z
All

Unique
Strict

Majority

Figure 6 Decompression performance. Decompression performance for our biological datasets.

Matthews and Williams BMC Bioinformatics 2011, 12(Suppl 10):S16
http://www.biomedcentral.com/1471-2105/12/S10/S16

Page 10 of 12

there is more significant overhead when combining
Newick files with 7zip. While it is only at most 10 sec-
onds slower to combine 7zip with a TRZ file for set
operations, the overhead of combining 7zip with a New-
ick file is as much as a minute on our experimental
platform. As a result, the speedup results are more sig-
nificant when comparing set operations on a TRZ+7zip
file versus a Newick+7zip file. On weighted trees, the
speedup is at most 5.25. On unweighted trees, the
speedup is up to 62.4. The differences in speedup
between the unweighted and weighted tree sets is
related to the extra processing required by TreeZip to
handle the weights on the tree branches.
Figure 7(b) shows the average space savings of storing

the results of set operation in a Newick file, a TRZ file,
Newick+7zip file, and a TRZ+7zip file. In terms of size,
the results of set operations are more efficiently stored
in TRZ files than Newick files. On weighted trees, the
TRZ file storing the results of the set operations is
74.1% smaller than the Newick file. On the unweighted
case, it is up to 99.7% smaller. This is very consistent
with the general space savings of using a TRZ file over a
Newick file on weighted and unweighted trees respec-
tively. TRZ+7zip files have at most a 21% improvement
in space savings over Newick+7zip files in the weighted
case. On the unweighted case, the TRZ+7zip takes up
79% less space than the Newick+7zip file. Together,
these results demonstrate the benefit of using the TRZ
file for performing set operations.

Conclusions
There is a critical need for phylogenetic compression
techniques that reduce the space requirements of large
tree collections. In order to reconstruct the true tree,
phylogenetic searches can easily return tens of thousands

to hundreds of thousands of candidate evolutionary trees
for biologists to consider. To help biologists handle these
large collections of trees, we extend our previous TreeZip
algorithm [3] in several significant ways. First, the Tree-
Zip algorithm is augmented to allow for the compression
of trees with weighted branches. Second, we offer an
extensible decompressor which allows for filtering and
extraction of sets of trees of interest. Lastly, TreeZip can
perform fast set operations directly on its compressed
TRZ file.
Our experimental evaluation of TreeZip shows that it

compresses a Newick file into a plain text TRZ represen-
tation that is at least 73% smaller than the original file on
weighted trees and over 98% smaller on unweighted
trees. When combined with 7zip, the TreeZip+7zip file
achieves an average space savings of 92% on the weighted
case, and a space savings of over 99% on the unweighted
case. Our results also show that TreeZip’s performance is
robust to different Newick representations of the same
phylogenetic tree. The space savings achieved by 7zip, on
the other hand, decreases as the number of different
Newick representations for the same phylogenetic tree
increases.
However, TreeZip’s most powerful advantage arises

from its flexible compressed file format. Since the TRZ file
is in plain text, we can easily design extensible decompres-
sors that extract the relevant phylogenetic tree information
of interest. In this paper, we illustrate two decompression
applications (identifying the unique set of trees in a file
and computing consensus trees) that can extract informa-
tion quickly from a TRZ file. Furthermore, we showed
how we can leverage the TRZ format to design set opera-
tions (union, intersection, set difference) to merge tree col-
lections of interest. Our study showed that set operations
can be performed up to five times faster on a TRZ file

 0

 50

 100

 150

 200

 250

 300

freshwater
angiosperms

fish insects

T
im

e
(s

)

Data Set
(a)

Newick
Newick+7z

TRZ
TRZ+7z

 0
 20
 40
 60
 80

 100
 120
 140
 160

freshwater
angiosperms

fish insects

S
pa

ce
 S

av
in

gs
 (

%
)

Data Set
(b)

Newick
Newick+7z

TRZ
TRZ+7z

Figure 7 Set operations performance. Performance of set operations on our biological datasets. (a) The running time of a random collection
of set operations run on different file formats. (b) The amount of disk space required by the result of the set operations.

Matthews and Williams BMC Bioinformatics 2011, 12(Suppl 10):S16
http://www.biomedcentral.com/1471-2105/12/S10/S16

Page 11 of 12

than on a Newick file. Furthermore, the set operation
results occupy up to 99% less space in a TRZ file as com-
pared to its Newick counterpart.
Overall, our results show that TreeZip can play a vital

role in helping biologists manage their large phyloge-
netic tree collections effectively. Our future work
includes augmenting the extensible decompressor with
additional applications and optimizing our implementa-
tion to improve TreeZip’s running time. We also plan
to explore how to extend TreeZip for use beyond phylo-
genetic trees.

Acknowledgements
Funding for this project was supported by the National Science Foundation
under grants DEB-0629849, ΠS-0713168, and ΠS-1018785. Moreover, this
publication is based in part on work supported by Award No. KUS-C1-016-
04, made by King Abdullah University of Science and Technology (KAUST).
This article has been published as part of BMC Bioinformatics Volume 12
Supplement 10, 2011: Proceedings of the Eighth Annual MCBIOS
Conference. Computational Biology and Bioinformatics for a New Decade.
The full contents of the supplement are available online at http://www.
biomedcentral.com/1471-2105/12?issue=S10.

Authors’ contributions
SM designed and implemented the TreeZip algorithm, performed all of the
experiments, and created all of the figures. TW also designed the TreeZip
algorithm along with its experimental evaluation. Both authors contributed
to writing the manuscript and have approved its final contents.

Competing interests
The authors declare that they have no competing interests.

Published: 18 October 2011

References
1. Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic

trees. Bioinformatics 2001, 17(8):754-755.
2. Goloboff PA, Farris JS, Nixon KC: TNT, a free program for phylogenetic

analysis. Cladistics 2008, 24(5):774-786.
3. Matthews SJ, Sul SJ, Williams TL: A Novel Approach for Compressing

Phylogenetic Trees. Bioinformatics Research and Applications, Volume 6053
of Lecture Notes in Computer Science Springer-Verlag; 2010, 113-124.

4. Felsenstein J: The Newick tree format. Internet Website , last accessed 2009.
[Newick URL: http://evolution.genetics.washington.edu/phylip/newicktree.
html].

5. Boyer RS, Hunt WA Jr, Nelesen S: A Compressed Format for Collections of
Phylogenetic Trees and Improved Consensus Performance. Proc. 5th Int’l
Workshop Algorithms in Bioinformatics (WABI’05), Volume 3692 of Lecture
Notes in Computer Science Springer-Verlag; 2005, 353-364.

6. Hunt WA Jr, Nelesen SM: Phylogenetic trees in ACL2. Proc. 6th Int’l Conf.
on ACL2 Theorem Proυer and its Applications (ACL2’06) New York, NY, USA:
ACM; 2006, 99-102.

7. Amenta N, Clarke F, John KS: A linear-time majority tree algorithm.
Workshop on Algorithms in Bioinformatics, Volume 2168 of Lecture Notes in
Computer Science 2003, 216-227.

8. Williams HE, Zobel J: Compressing Integers for Fast File Access. The
Computer Journal 1999, 42:193-201.

9. Lewis LA, Lewis PO: Unearthing the Molecular Phylodiversity of Desert
Soil Green Algae (Chlorophyta). Syst. Bio. 2005, 54(6):936-947.

10. Soltis DE, Gitzendanner MA, Soltis PS: A 567-taxon data set for
angiosperms: The challenges posed by Bayesian analyses of large data
sets. Int. J. Plant Sci 2007, 168(2):137-157.

11. Molin AD, Matthews S, Sul SJ, Munro J, Woolley JB, Heraty JM, Williams TL:
Large data sets, large sets of trees, and how many brains? —
Visualization and comparison of phylogenetic hypotheses inferred from

rDNA in Chalcidoidea (Hymenoptera). poster 2009 [http://esa.confex.com/
esa/2009/webprogram/Sessionll584.html].

12. Sul SJ, Williams TL: An Experimental Analysis of Consensus Tree
Algorithms for Large-Scale Tree Collections. Proceedings of the 5th
International Symposium on Bioinformatics Research and Applications
(ISBRA’09) Berlin, Heidelberg: Springer-Verlag; 2009, 100-111.

doi:10.1186/1471-2105-12-S10-S16
Cite this article as: Matthews and Williams: An efficient and extensible
approach for compressing phylogenetic trees. BMC Bioinformatics 2011
12(Suppl 10):S16.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Matthews and Williams BMC Bioinformatics 2011, 12(Suppl 10):S16
http://www.biomedcentral.com/1471-2105/12/S10/S16

Page 12 of 12

http://www.biomedcentral.com/1471-2105/12?issue=S10
http://www.biomedcentral.com/1471-2105/12?issue=S10
http://www.ncbi.nlm.nih.gov/pubmed/11524383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11524383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18249686?dopt=Abstract
http://esa.confex.com/esa/2009/webprogram/Sessionll584.html
http://esa.confex.com/esa/2009/webprogram/Sessionll584.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Related work
	Our contributions
	Paper structure

	Methods
	Compression
	Step 1: storing bipartitions in a hash table
	Step 2: encoding bitstrings
	Step 3: identifying and encoding the set of unique tree ids
	Step 4: encoding branch lengths

	Decompression
	Decompression data structures
	Flexible decompression

	Set operations
	Experimental methodology
	Biological trees
	Measuring performance

	Results and discussion
	Compression performance
	Decompression performance
	Set operations performance

	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

