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Abstract

Background: RNA-Seq is the recently developed high-throughput sequencing technology for profiling the entire
transcriptome in any organism. It has several major advantages over current hybridization-based approach such as
microarrays. However, the cost per sample by RNA-Seq is still prohibitive for most laboratories. With continued
improvement in sequence output, it would be cost-effective if multiple samples are multiplexed and sequenced in
a single lane with sufficient transcriptome coverage. The objective of this analysis is to evaluate what sequencing
depth might be sufficient to interrogate gene expression profiling in the chicken by RNA-Seq.

Results: Two cDNA libraries from chicken lungs were sequenced initially, and 4.9 million (M) and 1.6 M (60 bp)
reads were generated, respectively. With significant improvements in sequencing technology, two technical
replicate cDNA libraries were re-sequenced. Totals of 29.6 M and 28.7 M (75 bp) reads were obtained with the two
samples. More than 90% of annotated genes were detected in the data sets with 28.7-29.6 M reads, while only
68% of genes were detected in the data set with 1.6 M reads. The correlation coefficients of gene expression
between technical replicates within the same sample were 0.9458 and 0.8442. To evaluate the appropriate depth
needed for mRNA profiling, a random sampling method was used to generate different number of reads from
each sample. There was a significant increase in correlation coefficients from a sequencing depth of 1.6 M to 10 M
for all genes except highly abundant genes. No significant improvement was observed from the depth of 10 M to
20 M (75 bp) reads.

Conclusion: The analysis from the current study demonstrated that 30 M (75 bp) reads is sufficient to detect all
annotated genes in chicken lungs. Ten million (75 bp) reads could detect about 80% of annotated chicken genes,
and RNA-Seq at this depth can serve as a replacement of microarray technology. Furthermore, the depth of
sequencing had a significant impact on measuring gene expression of low abundant genes. Finally, the
combination of experimental and simulation approaches is a powerful approach to address the relationship
between the depth of sequencing and transcriptome coverage.

Background
The transcriptome catalogues the complete set of tran-
scripts in a cell. Transcriptomic regulation is critical to
all physiological, developmental and pathological pro-
cesses [1], and mRNA expression profiles can represent
the characteristics of a cell at a specific state and help to

govern its present and future activities [2]. The profiles
of a transcriptome in terms of alterations in response to
specific biological stimuli provides valuable insights for
interpreting functional elements of the genome, reveal-
ing the molecular constituents of cells, and also under-
standing developmental and disease processes.
Different types of technologies have been developed

to interrogate transcript abundance, including hybridi-
zation-based and sequencing-based approaches. Hybri-
dization-based microarrays have been the primary
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transcriptomic high-throughput tool for almost two
decades, which has accelerated the study of transcrip-
tome analysis by profiling thousands of genes simulta-
neously [3]. However, microarray technology has
several limitations including: indirect quantification by
hybridization-signal intensities [4], background and
cross-hybridization problems [5] and reproducibility
issues [6]. The development of next generation sequen-
cing with improved qualitative and quantitative mea-
surements holds great promise in transcriptome
analysis.
RNA-Seq is a recently developed approach to map

and quantify transcriptomes by digitally recording how
frequently each transcript is represented in a sequence
sample. After poly (A) selection, RNA is fragmented to
small fragments and converted into a cDNA library,
which provides a simple and more comprehensive way
to measure transcriptome composition and to discover
new genes by high-throughput sequencing without
bacterial cloning of cDNA input [2]. Studies using this
technology have already altered our views regarding
the extent and complexity of transcriptomes in an
organism and dramatically improved our understand-
ing of transcriptome. RNA-Seq has several advantages
over micorarrays including: 1) RNA-Seq is not depen-
dent on prior knowledge about the target sequence; 2)
It has a large dynamic range and sensitivity due to its
digital nature, which is especially important for highly
abundant and extremely low abundant genes; 3) The
survey of a transcriptome is more accurate because the
quantification of each transcript is directly based on
digital counts of the transcript. Therefore, RNA-Seq
offers both single-base resolution for annotation and
“digital” quantification at the RNA level, which allows
the entire transcriptome to be analyzed in a high-
throughput and quantitative manner [7]. However, the
expense per sample for RNA- Seq is still a limiting fac-
tor in preventing researchers from sequencing multiple
biological replicates per group, which are needed for
statistically-significant analysis. It is common to adopt
a pooling strategy to reduce the cost for RNA-Seq stu-
dies [8]. With the continued enhancement of sequen-
cing output and the development of multiplex labelling
techniques, the cost per sample could be significantly
reduced if several samples are multiplexed and
sequenced in the same lane, given sufficient transcrip-
tome coverage per sample. Therefore, it is imperative
to address the trade-off between the depth of RNA-
Seq and the coverage of the transcriptome in an
organism. The objective of this study was to evaluate
what coverage or sequencing depth of transcriptome
would be sufficient to interrogate gene expression pro-
filing in the chicken by RNA-Seq.

Methods
RNA preparation
Total RNA was isolated from four chicken lungs from
two genetic chicken lines (two samples per line) by Tri-
zol (Invitrogen, Carlsbad, CA) according to the manu-
facturer’s protocol. Two RNA samples from the same
line were pooled to generate totals of two pooled RNA
samples (Sample1 and Sample2). DNase I (Ambion,
Austin, TX) digestion was carried out after RNA isola-
tion and the RNA concentration and purity were deter-
mined by measuring absorbance at 260 nm and A260/
A280 ratio using a NanoDrop ND-1000 spectrophot-
ometer (Nano-drop Technologies, Wilmington, DE).
RNA samples were stored at -80 °C until further use.

cDNA library preparation and sequencing by RNA-Seq
Total RNA (7 µg) was subjected to two rounds of hybri-
dization to oligo (dT) beads (Invitrogen, Carlsbad, CA)
to enrich mRNA. Ribosomal RNA contamination was
evaluated by RNA pico chip using a BioAnalyzer (Agi-
lent, Santa Clara, CA). The resulting mRNA was then
used to prepare cDNA libraries using the RNA sequen-
cing sample preparation kit (Illumina, San Diego, CA).
Sample1 and Sample2 were sequenced by Illumina Gen-
ome Analyzer and then Genome Analyzer II, which gen-
erated four datasets: S1-R1, S2-R1, and S1-R2, S2-R2,
respectively.

Data filtering, mapping reads and identifying
transcriptome contents
The sequences generated went through a filtering pro-
cess first. Any reads that contained numerous inter-
spersed Ns in their sequences, or had relatively short
reads (<17 bp), were removed for the following analysis.
Sequence reads obtained after quality control with filter-
ing were analyzed using CLC Genomics Workbench 4
(CLC bio, Cambridge, MD). After mapping, the gene
expression level was quantified by simply dividing the
number of reads mapped to each gene by the size of its
transcripts, commonly known as the number of reads
per kilobase of exon per million mapped reads (RPKM)
[2], for all 15,742 annotated chicken genes in the data-
base. The gene expression level was then log2
transformed.

Random sampling of S1-R2 and S2-R2
We have obtained RNA-Seq data in three different
levels of depth: 1.6 M, 4.9 M, and about 30 M reads.
Clearly, there was a big gap between 4.9 M and 30 M
reads. In order to identify the appropriate depth of tran-
scriptome per sample that is sufficient for whole gen-
ome transcriptome profiling, it is important to generate
additional datasets at different levels of depth. It would
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be very costly to re-sequence each sample to generate
RNA-Seq data at different levels of sequencing depth.
Random sampling from current dataset might provide a
cost-effective approach for this purpose. This procedure
synthetically created samples from the originally
sequenced samples. Thus, for samples S1-R2 and S2-R2
data sets, by drawing without replacement a fixed num-
ber of reads from the overall data set, we randomly
selected 10 M, 15 M and finally 20 M reads. These ran-
dom selections are repeated 4 times, resulting in total of
24 technical replicates with different transcriptome
depth. Each one of the reads in the FASTQ format of
the input files, which were used in the sampling, was
selected equally likely. A program in Perl was written to
serve this purpose. Then, the resulting replicate datasets
were uploaded into CLC Genomics Workbench in the
FASTQ format for the analysis individually. The correla-
tion coefficients of gene expression (RPKMs) between
replicates of each sequencing depth were calculated by
JMP (SAS, Cary, NC). The average RPKMs of transcripts
identified by each sequencing depth (10 M, 15 M and 20
M) were calculated to represent the gene expression
values for further analysis.

Correlation coefficients between different sequencing
depths from the same sample
In order to evaluate how reliable the sequence data is at
each level of sequencing depth, correlation coefficients
between lower and high depth sequence data for each sam-
ple were calculated by JMP (SAS, Cary, NC). Any genes
with no gene expression at either sequence dataset were
excluded from the correlation coefficient computation. The
depth of sequencing is highly correlated with the abundance
of gene expression, so we divided genes into the four quar-
tile groups based on expression levels for each dataset, from
the bottom 25% (1st quartile) to the top 25% (4th quartile).
Subsequently, correlation coefficients between lower-depth
sequence data and the data with 28.7- 29.6 M reads within
each of the four quartile groups were calculated.

Results
RNA-Seq for cDNA libraries
The two chicken cDNA libraries (Sample1 and Sample2)
were sequenced by the Illumina Genome Analyzer,
which generated 4.9 M (60 bp) reads (S1-R1) and 1.6 M
(60 bp) reads (S2-R1), respectively. Then, two technical
replicate cDNA libraries from the same RNA samples
were re-sequenced using the Genome Analyzer II, which
generated 29.6 M (75 bp) reads (S1-R2) and 28.7 M (75
bp) reads (S2-R2).

Random sampling of the S1-R2 and S2-R2
The datasets of S1-R2 (29.6 M) and S2-R2 (28.7 M)
were each randomly re-sampled into 10 M, 15 M, and

20 M reads with four replicates each. The correlation
coefficients between every two replicates for each re-
sampled level (10 M, 15 M and 20 M) within each sam-
ple (S1-R2 and S2-R2) were all greater than 0.98, which
demonstrated that the sampling procedure is consistent
and accurate. Averages of gene expression from the four
replicates at each re-sampled level for each sample were
used for further analysis.

Effects of sequence depth on the distributions of
transcripts
The distributions of transcript abundance at different
levels of sequence depth from Sample1 and Sample2 are
presented in Figures 1 and 2, respectively. In general,
the median and 75% percentile were similar across five
different levels of depth, while the 95% percentile
showed a slight increase, especially from 20 M to 30 M.
Significant decreases at the 25% and 5% percentile were
observed, especially from 20 M to 30 M. In addition, a
significant decrease was also observed from 1.6 M to 10
M in Sample2.

Coverage of annotated chicken genes
There are about 15,742 annotated chicken genes in the
NCBI database. Number of detected chicken genes at
different levels of sequencing depth from Samples 1 and
2 are presented in Table 1. There were 14,336 genes
detected in S1-R2 (29.6 M) and 14,212 genes in S2-R2
(28.7 M), which accounted for 91.07% and 90.28% of all
15,742 annotated chicken genes in the database, respec-
tively. With the reduction of sequencing depth, the
number of detectable genes also decreased from 91% to
78% in Sample1 (Fig. 3A), and from 90% to 68% in Sam-
ple2 (Fig. 3B). Two significant drops of transcriptome
coverage were observed: from 30 M to 20 M, and 10 M
to 1.6 M.

Figure 1 Distributions of log2 transformed reads of transcripts at
different sequencing depths for Sample1.
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Correlation coefficients between different sequencing
depths
To evaluate the appropriate depth of sequence that is
needed for transcriptome profiling, correlation coeffi-
cients between different levels of sequencing depth and
the most abundant reads for each sample were calcu-
lated. For Sample1, overall correlation coefficients at
four different levels of depth were greater than 0.95.
When we examined the four quartile groups based on
expression level (Fig. 4A), correlation coefficients ranged
from 0.34 to 0.67 for the 1st quartile, 0.22 to 0.77 for
the 2nd quartile, 0.65 to 0.95 for the 3rd quartile, and
0.97 to 1.0 for the 4th quartile. A similar pattern in
terms of correlation coefficient change was observed for
the 1st, 2nd, and 3rd quartiles; a significantly increased
correlation coefficient from 4.9 M to 10 M, and kept
relative flat from 10 M to 20 M. For the 4th quartile,
correlation coefficients at four different levels of depth
were greater than 0.95. From the 1st to the 4th quartiles,
there were significant increases for correlation coeffi-
cients between every two quartile groups (p<0.01). For
Sample2, overall correlation coefficients at four different
levels of depth were greater than 0.98, except for 1.6 M
at 0.84. Correlation coefficients ranged from 0.08 to 0.72
for the 1st quartile, 0.05 to 0.78 for the 2nd quartile, 0.31
to 0.95 for the 3rd quartile, and 0.87 to 1.0 for the 4th

quartile (Fig. 4B). The same pattern in terms of

correlation coefficients changes at different levels of
depth between Sample1 and Sample2 was also observed.

Discussion
In the current study, RNA-Seq was performed twice
using two chicken cDNA samples. The first run of
RNA-Seq had fewer number of reads and larger varia-
tion in terms of total number of reads between the two
samples, while the second run had greater number of
reads and very small variation between the two samples.
The first run was performed at the very early stage of
the sequencing technology when it was still in the test-
ing phase. The lower reads and larger variation in the
first run may be coming from two major sources of
technical error: the purification of cDNA templates dur-
ing the library preparation, and the loading of libraries
onto flow cells (RNA-Seq technical guide and personal
communications, Illumina technical support staff).
These potential sources of errors were corrected during
the second RNA-Seq analysis, which provided very good
sequencing depth with greater number of reads. The
first RNA-Seq datasets were directly derived from actual
experiment, which made the results more informative
than replicating datasets by random sampling.

Figure 2 Distributions of log2 transformed reads of transcripts at
different sequencing depths for Sample2.

Table 1 Numbers of detected annotated chicken genes at
different levels of sequence depth.

Sample1 Sample2

Numbers of genes Numbers of genes

29.6 M 14,336 28.7 M 14,212

20 M 13,011 20 M 12,895

15 M 12,822 15 M 12,690

10 M 12,515 10 M 12,406

4.9 M 12,276 1.6 M 10,664

Figure 3 Percentages of detected chicken genes at different levels
of sequence depth across all annotated chicken genes. A: Sample1;
B: Sample2.
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Therefore, we chose to include these two early datasets
in the analysis in the current study. Furthermore, all of
the reads from each sample were normalized by the
RPKM and the datasets can serve as a reference for ran-
dom sampling at different sequencing depths from the
exact same samples.
The capacity of sequencing length of 60 bp for the

first run was increased to 75 bp at the second RNA-Seq
analysis. Longer reads should reduce estimation error
and mapping uncertainty, and read lengths have been
consistently increasing with improving Illumina mas-
sively parallel sequencing technology. However, people
have noted that the number of reads is more important
than the read length once reaching a minimum read
length of 25 bp [9,10]. The read lengths (60 bp and 75
bp) in the current study were larger than 25 bp; there-
fore, the read length will not affect the overall conclu-
sions drawn.
As a powerful new technology for transcriptome ana-

lysis, RNA-Seq provides a more comprehensive view of
the transcriptome than earlier technologies. Besides its
ability to detect splicing variation, RNA editing and dis-
covery of new transcripts [11], RNA-Seq can also func-
tion in the role of a conventional microarray in
measuring gene expression due to its accurate

measurements. In order to detect less abundant tran-
scripts, appropriate sequencing depth is needed. The
transcriptome coverage or sequencing depth needed for
a given study can be affected by several factors such as
genome size, transcriptome complexity and objectives of
the study. In general, the more complex the transcrip-
tome, the more sequencing depth is required for ade-
quate coverage [12]. Depending on the purpose of
transcriptome analysis, the requirement of sequencing
depth varies. In most transcriptome studies, quantifying
mRNA abundance is one of the major objectives. There
is a certain sequencing depth that is sufficient in simple
transcriptomes. For example, in the yeast genome, a
29.9 M (35 bp) reads dataset was generated by RNA-Seq
which was able to get 100% transcriptome coverage
[13]. The number of transcripts detected by RNA-Seq in
the yeast dataset was able to reach 80% transcriptome
coverage at 4M mapped reads, and even though the
sequencing depth doubled as 8M reads, the transcrip-
tome coverage only increased 10% [13,14]. These results
suggest that the improvement of sequencing depth or
transcriptome coverage after reaching a certain sequen-
cing depth had relatively less impact on detecting low
abundant genes [15]. In addition, the cost per sample
per lane by RNA-Seq is still not affordable for most
laboratories. Recent development in multiplex labelling
using bar-coded libraries by Illumina and continued
increase in sequence output have made it possible to
sequence multiple samples per lane without extra cost
or running time [16]. Therefore, it is imperative to
examine the correlation between sequencing depth and
transcriptome coverage; in other words, what sequen-
cing depth might be sufficient in reaching a certain level
of transcriptome coverage and reliable measurement for
RNA-Seq. In order to accomplish this objective, two
approaches could be applied: experimental or simulation
methods. Both methods have been applied in this study.
High correlation among replicates within each sequen-
cing depth, gradual increase in correlation coefficients
from 10 M to 20 M, and consistent patterns observed
between Samples1 and 2 (Fig. 4) have demonstrated that
random sampling was an effective and reliable method
in reaching the goals of this study.
Transcriptome coverage is one of the most important

parameters in profiling global gene expression. The
number and level of transcript isoforms is not always
known and transcription activity varies across the gen-
ome [14]. This was confirmed in a study by using the
number of unique transcription start sites as a measure
of coverage in mouse cells [15]. In the current study, we
took a more practical approach using all annotated
genes in the chicken genome. Because the chicken gen-
ome is far under-annotated, we assume that the 15,742
annotated chicken genes in the database would well

Figure 4 Correlation coefficients between 30 M reads and four
different levels of sequence depth at different quartiles. A: Sample1;
B: Sample2.
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represent different levels of expression abundance in the
chicken genome, which is essential for the analysis of
transcriptome coverage in this study. Since gene expres-
sion depends on tissue and time of biological process
[15], it is impossible for any single tissue to have all
genes in the genome expressed. Ninety percent of all
annotated genes (Fig. 3) detected at about 30 M (75 bp)
reads might represent a saturated detection of the whole
genome. The analysis results indicated significant
improvements of transcriptome coverage occurred from
1.6 M to 4.9 M and from 20 M to 30 M. Depending on
the purpose of transcriptome analysis, the current study
suggested that 10 M (75 bp) reads could have 80% of
transcriptome coverage, while 30 M (75 bp) reads could
reach 90% of transcriptome coverage.
When we analyzed overall correlation coefficients at

different levels of sequencing depth regardless of gene
expression level, we observed very high correlation coef-
ficients between each level of sequencing depth com-
pared with 30 M, except for 1.6 M. One might draw a
conclusion that there is no significant difference among
different levels of sequencing depth. But as we see in
Figure 4, this might be true in the case of highly abun-
dant genes (the 4th quartile group), but not in the case
of the 1st to 3rd quartile groups, especially the first two
quartile groups (i.e. expression below the median). High
abundant genes will be less affected by sequencing
depth than low abundant genes, because high abundant
genes are more likely to be captured even when the
sequencing depth varies [17]. This is also confirmed by
our analysis. Collectively, the following points can be
inferred: 1) Sequencing depth below 20 M (75 bp) reads
had a significant effect on detecting transcript levels of
medium and low abundant transcripts; 2) Sequencing
depth at both 1.6 M and 4.9 M would result in unreli-
able mRNA expression on all genes except highly abun-
dant transcripts; 3) There was no significant
improvement in correlation coefficients when sequen-
cing depth doubled from 10 M to 20 M. Based on these
analysis, the results suggested: 1) 5 M reads might be
sufficient in obtaining reliable mRNA expression mea-
surement on highly abundant transcripts; 2) When
sequencing depth is beyond 10 M reads, a relatively reli-
able measurement of mRNA expression is expected,
especially for abundant transcripts; 3) It seems that 30
M of reads is needed to achieve reliable measurement of
mRNA expression across all genes in the chicken gen-
ome. To our knowledge, this is the first study evaluating
the appropriate sequencing depth using RNA-Seq in
farm animals and will provide the first reference for
similar studies. The knowledge generated from this
study has laid a solid foundation for applying this analy-
sis to other species.

Conclusions
In summary, the analysis from this study demon-
strated that 30 M (75 bp) reads is sufficient to detect
all annotated genes and provide a reliable measure-
ment of mRNA abundance in chicken lungs using
RNA-Seq. As we expected, the depth of sequencing
had significant impact on low abundance transcripts,
but not on high abundance transcripts. In practice, if
RNA-Seq serves as a replacement of microarray tech-
nology, 10 M (75 bp) reads would allow detection of
about 80% of annotated chicken genes. Finally,
increasing the depth of sequencing from 10 M to 20
M reads did not have a significant effect on transcrip-
tome coverage and reliability of mRNA measurements,
whereas 30 M reads was needed to achieve reliable
measurement of mRNA expression across all genes in
the genome.
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