Esfahani et al. BMC Bioinformatics 2011, 12(Suppl 10):59
http://www.biomedcentral.com/1471-2105/12/510/59

BMC
Bioinformatics

PROCEEDINGS Open Access

Probabilistic reconstruction of the tumor
progression process in gene regulatory networks
in the presence of uncertainty

Mohammad Shahrokh Esfahani'’, Byung-Jun Yoon', Edward R Dougherty'~

From Eighth Annual MCBIOS Conference. Computational Biology and Bioinformatics for a New Decade
College Station, TX, USA. 1-2 April 2011

Abstract

Background: Accumulation of gene mutations in cells is known to be responsible for tumor progression, driving it
from benign states to malignant states. However, previous studies have shown that the detailed sequence of gene
mutations, or the steps in tumor progression, may vary from tumor to tumor, making it difficult to infer the exact
path that a given type of tumor may have taken.

Results: In this paper, we propose an effective probabilistic algorithm for reconstructing the tumor progression
process based on partial knowledge of the underlying gene regulatory network and the steady state distribution of
the gene expression values in a given tumor. We take the BNp (Boolean networks with pertubation) framework to
model the gene regulatory networks. We assume that the true network is not exactly known but we are given an
uncertainty class of networks that contains the true network. This network uncertainty class arises from our partial
knowledge of the true network, typically represented as a set of local pathways that are embedded in the global
network. Given the SSD of the cancerous network, we aim to simultaneously identify the true normal (healthy)
network and the set of gene mutations that drove the network into the cancerous state. This is achieved by
analyzing the effect of gene mutation on the SSD of a gene regulatory network. At each step, the proposed
algorithm reduces the uncertainty class by keeping only those networks whose SSDs get close enough to the
cancerous SSD as a result of additional gene mutation. These steps are repeated until we can find the best
candidate for the true network and the most probable path of tumor progression.

Conclusions: Simulation results based on both synthetic networks and networks constructed from actual pathway
knowledge show that the proposed algorithm can identify the normal network and the actual path of tumor
progression with high probability. The algorithm is also robust to model mismatch and allows us to control the
trade-off between efficiency and accuracy.

Background

The construction of gene regulatory networks is an extre-
mely difficult problem owing to their complexity and the
difficulty of obtaining the relevant time series data, in
terms of sampling rate, measurement accuracy, and
quantity. For instance, microarray data usually come in
samples much too small for accurate inference, have a
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very low sampling rate relative to most cell signaling,
measure average transcript across many cells, and are
susceptible to many confounding factors which adversely
affect the signal-to-noise ratio. In particular, for human
cells, with data coming from patients, there are no time-
course data and the data come from cells that have
already undergone a sequence of mutations, so that the
regulatory mechanisms of the original cell are no longer
intact. Rather than depend on expression data, one can
use known pathway information to construct regulatory
relations and thereby develop an uncertainty class of
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networks whose regulatory dynamics are consistent with
the pathway knowledge. An algorithm for doing this has
been developed in the context of Boolean networks [1]. If
one could obtain wild-type time-course data, then one
could reduce this uncertainty class by standard Boolean
network inference methods. Given that in practice we
usually only have access to stationary patient data and
that the progression of mutations leading to the cancer-
ous state has already occurred, we would like to use the
available data to reduce the uncertainty class. In fact,
since all we require is that we have an uncertainty class
to begin with and wish to use the tumor data, from an
algorithmic perspective it does not matter whether the
uncertainty class arises from prior biological knowledge,
wild-type data, or a combination of both. The proposed
algorithm operates on the basis of probabilistic sequential
fault-detection, which views regulatory alterations, such as
gene mutations, as faults in the network wiring [2]. It esti-
mates the sequence of faults leading to the current (can-
cerous) regulatory structure, and from these estimates,
a reduced uncertainty class for the original (healthy) net-
work. By taking this approach the algorithm simulta-
neously accomplishes a dual purpose: network inference
and fault detection.

The methodology is based on certain fundamental
notions regarding cancer development, in particular, that
the formation of a tumor is a complex process usually
proceeding over a period of decades. Normal cells evolve
into cells with increasingly neoplastic phenotypes. Tumor
progression is driven by a sequence of randomly occur-
ring mutations and epigenetic alterations of DNA that
affect the genes controlling cell proliferation, survival,
and other traits associated with malignant cell phenotype.
To wit, tumor progression is a multi-step process of
changes in the regulatory pathways. A set of pathways
must be deregulated during the tumor progression until
the tissue reaches a cancer state. A wide variety of normal
adult human cell types can be transformed experimentally
by perturbing five pathways [3]. Certain normal human
cells require a greater or lesser number of changes before
they will become transformed. Moreover, the regulatory
pathways can be altered in many different ways leading to
the same cancer. For instance, studies on colon cancer
show that the great majority (~ 90%) of colon carcinomas
suffer inactivation of the APC gene on Chromosome 5q
as an early step in this process, about 40% to 50% acquire
a K-ras mutation, 50% to 70% show an LOH of Chromo-
some 17p involving p53, and about 60% show an LOH on
Chromosome 18q. Most colon cancers will therefore
begin with a Chromosome 5 alteration, but then will take
alternative genetic paths on the road toward full-fledged
malignancy [3].

In sum, although some common alterations may happen
in tumor progression, different patients confront with
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different types of alterations during the progression,
thereby making it important to find a way to identify
mutations in order to apply appropriate intervention. Very
little work has been done on the identification of genetic
alterations (e.g. mutations) in cancer progression using
network models. One such example is the work by Ger-
stung et al. [4], where they predicted cancer progression
by applying a conjunctive Bayesian network, in which the
order of gene mutations is extracted.

In this paper, we use the Boolean networks with pertur-
bation (BNp) framework to model signaling pathways and
ultimately predict the gene mutations that occurred during
the tumor progression process. Boolean networks (BNs)
have been used in a variety of other contexts and with dif-
ferent objectives in biological applications. Kauffman [5]
proposed that the cell types are the attractors. He intro-
duced randomization into the networks, in terms of envir-
onmental noise (random perturbation of individual genes)
and mutation (not to be confused with the notion of
mutation in cancer progression), which refers to changes
in the wiring of the network. Random BNs and their char-
acteristics have been extensively studied by Aldana et. al
[6]. In a random BN, the average function in-degrees are
constant and function outputs are assigned randomly.
Serra et al. [7] investigated the effects of perturbation in
the context of random BNs by knocking out a single gene.
Additionally, intervention in BNp has been also studied by
Dougherty et al. [8] and Qian and Dougherty [9].

In this work, we focus on BNs with perturbation owing
to their role in modeling gene regulatory networks, a key
point being that their dynamics can be modeled as Markov
chains, thereby facilitating the modeling of genetic altera-
tions in signaling pathways by shifting the network steady
state distribution (SSD) from the normal (healthy) SSD
toward the cancerous SSD. Having this tool in one hand
to model signaling pathways, and the cancerous SSD
extracted from the malignant tissue (e.g., based on gene
expression data) on the other hand, one can test all the
possible alterations on the BN satisfying the pathway
information to see which one makes the SSD of the altered
BN as close to the cancerous SSD as possible. This allows
one to track the sequence of mutations. However, there
are two concerns for using BNps to model signaling path-
ways: (1) the network perturbation probability should be
determined, and (2) signaling pathways provide us with
incomplete information, which means that there may be
too many BN that satisfy the pathway information. The
first issue can be mitigated by finding a good estimate of
the perturbation probability. For example, inferring a BNp
from a sequence of gene expression data has been studied
in [10]. In fact, the second issue is the main source of
uncertainty in our problem. To the best of our knowledge,
the paper by Layek et al. [1] is the only work that proposed
a method to extract the BN underlying the normal tissue
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from a set of biological pathways. Although this paper
introduced an elegant method for extracting the informa-
tion needed for constructing Boolean networks from bio-
logical pathways, it yields a large number of networks
since the available network knowledge is often incomplete
and not enough to point out the true network. To address
this issue, we define the notion of a family of Boolean net-
works, which is the set of all BNs that satisfy the con-
straints that are imposed by a given set of pathways. For
instance, for a 6-gene signaling pathway, the resulting
family can contain 2'* networks, all of which satisfy the
constraints imposed by the pathway.

As mentioned earlier, the main goal of this paper is two-
fold: (1) to infer the normal network underlying healthy
cells from this family, and at the same time, (2) to find the
set of alterations that have occurred during the cancer
progression. Toward this goal, we propose a probabilistic
sequential fault detection algorithm that can effectively
identify the best candidates for the original normal
(healthy) network and the accumulated gene mutations.

Methods

Boolean networks (BNs)

A Boolean network G (V, F) is defined by a set V = {xy,
Xo..., X,y of binary variables, x; € {0,1}, i = 1,..., n, and a
list F = (f1, f2,.-, f,) of Boolean functions. The value of
x; at time ¢ + 1 is completely determined by a subset
{xi1, %, ... »x;,} © V at time £ via a Boolean function f; :
{0, 1}* — {0,1}. Transitions are homogeneous in time
and we have the update:

x;(t+1) =fi(xil(t)fxiz(t)/"'/xiki (1)) )

Each x; represents the state (expression) of gene i, where
x; = 1 and x; = 0 represent gene i being expressed and not
expressed, respectively. It is commonplace to refer to x; as
the ith gene. The list F of Boolean functions represents the
rules of regulatory interactions between genes. That is, any
given gene transforms its inputs (regulatory factors that
bind to it) into an output, which is the state or expression
of the gene itself. All genes are assumed to update syn-
chronously in accordance with the functions assigned to
them and this process is then repeated. At any time ¢, the
state of the network is defined by a state vector x(¢) = (x;
(), %5(2), ....x,(£)), called a gene activity profile (GAP).
Given an initial state, a BN will eventually reach a set of
states, called an attractor cycle, through which it will cycle
endlessly. Each initial state corresponds to a unique attrac-
tor cycle and the set of states leading to a specific attractor
cycle is known as the basin of attraction (BOA) of the
attractor cycle.

A Boolean network with perturbation (BNp) is defined
by allowing each gene to possess the possibility of ran-
domly flipping its value with a positive probability p.
Implicitly, we assume that there is an i.i.d. random
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perturbation vector y = (y1, V2, ..., Yn), where y; € {0, 1},
the ith gene flips if and only if y; = 1, and p = P(y; = 1)
for i = 1, 2,..., n. If x(¢) is the GAP at time ¢, then the
next state x(¢ + 1) is either f(x(¢)) with probability (1 —
p)” or x(t) & y with probability 1 — (1 -p)”, where f is
the multi-output function from the truth table and & is
component-wise addition modulo 2. Perturbation makes
the corresponding Markov chain of a BNp irreducible
and ergodic. Hence, the network possesses a steady state
distribution, SSD(BNp), describing its long-run behavior.
A BNp inherits the attractor structure from the original
Boolean network without perturbation, the difference
being that a random perturbation can cause a BNp to
jump out of an attractor cycle, perhaps then transition-
ing to a different attractor cycle prior to another pertur-
bation. If p is sufficiently small, then the SSD will reflect
the attractor structure within the original network. We
can derive the transition probability matrix (TPM) P if
we know the truth table and the perturbation probability
p for a BNp. The TPM of a BNp can be decomposed as:

P=(1-p)"Q+H, 2)

where, Q is the TPM of the corresponding determinis-
tic BN and H is a 2” x 2” matrix depending only on n
and p [11].

We assume there exists a “normal” BN, denoted N,,,,.
mab corresponding to a healthy wild-type phenotype,
and a family gy = {NllNzlu_,N‘BN ‘} of BNs posses-
sing identical predictor sets as N,,.,.; such that
N ormat € BN . We refer to this family BN as the
“uncertainty class” relative to N5,

Given a BN, we define an “alteration” to be a change
in the rule structure (i.e., truth table). A “path” Path =
{alt, , alt,, ..., alty} is defined as a sequence of M
alterations. From a modeling perspective, M denotes the
number of alterations that have occurred during the
tumor progression and alt; refers to the jth alteration.
We assume that each alteration affects only a single
gene and no two alterations in the same path affect the
same gene. The result of applying a path of alterations
to a Boolean network N is to produce an “altered net-
work” [N; Path]. If we begin with a normal BN, N,,,ap
and apply a “cancerous path”, Path., we obtain a cancer-
ous network N ,,cer =[Nyormas Path.]. The following
commutativity and associativity properties follow from
the definition:

[N;{alt,,alt,}] =[N;{alt,,alt,}],

3
[N;{alty, alt,},alt;] =[N;{alt,, alt,, alt5}]. @)

Alterations in cancer progression are commonly gene
mutations, and the accumulation of gene mutations is
usually responsible for cancer. Gene mutation includes
both oncogene activation and tumor suppressor gene
deactivation, resulting in either continuous activation or
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deactivation of the corresponding genes. In the context
of the BN model, such alteration in gene x; leads to per-
manently setting the boolean function to ;=1 or f; = 0.
We denote a gene mutation by a pair (i, k), which indi-
cates that gene x; is stuck at k € {0, 1}. For convenience,
we define (l,_l) =(1,0) and W =(I,1). If a Boolean net-
work N is altered by a mutation (i, k), this mutated BN
is denoted as [N; {(i, k)}]. For example, for a 4-gene
Boolean network N, [N; {(1,0), (4,1)}] refers to a mutated
version of N, where gene x; is permanently deactivated
and gene x, is permanently activated. In this case, in the
regulatory truth-table, we will have f; = 0 and f, = 1 for
every set of predictors. Gene mutation, also called
“1-gene function perturbation”, has been studied [9]. It
should be noted that, physically, the order of mutations
can make a difference in cancer progression, since
alterations affect the regulatory structure, thereby affect-
ing subsequent cancer progression. There is, however,
no way to take this into account given that we only
have steady-state data and no data on transient beha-
vior. From a mathematical perspective, the commutativ-
ity in (3) means that a path is a set of alterations rather
than a sequence of alterations; however, we employ the
latter terminology owing to its commonplace usage.

Now the problem to be addressed in this paper can be
stated as follows: Given a family BA/ of Boolean net-
works, the steady state distribution (SSD) of the cancer-
ous network, and the number of alterations M, what are
the best candidates for N,,o0; and Path.? Searching for
the best candidate for the normal network involves esti-
mating the distance between altered networks and the
cancerous network. Since the only available information
about the cancerous network is its SSD, we need to
define a distance measure between two networks based
on their SSDs. Given two BNs with perturbation Nl
and N/ p» We compute their distance as follows:

D(N!,N ) =p(rim;), (4)

where 7; = SSD(N;) » M= SSD(N%), and p(m;,m;) is
the Kullback-Leibler divergence (KL-divergence)
between the SSDs m; and m;. This distance measure can
be extended to BNs by first building the corresponding
BNp for each BN using (2) and a given probability of
perturbation p and then computing the distance
between the resulting BNps. Without any ambiguity, in
what follows, we use the same notation for a BN and
the induced BNp for notational simplicity.

Gene mutation effects

Effects of gene mutation in a BNp

In this section, we study the effect of a gene mutation (i,
k) on the TPM of a BNp and its SSD. Gene mutations
affect only the regulatory matrix Q in (2), where the
mutation of each gene can be modeled as a multiplicative
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perturbation. Thus, for every mutation (i, k), we can find
a corresponding transformation matrixT;; such that the
TPM of the altered BNp is given by:

P=(1-p)"QT,, +H=P+(1-p)"Q(T;,~1),  (5)

where I is a 2” x 2" identity matrix. Based on this
observation, we can easily prove the commutativity
property shown in (3) (see Additional file 1 for the
proof). According to the associative property shown in
(3), a sequence of multiple gene mutations can be repre-
sented by a single transformation matrix, which is a pro-
duct of the transformation matrices, each corresponding
to a single gene mutation in the sequence. For example,
the TPM of a BNp altered by a threefold mutation, [N;
{(iy, k), (i3, ko), (i3, k3)}], is given by:

P P+(1 P) Q(Tl ky Viy ke zTig,k3 _I)'

The effect of rank-one perturbations in the TPM of a
Markov chain on the SSD has been studied in the con-
text of structural intervention in gene regulatory net-
works [9], and more generally in the framework of
Markov chain perturbation theory [12]. We can utilize
these results to analyze the SSD of the altered BNp,
whose TPM is given by (5).

In order to see how existing work on Markov chain
perturbation can be used to analyze the effect of gene
mutations on the SSD, consider two TPMs P and p
that arise from the original network and the altered net-
work, respectively. Let m and ; be the SSDs of the two
networks, such that nP = 7° and 7°p_ ;7. We can
find the analytical expression of the change in SSD
using the fundamental matrix Z = [I - P + ent’] 7},
where e is an all-one column vector [13]. The funda-
mental matrix Z exists for any ergodic Markov chain.
Consider a rank-one perturbation, where the TPM of
the perturbed Markov chain is p = p + g, where a, b
are two arbitrary vectors satisfying b'e = 0, and P is the
TPM of the original Markov chain. In this case, it can
be shown that [14] the following is true:

T
=t +—22 bz (6)
1-b"Za

Now, by representing the change of TPM due to a
gene alteration as a sequence of rank-one perturbations,
we can utilize (6) to predict the overall effect of the
given mutation on the SSD of the network. To be more
precise, suppose the BNp at hand undergoes a single
mutation, (i, k). The transition probability matrix p of
the mutated BNp can be represented as follows:

u

P=P+(1-p)' QT -D=P+(1-p)" D a;-bj, (7)

=1



Esfahani et al. BMC Bioinformatics 2011, 12(Suppl 10):59
http://www.biomedcentral.com/1471-2105/12/510/59

for some vectors a; and bj satisfying b; -e=0, and a
positive integer u < 2" ~ ', The proof can be found in Addi-
tional file 1. Based on (6) and (7), the SSD of the altered
BNp can be iteratively calculated in at most 2" iterations.
Example: effect of mutations in a 3-gene network
For illustration, let us consider a simple 3-gene BNp.
Suppose the BNp is altered by (3,0), which means that
the gene x5 is permanently deactivated such that x3 = 0.
As a consequence, there cannot be any destination state
in Q, which is the deterministic part of the TPM P in
that arises from the regulatory structure of the BN, that
corresponds to x3 = 1. Hence, if we let Q = [q;... qs ],
where q; is the jth column in Q, the corresponding col-
umns in Q should be shifted as follows:

q: < 45
qs < s/

qs3 < qy;,
q; < qs;/

where q; corresponds to the destination state with deci-
mal representation j — 1, and q; <—q; means the jt& col-
umn should be updated to q; + q; and the ith column to
0. Therefore, we get the following transformation matrix:

10000000
10 00000
00100000
00100000

Bo=lo 0001000
00001000
0000O0O0T O
0000O0O0T O

and we have:
-qs] (8)

Note that the rank of Q(T5, — I) is at most 2" V= 4.
Now, (8) can be decomposed as follows:

Q(T;0-0)=[q, 9 494 94 45 -9¢ 9s

0
0
[ 92 44 94 4 4 95 9s]=9>
—=| 0
a
‘1o
0
0

{8

T ]
|
5{0 coco Ll ~oo
. )

+. (9)

where b]- -e =0 for all b,. From (9) and (5), we get:

4
P=r+(1 —p)3Zaibi,

i=1

(10)

which is in the form shown in (7). Now, by utilizing
the result in (6), we can analytically compute 7 through
sequential rank-one perturbations as follows:
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Pi=P+(1-pP@ab)—> 1= +——21 bz
1Py 1-b,Za, 141
Po=Pi+(1-p)(asb,) > 2= 1+—22 b7,
1-b,Zja,
. (11)
Ps=Pr+(1-p)ashs) > 3= 2+— 233 p.z
3=P2+(1-p)’(asbs) 3= 2 1-b,Za, 343
P=Ps=Ps+(1-p)Pab,)> = s4= s+—> 34 p,z
4 =P3+(1-p)’(asb,) 4 3 1-b,Z,a, 4ty

where m and 7~z]» are the SSD vectors for P and P,
respectively, which satisfy 7'P = 7" and ﬂ;f’j =7;.Z,
are the corresponding fundamental matrices, as defined
earlier.

Overview of the proposed algorithm

Suppose we are given a family A/ of Boolean networks
that contains the normal network N,,,,,..;. Based on our
definition, the cancerous network can be written as:

Ncancer = [Nnormal; Pathc] = [Nnormal; {altc,lf st altc,M} ]

Let SSD.,,c.r denote the SSD of the cancerous net-
work N.,,cer- We define the residual value for a given
Boolean network N as:

R(N) = (SSDcuncer SSD(Np))' (12)

where N, is the BNp with the regulatory matrix Q
determined by the Boolean network N and the perturba-
tion probability p. At each step, the algorithm alters the
networks in the current family of networks through a sin-
gle mutation. After the alterations, the algorithm keeps
only those networks that lie within a certain distance
from the cancerous network, where the distance is com-
puted by (12). For the selected networks, the algorithm
also keeps a record of the alterations that leads to these
altered networks. Figure 1 provides an illustrative over-
view of the algorithm. Suppose that initially, the network
family BN = {[\]1, N?Z, [\]3} contains three 3-gene net-
works. We assume that N is the true normal network
N,ormap and the cancerous network N_,,,.., is obtained by
taking the cancer progression path Path, = {(1, 0), (2,1)},
hence N yucer = [Nyormar 1(1,0), (2,1)}]. Given the family
BN , the SSD of the cancerous network SSD.,,,c.,, and
the number of mutations (set to M = 2 in this example),
the algorithm tries to identify the best candidates for the
normal network N,,;,,.4; and the path Path, that may lead
the original network into the cancerous network in two
steps.

Initially, for each network NJ e BN , there can be 6
possible altered networks based on a single gene muta-
tion. These altered networks are shown in the first row of
Figure 1, in the middle plot. Among these networks, the
algorithm only selects the networks whose SSDs are close
to SSD 4ncer- Suppose we select the altered networks that
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First Mutation

First iteration:

o N
A :N?
o :N?

BN

Second Mutation

Second iteration:

B[N (O E) = (1,0),(2,1),(3,0)

o
[m]
[m]

A NG (LR (LK) = (1,0) A

m :[NS(LOLI=12,3;k=0,1
A N =1,2,3;k=0,1
o :[N;(LKI=1,23;k=0,1

Network Selection

(NS00, (1K)} (L) # (1,0), (1L 1)
ANSARD, LR (k) # (2,00, (2,1
(INSAG0) (LK) (LK) # (3,0),3.1)
(IN%H(L0), (L) 15 (1K) # (1,0), (L, 1)

Network Selection

BN

B[N (LK) = (1,0),(2,1),(3,0)

A [N O)L (1K) = (1,0)

BN’

/ﬁ

o :[NV53{(10),(2,D}]

B :[N3{(2.D,(1,0)]
A C[N%{(1,0),(2,D)}]

Figure 1 lllustrative overview of the algorithm. Sequential fault detection algorithm for a family J3A/ that consists of three 3-gene Boolean
networks (depicted as a square, triangle, or circle). Suppose N is the (unknown) normal network that was altered into the cancerous network
through M = 2 mutations. In the first row, all possible single mutations are applied to all networks, where the resulting altered networks are shown
in the middle. The algorithm keeps only those networks whose residual value (the distance to the cancerous network) is less than B, resulting in a
reduced family BA/ 1. In the next step, we consider all possible single gene mutations to the networks in BN 1, as shown in the middle of

second row. The algorithm keeps only those networks whose residual value is less than B,(<f,), which leads to a further reduced set B A/ 2

are within f;-distance of cancerous network. The
selected networks constitute a new (and reduced) uncer-
tainty class of networks Ba/ !. Next, each network in
BN ! can be altered into 4 different networks based on
an additional single gene mutation. These networks are
shown in the second row of Figure 1, in the middle plot.
Among these networks, the algorithm selects only those
that are within f3,-distance from the cancerous network,
resulting in a further reduced uncertainty class of net-
works BA/ 2. The family ga/ 2 contains the best candi-
dates for the normal network and the cancerous path.
For example, gA/ 2 in Figure 1 contains two candidates
(N' and N?) for the normal network. For N, the cancer-
ous path {(1,0), (2,1)}, and equivalently, {(2,1), (1,0)}, may
lead it to the cancerous network with the given steady
state distribution SSD,,,,c.,. Similarly, N* may be another
candidate for the normal network, which may get close
to the cancerous network also through the path {(1,0),
(2,1)}. Note that the actual number of networks in g/ 1
and that in g/ 2 will depend on the parameters 3; and
B., respectively.

Details of the proposed algorithm

Algorithm 1 Fault Detection Algorithm

Input : Family of BNs, Cancerous SSD, Number of mutations (i.e. M), perturbations probability p,,cer
Output : Set of all network-path pairs BA"
Initialize : BN ° = BV = {N',...,NI®V]y
Alt} = {alty,alty,...,alty, ,alty,},1=1,...,| BN |
form =1toMdo
BN "= ,c=0
for 1= 11to| BV ™|

0
NeN'epy ™!
for Valtj e Alt!, do
N < [N;alt]
if R(N) <, then
cec+l
N eN
BN ™« BN "U{N‘}
end if
Altl,y « Altg, —{alt alt
end for
end for

end for

return B\ "

The detailed procedure of the proposed algorithm is
shown in Algorithm 1. At each step, one additional single
gene mutation is considered. Therefore, to detect all M
alterations that may have led the normal network into the
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cancerous network, the algorithm needs to go through M
sequential steps. In the first step, we consider all possible
single mutations of the form (i, k) for every network N in
the family BN/ , which results in 2n| BN | altered net-
works. Among these networks, we select only those net-
works whose SSD can get close enough to SSD,,..,» after
M -1 additional gene mutations. Based on this criterion,
we select the network-mutation pairs, whose residual
values (distance to the cancerous network measured based
on SSD) are smaller than a threshold ;. In the second
iteration we start with a new family of BNs ga/ ! that
contains the networks selected in the previous iteration.
Since the gene that was mutated in the first step cannot
go through another mutation, every network in gA/ ! can
go through one of 2(n — 1) possible single gene mutations.
Among these possible altered networks, we select only
those networks whose residual values are smaller than a
threshold 3. After repeating these steps M times, the final
class A/ M will contain the best network-path pairs,
where each pair consists of a candidate for the normal net-
work and the cancerous path that may drive the given net-
work into the cancerous state with the given SSD. In each
iteration, the threshold 3; can be used as a control para-
meter for trading between efficiency and accuracy. In gen-
eral, we will have B; > 3, > ... = B,
Performance metrics
In order to evaluate the performance of the algorithm, we
define two metrics. The first metric is the probability that
the algorithm will miss the true normal network N,,;,1
and the actual cancerous path Path, of length M:
Pmiss = Pr([Nnormal; Pathc] ¢ BN M)' (13)

We can estimate this probability as follows. Let us

define:
p; = FpMPana)(B), Vi =1,..., M, (14)

where Fp™ — tPenced(() is the cumulative distribution
function (CDF) of the distance d between a BNp (with
the perturbation probability p.,,.c.;) and its altered ver-
sion obtained by (M - i) mutations. Estimation of this
CDF will be further discussed in the next section. Now,
if we define:
G = =pu)™ - plk) +plh1<isM-1

miss miss miss’

(15)
Pl = (1=p)",
we can show that:
Pmiss = pEnAl/g (16)

The proof can be found in Additional file 1. The sec-
ond metric to be used is the probability that the
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algorithm will not be able to detect any network within
€ -distance of the true normal network N,y :

P

miss,e

=Pr(AN € BN M :D(N,N o) <€), (17)

These two metrics can be used to evaluate the accu-
racy of the proposed algorithm.

It would be also interesting to evaluate the computa-
tional complexity of the algorithm. When performing an
exhaustive search, the total number of residual value
computations that would be needed to find the final
network family gA7 M would be:

which is exponential with respect to the number of
mutations M.

Now, suppose that in the ith iteration of the proposed
algorithm, ;% of the networks are selected (i.e.,
‘BN lJ; 2(n—1) i‘B./\/ H‘ ) by controlling the para-

meter 3;. For finding gA/ M, our algorithm would need:
M-1 i
sy [Jew-n ) (18)
i=0 j=0

residual value computations, where o = 1. A smaller
B; will lead to a smaller ¢;, thereby reducing the overall
complexity of the algorithm. However, this will also
increase the probability of missing the true network,
hence the parameters 8; can be used to control the
trade-off between computational efficiency and the pre-
diction accuracy of the algorithm. As we can see from
(18), the computational complexity of the proposed
algorithm is polynomial with respect to the number of
genes n (for a fixed M), while it is exponential with
respect to the number of mutations M (for a fixed n).
However, the parameters o; (j = 0, ... , M — 1) allow
one to trade between computational efficiency and pre-
diction accuracy. As a result, the proposed algorithm
can accurately reconstruct the cancer progression path
in a much more efficient manner compared to the
exhaustive search, as will be demonstrated in our simu-
lation results.

Cumulative distribution function of the distance between
a random BNp and its mutated version

We estimate the CDF of the distance between a network
and its altered version based on random BNs. We define
a random Boolean network (RBN) as a BN: (1) whose
gene predictors are randomly chosen such that every
gene has k predictors, and (2) the truth table of every
Boolean function f; follows an independent and
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identically distributed Bernoulli(p,) distribution, where
Py is typically called the bias of the Boolean function
f;- By allowing random perturbations with probability
p in the RBN, we can obtain a random BNp (RBNp).
First, we generate large number of RBNps with certain
properties. Second, for each RBNp N,,, we randomly
introduce m mutations to obtain an altered network
Np, and measure their distance D(Np,ﬁp). Based
on these observations, we can estimate the CDF,
Fp"P)(d) = P(D(N,,N,) <d) where m is the number
of single gene mutations and p is the perturbation prob-
ability in the RBNp.

Results and discussion

Estimating the CDF of the distance between networks

To execute the algorithm, we first estimated the CDF
FD(’""’)(d) of the distance d between an RBNp and its
mutated copy. As with ensemble analysis in [15][16][17],
we estimate these CDFs based on a large number of
randomly generated networks with similar structural
properties. The two most important parameters for gen-
erating random BNs are their bias probability p, and
connectivityk. As described earlier, p,, is the mean of the
Bernoulli distribution used to randomly generate the
predictor function for each gene in a BN, and k is the
maximum number of input variables for each of these
functions. We randomly generated 4,000 BNps with
these properties. For each network, we introduced ran-
dom gene mutations and computed the distance
between the original BNp and the altered BNp. We used
the MATLAB function KSDENSITY to find the CDF
that best fits the observed distance distribution. We
repeated the overall experiment for different numbers of
genes n, different perturbation probabilities p, and dif-
ferent numbers of mutations .

The estimated CDFs are shown in Figure 2, for several
different parameters. Figure 2-(A) shows the estimation
results for 6-gene networks for one or two gene muta-
tions. We can see that the distance increases when we
increase the number of mutations while keeping the
probability of perturbation fixed. Similar behavior can be
observed for 8-gene networks shown in Figure 2-(C). We
can also see that the distance is generally larger for the 8-
gene networks.

As we can see from Figure 2-(B), for 6-gene networks,
increasing the perturbation probability from p = 0.001
to p = 0.01 decreases the distance. This is intuitive,
since gene mutation (see (5)) only affects the regulatory
part, which plays less important roles as the perturba-
tion probability p increases. As a result, changing the
regulatory structure of a BNp will have less significant
effects when p is larger. Figure 2-(D) shows the results
for 8-gene networks, which show similar tendencies.
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Performance of the algorithm on synthetic network
families

We evaluated the performance of the proposed algorithm
based on randomly generated families of Boolean net-
works through Monte Carlo simulations. All random net-
works in each of these families have identical structural
properties (i.e., pp and k). In each family, one network
whose Boolean functions are canalizing functions was
selected as the true normal network N, A canalizing
Boolean function is a function in which an input with a
specific value determines the output of the function
regardless of the other inputs. For instance, flx;, x,) =
x10Rx, is a canalizing function, where x; = 1 (and simi-
larly, x, = 1) will make the output flx;,x,) = 1, regardless
of the value of the other input variable. We randomly
chose a path of length M and altered the normal network
according to the given path to obtain the cancerous net-
work. The steady state distribution (SSD) of the cancer-
ous network was computed, to be used as an input for
the proposed algorithm. Next, we used the proposed
algorithm to find out whether it was able to infer the true
normal network from a given family of networks and cor-
rectly predict the actual cancer progression path, when
provided with the number of mutations M and the can-
cerous SSD. In our simulations, we used p,,cer = 0.001,
pb =0.3, and k = 2. We considered 6-gene networks with
M = 2 mutations and 8-gene networks with M = 3 muta-
tions. For the case of 6-gene networks, we considered
families of size | BN | =2° and |BN |=2'". For the
case of 8-gene networks, we considered families of size
|BN | =2%. The algorithm was implemented using
MATLAB 7.9.0 (R2009b), and all simulations have been
performed on a desktop computer with 2.67GHz Intel
Core i7 CPU and 12GB RAM. Each SSD computation
took around 9.2 x 107* sec and 5.7 x 107> sec for n = 6
and n = 8, respectively.

Table 1 summarizes the results of applying our algo-
rithm to 500 randomly generated network families,
where each family contains |BN | =256 6-gene net-
works and the normal network undergoes two gene
mutations. The threshold B; was chosen such that

L= FY™ Y (p,) for different values of p;. The second
column in Table 1 shows the probability of missing the
true network defined in (16). The third, fourth, and fifth
columns show the empirically estimated probabilities.
The sixth column shows the average number of net-
works in the final network family gas 2. The seventh
column shows the average number of cancerous paths
found in the final step, and the final column shows the
average number of SSD computations needed for find-
ing BA 2. As we can see in Table 1, increasing 3, (by
controlling p;) decreases the probability of missing the
true normal network but increases the number of
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networks (and the corresponding cancerous paths)
included in the final network family gA/ 2. Further-
more, the number of SSD computations will increase if
we use a larger B, (by increasing p;). A similar trend
can be also observed in Table 2, which summarizes the
simulation results for 200 families with |B./\f | =1024
6-gene networks.

We also evaluated the performance of the proposed
algorithm based on randomly generated network
families, each of which contains |B/\/ | =256 networks

with 8-genes, with M = 3 gene mutations. The experi-
mental results are summarized in Table 3. The first col-
umn in this table shows the probabilities p; and p, that
were used to choose f8; and 5, using (14). The thresh-
old B35 was set to B3 = 0.1. Table 3 shows that increasing
the threshold values result in a higher probability of suc-
cess (i.e., smaller probability of missing the true normal
network) but also a higher computational cost, as we
would expect. In practical situations, the actual pertur-
bation probability p ;... may not be exactly known, in

Table 1 Performance of the proposed algorithm evaluated on 500 randomly generated network families

|BN | = 256 s Peancer = P = 0,00], ﬁz =0.1

P Piss Prfl’l?:f ;’{S’gezoll P;;.':f{ezo'z AVG of |BJ\/ 2| AVG of # of paths AVG of # of SSD calculations
py = 0.1 0.81 0.66 0.58 0.57 243 3.71 3,421
py =03 049 045 041 0.39 4511 417 4,677
py =05 0.25 0.24 0.21 0.20 64.27 441 5918
py =07 0.09 0.06 0.04 0.04 94.84 4.60 9,208
Performance of the proposed algorithm evaluated on 500 randomly generated network families. Each family contained | Bj\/ | = 256 6-gene networks (k =

2, M =2, and p, = 0.3).
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Table 2 Performance of the proposed algorithm evaluated on 200 randomly generated network families

|BN | =1024 , peancer = p = 0.001, B, = 0.1

P Proiss Pni'i's’f Prfzrirslsp,ezo.l prft?:f,E:O.Z AVG of ‘BN 2 ‘ AVG of # of paths AVG of # of SSD calculations
py = 0.1 0.81 0.65 0.57 0.56 68.3 4.45 13,289
py =03 049 0.46 040 0.39 138.17 4.70 17,319
py =05 0.25 0.23 0.17 0.17 206.7 497 21,846
py =07 0.09 0.05 0.03 0.03 2934 4.98 36,348
Performance of the proposed algorithm evaluated on 200 randomly generated network families. Each family contained | BN | =1024 , 6-gene networks (k

=2,M=2,and p, = 0.3).

which case we would have to estimate the probability.
To evaluate the robustness of the proposed algorithm,
in the presence of model mismatch, we performed
another set of simulations, whose results are summar-
ized in Table 4. We used randomly generated network
families, each with |BJ\/ | =256 6-gene networks, and
considered M = 2 mutations. As we can see in Table 4,
there was no significant performance degradation when
the perturbation probability p used by the algorithm was
different from the true perturbation probability p.,,cer
The results for families with |BN | =1024 networks
are summarized in Table 5, which show that the pro-
posed algorithm is robust to model mismatch. Finally,
Table 6 shows the results for network families with
|BN |= 256 8-gene networks with M = 3 gene muta-
tions, which also clearly shows the robustness of our
algorithm.

Performance on cancerous networks involving the p53
gene

Next, we evaluated the performance of the proposed
algorithm based on a family of BNs constructed from
pathways that involve the p53 gene. Tumor suppressor
gene p53 has been extensively studied and it is known
to be involved in various well-known biological path-
ways. It has been observed that p53 is mutated in 30-
50% of common human cancers [3]. In fact, in the pre-
sence of DNA damage, a mutant p53 may lead to the
emergence of abnormal cells. Figure 3 shows the ATM-
p53-Wipl-Mdm?2 pathways that involve the tumor sup-
pressor gene p53 [18].

These pathways operate in different ways depending
on the context, determined by the presence (or absence)
of a DNA damage event that results in DNA double-
strand breaks. Here, we consider the case when DNA
damage is present, which may lead to the development
and progression of tumor. Under this context, we con-
sider single and double mutations in the given pathways,
where we focus on the mutation of p53 and Mdm?2.
Each gene alteration can be one of the three forms:
mutation, amplification, or deletion. Sequencing data of
138 patients with glioblastoma, provided by TCGA,
showed that 32% and 12% of the patients suffered from
the alteration in the p53 and Mdm?2 genes, respectively.
Also among 316 patients with serous ovarian cancer,
96% suffered from the mutation of p53. A similar study
has revealed that about 26% of 216 patients with sar-
coma have amplified Mdm2. Mutation in p53 and
amplification in Mdm?2 have been also simultaneously
observed in some cases. Based on these observations
made in existing cancer studies, we consider the follow-
ing types of alterations in our experiments: (p53,0),
(Mdm2,1), and {(p53, 0), (Mdm2, 1)}, where p53 is per-
manently deactivated and/or Mdm?2 is permanently acti-
vated. In a recent work [1], it has been shown that the
pathways in Figure 3 do not uniquely determine the
normal Boolean network N,,,,,.; that governs healthy
cells. We used the method proposed in [1] to enumerate
all possible Boolean networks that satisfy the constraints
imposed by the given pathways. Following [1], we con-
structed four Karnaugh maps, one for each gene in the
given pathways. Karnaugh maps have been used in logic

Table 3 Performance of the proposed algorithm evaluated on 100 randomly generated network families

|BN | =256 , Peancer = p = 0001, B5 = 0.1

P P2 Pss PP Prii"slf,ezo.l Prflﬁf,e:()‘z AVG of ‘BJ\/ 2 ‘ AVG of # of paths  AVG of # of SSD calculations
py =01, p, =0.1 0.95 0.74 0.68 0.68 286 8.74 8,158
py =03, p, =03 0.66 042 0.36 0.34 57.5 102 13,999
py =05, p, =05 0.34 0.16 0.13 0.13 1113 13.04 35,039
py =07, py =07 0.11 0.05 0.03 0.03 1231 11.45 89,788
Performance of the proposed algorithm evaluated on 100 randomly generated network families. Each family contained | BN | = 2506 8-gene networks (k =

2, M =3,and p, = 0.3).
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Table 4 Performance of the proposed algorithm in case of model mismatch. Evaluated on 500 randomly generated

network families

|BN | =256 , peancer = 0001, p = 0.003, B, = 0.1

D pﬂf Prﬁﬁge:o.l p;’l.'s'ge:o‘z AVG of | BN 2 ‘ AVG of # of paths AVG of # of SSD calculations
p; =01 0.88 0.77 0.76 8.65 23 31771
pr =03 049 043 042 46.8 429 4693.9
py =05 0.25 0.20 0.19 61.31 435 5802.1
py =07 0.18 0.15 0.14 77.82 441 6870.7
Performance of the proposed algorithm in case of model mismatch. Evaluated on 500 randomly generated network families. Each family contained | BN | =256

6-gene networks (k =2, M = 2, and p, = 0.3).

circuit design to simplify a given Boolean function and
derive its minimal representation. In a Karnaugh Map
[19], each position in the map (i.e., an element in a
matrix) corresponds to a specific state (defined by the
values of all genes in the network), such that neighbor-
ing states have unit Hamming distance. The value at
each position indicates the value of a particular gene at
the next time point, which is a Boolean function of the
current state. The resulting maps are shown in Figure 4.
In these tables, each line-segment, attached to a gene,
shows the locations where that gene the takes value 1.
The symbol X is used to indicate positions where the
available pathway information was not enough for
uniquely determining the table entries. These entries
may take either O or 1 without violating the constraints.
As a result, the given Karnaugh maps give rise to an
uncertainty class of networks BN that contains 212,
where 12 is the number of entries in the given maps
that cannot be uniquely determined. Since Mdm?2 is
directly connected to three genes in Figure 3, we assume
the connectivity to be k = 3, which is used to estimate
the CDF of the distance between a random BNp and its
altered version. The BN reported in [1] is assumed to be
the true normal network N,,,,,..;» as this network was
shown to faithfully reproduce the experimentally
observed behavior of the genes in published literature.
We assumed pycer to be 0.001. As in the previous sec-
tion, we evaluated the performance of the proposed
algorithm under two different cases: when we have a

perfect estimate of the perturbation probability (p =
Peancer) and when there is a model mismatch (p =

pcuncer)-

Case-1: deactiviation of p53

We considered the alteration of the Boolean network
reported in [1] through the permanent deactivation of
P53 (i.e. (p53, 0)). We used our algorithm to detect the
true normal network and the gene mutation. Table 7
shows the simulation result when the threshold was set
to B; = 0.05. The second column in the table shows the
number of networks in the final network family, and the
third column shows the total number of network-path
pairs predicted by the algorithm. The fourth column
shows the number of different paths in the predicted
result. We also categorized the result of each experi-
ment as a “success (S)” or a “failure (F)”, based on
whether the final prediction contained the true network-
path pair or not. As we can see, our algorithm was able
to reduce the uncertainty class of networks without
missing the true network for p = 0.001,0.003,0.005. For
p = 0.007, the algorithm missed the true network,
mainly because the perturbation probability was high
enough to render the effects of the regulatory structure
of the network relatively insignificant. Increasing f3;
from 0.05 to 0.1 increases the number of network-path
pairs included in the final prediction, thereby preventing
the algorithm from missing the true network, as shown
in Table 8. In terms of fault detection, the proposed

Table 5 Performance of the proposed algorithm in case of model mismatch. Evaluated on 200 randomly generated

network families

|BN | =1024 , peancer = 0001, p = 0.003, B, = 0.1

D1 Prfl’i’s’f Prfl?g,e:O.l Pn?irs?,ezo‘z AVG of ‘ BN 2 ‘ AVG of # of paths AVG of # of SSD calculations
py =01 094 0.82 0.80 1433 252 12,454
py =03 043 037 0.36 140.5 49 17,850
py =05 0.28 022 021 17248 454 21,175
py = 0.7 0.19 013 013 2348 4.60 26,060
Performance of the proposed algorithm in case of model mismatch. Evaluated on 200 randomly generated network families. Each family contained | BN | =1024,

024 6-gene networks (k =2, M = 2, and p, = 0.3).
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Table 6 Performance of the proposed algorithm in case of model mismatch. Evaluated on 100 randomly generated

network families

|BN | =256 , Peancer = 0001, p = 0.003, B3 = 0.1

D> Pneq'i’s‘f Prf:irslf,e:o.l Prfl’l?:f,E:O.Z AVG of ‘BJ\/ 2 ‘ AVG of # of paths AVG of # of SSD calculations
pr =0.1,p, =01 0.95 0.76 0.75 25.75 7.88 5,724
p1 =03, p, =03 048 044 043 46 10.79 12,720
py =05, p, =05 0.21 0.17 0.16 97.8 1434 30,146
py =07, p, =07 0.19 0.14 0.14 100.8 9.69 47,755
Performance of the proposed algorithm in case of model mismatch. Evaluated on 100 randomly generated network families. Each family contained | BN | =256

8-gene networks (k =2, M = 3, and p, = 0.3).

algorithm performed very well. As shown in Table 7 and
Table 8, the algorithm was able to correctly pinpoint the
actual gene mutation out of 8 possible mutations, when
it was successful.

Case-2: amplification of Mdm2

Next, we altered the normal network by mutating
Mdm?2 such that it is amplified (i.e. (Mdm2,1)). The
results are summarized in Table 9 and Table 10 for 3;
= 0.05 and f8; = 0.1, respectively. For 8, our algorithm
was able to reduce the uncertainty class of networks
without missing the true normal network for p = 0.001
and p = 0.003. When the perturbation probability
became larger, the regulatory structure from the path-
ways was obscured, and the algorithm was not able to
effectively reduce the uncertainty class (e.g., see Table 9,
p = 0.005 and p = 0.007). By increasing 3; from 0.05 to

DNA DSBs

l

T\
R -

Figure 3 ATM-p53-Wip1-Mdm2 pathways.

0.1, the algorithm could successfully reduce the uncer-
tainty class for p = 0.005, as shown in Table 10.

Case-3: simultaneous deactivation of p53 and
amplification of Mdm2

Finally, we considered the case when p53 was deactivated
and Mdm?2 was amplified at the same time. Table 11 and
Table 12 summarize the results of applying the proposed
algorithm for the case of double gene mutations: (p53,0)
and (Mdm2,1). As we would expect, the proposed algo-
rithm did not perform well in this case, since introducing
two gene mutations in a 4-gene network almost comple-
tely obscures the regulatory structure in the original nor-
mal network. In fact, the networks in the initial
uncertainty class BN/ will yield similar (or identical)
SSDs once we mutate two genes. These results lead to an
interesting insight into the expected performance of the
proposed algorithm. As mentioned throughout the paper,
the proposed algorithm aims to backtrace the set of gene
mutations that has led to an (unknown) cancerous gene
regulatory network with a given SSD. Suppose the num-
ber of mutations M is relatively small compared to the
total number of genes # in the network (e.g., M/n ~ 0). In
such a case, the dynamics of the cancerous network
would be largely governed by the regulatory mechanisms
in the original healthy network. Even though it is theore-
tically possible that a few gene alterations lead to signifi-
cant changes in the overall SSD, identifying these
alterations would be still feasible since the regulatory
structure of the original network would remain mostly
intact. However, if the number of mutations gets larger
(e.g., M/n = 1), the activity of many genes would be
“frozen”, either being permanently deactivated or perma-
nently amplified, in which case the dynamics and the reg-
ulatory structure of the original network would be
significantly lost. As a result, networks that originally
have very distinct structures may yield similar SSDs as a
result of the accrued mutations. In this case, it would be
difficult for the algorithm to make predictions with high
accuracy, since the available information would be too
small to effectively cope with the present uncertainty.
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Figure 4 Karnaugh maps generated by the pathways shown in Figure 3.

Conclusions

We proposed an effective probabilistic algorithm for
reconstructing the tumor progression process. Given an
uncertainty class of networks, which arises from our
partial knowledge of the true gene regulatory network
represented by biological pathways, and the steady state
distribution of a cancerous network, the proposed algo-
rithm tries to simultaneously infer the true gene regula-
tory network that underlies healthy cells and to predict
the sequence of gene mutations that occurred during
the tumor progression process. As demonstrated by our
experiments, based on both randomly generated

Table 7 Performance of the proposed algorithm in the
case when p53 is deactivated

networks and realistic networks constructed from
known biological pathways that involve the tumor sup-
pressor gene p53, our algorithm can effectively cope
with the uncertainty present in gene regulatory networks
and accurately infer the normal (healthy) network and
the actual path of tumor progression with high probabil-
ity. Furthermore, the proposed algorithm is robust to
model mismatch and provides us with effective means
for trading prediction accuracy for computational
efficiency.

The computational complexity of the algorithm depends
on the number of genes in the network, the number of

Table 8 Performance of the proposed algorithm in the
case when p53 is deactivated

p # networks # network-path pairs # paths result p # networks # network-path pairs # paths result
0.001 2048 2048 1 S 0.001 2048 2048 1 S
0.003 2048 2048 1 S 0.003 2048 2048 1 S
0.005 512 512 1 S 0.005 1904 1904 1 S
0.007 0 0 0 F 0.007 832 832 1 S

Performance of the proposed algorithm in the case when p53 is deactivated.
Threshold was set to 8, = 0.05 and the true perturbation probability was
assumed to be (Pcancer = 0.001).

Performance of the proposed algorithm in the case when p53 is deactivated.
Threshold was set to 81 = 0.1 and the true perturbation probability was
assumed to be (pcancer = 0.001).
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Table 9 Performance of the proposed algorithm in the
case when Mdm2 is amplified

p # networks # network-path pairs # paths result
0.001 1088 1174 3 S
0.003 520 540 2 S
0.005 0 0 0 F
0.007 0 0 0 F

Performance of the proposed algorithm in the case when Mdmz2 is amplified.
Threshold was set to 8; = 0.05 and the true perturbation probability was
assumed to be (Pcancer = 0.001).

Table 10 Performance of the proposed algorithm in the
case when Mdm2 is amplified

p # networks # network-path pairs # paths result
0.001 1088 1184 3 S
0.003 832 894 3 S
0.005 520 544 2 S
0.007 0 0 0 F

Performance of the proposed algorithm in the case when Mdm?2 is amplified.
Threshold was set to 8 =0.10 and the true perturbation probability was
assumed to be (pcancer = 0.001).

Table 11 Performance of the proposed algorithm when
p53 is deactivated and Mdm2 is amplified

D1 # # network-path # result # SSD
networks pairs paths calculations
pr = 730 1333 4 F 38,684
0.1
D1 = 2458 3810 4 F 69,050
0.3
Dy = 3937 7208 4 S 93,650
0.5
Dy = 4096 9009 4 S 113,612
0.7

Performance of the proposed algorithm when p53 is deactivated and Mdm?2 is
amplified. Several different values of 3, was used (by varying p;), and 3, was set to
0.1. The perturbation probability was assumed to be known (p = pcancer = 0.001).

Table 12 Performance of the proposed algorithm when
p53 is deactivated and Mdm2 is amplified

D1 # # network-path # result # SSD
networks pairs paths calculations
py = 1063 1629 4 F 40,016
0.1
pr = 1661 2582 4 F 48,038
03
p1 = 2704 4089 4 F 69,146
0.5
py = 4096 8839 4 S 101,426
0.7

Performance of the proposed algorithm when p53 is deactivated and Mdm?2 is
amplified. Several different values of 3, was used (by varying p,), and 3, was
set to 0.1. We assumed that the true perturbation probability is unknown,
hence there is a model mismatch (p = 0.003, pcancer = 0.001).

Page 14 of 15

mutations, and the number of networks in the initial
uncertainty class, and increasing any of these numbers will
increase the computational overhead. Based on the mathe-
matical representation of Boolean networks, increasing the
number of genes will exponentially increase the number of
possible networks. However, this rapid increase does not
necessarily mean that the size of the uncertainty class of
networks that we need to deal with will increase at the
same rate. For example, many of the mathematically possi-
ble networks may not be considered biologically viable,
hence may be omitted in practice. Moreover, although the
total number of states in a Boolean network with # genes
is 2", many states may be eliminated via state reduction,
and the reduced network may consist of considerably
fewer states [20]. In fact, the whole idea of network reduc-
tion is relevant to the present problem, just as it is to
determining control polices for gene regulatory networks,
where computational intractability prohibits the design of
control policies without constraining the network size
[21]. For example, even when the gene expression levels
are restricted to be binary, a network with 15 genes, absent
some form of state reduction, cannot be considered,
because the size of the resulting transition probability
matrix would be 2'* x 2!, making any kind of dynamic or
control analysis intractable. Another possible way to
reduce the complexity of the algorithm is to restrict the
possible gene mutations via the use of prior knowledge.
For example, we may restrict the possible mutant genes
only to a smaller subset of genes that are known to be sus-
ceptible to mutation. Furthermore, prior knowledge con-
cerning the expected type of mutation for a susceptible
gene (e.g., “amplification” for oncogenes and “deactivation”
for tumor suppressor genes) can be taken into account.
Although we did not constrain the possible gene muta-
tions nor applied any network reduction technique in this
study, such modifications are fairly straightforward and
may be used to enhance the overall computational effi-
ciency of the proposed algorithm.
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