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Abstract

Background: One of the drawbacks we face up when analyzing gene to phenotype associations in genomic data
is the ugly performance of the designed classifier due to the small sample-high dimensional data structures (n ≪
p) at hand. This is known as the peaking phenomenon, a common situation in the analysis of gene expression
data. Highly predictive bivariate gene interactions whose marginals are useless for discrimination are also affected
by such phenomenon, so they are commonly discarded by state of the art sequential search algorithms. Such
patterns are known as weak/marginal strong bivariate interactions. This paper addresses the problem of uncovering
them in high dimensional settings.

Results: We propose a new approach which uses the quadratic discriminant analysis (QDA) as a search engine in
order to detect such signals. The choice of QDA is justified by a simulation study for a benchmark of classifiers
which reveals its appealing properties. The procedure rests on an exhaustive search which explores the feature
space in a blockwise manner by dividing it in blocks and by assessing the accuracy of the QDA for the predictors
within each pair of blocks; the block size is determined by the resistance of the QDA to peaking. This search
highlights chunks of features which are expected to contain the type of subtle interactions we are concerned with;
a closer look at this smaller subset of features by means of an exhaustive search guided by the QDA error rate for
all the pairwise input combinations within this subset will enable their final detection. The proposed method is
applied both to synthetic data and to a public domain microarray data. When applied to gene expression data, it
leads to pairs of genes which are not univariate differentially expressed but exhibit subtle patterns of bivariate
differential expression.

Conclusions: We have proposed a novel approach for identifying weak marginal/strong bivariate interactions.
Unlike standard approaches as the top scoring pair (TSP) and the CorScor, our procedure does not assume a
specified shape of phenotype separation and may enrich the type of bivariate differential expression patterns that
can be uncovered in high dimensional data.
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Background
The development of high-throughput technologies, such
as gene or proteinn microarrays, has provided the sce-
nario of the state of cells by monitoring the expression
levels of hundreds or thousands of biological inputs (p)
for a few number (n) of experimental units measured
under different clinical conditions. A challenging pro-
blem within this domain is the identification of inputs
or interactions of them highly correlated to the out-
come. The low sample-high dimensional (n ≪ p) struc-
ture of the data we handle makes this challenge a
difficult task, in particular when we are concerned with
the detection of bivariate interactions. Some papers that
tackle this problem using indexes of pairwise feature
association are [1,2], which introduced the TSP score,
and [3] which defined the CorScor index by the changes
in the intra-class correlation coefficient and explores the
feature space looking for gap/substitution and on/off
association patterns. These approaches assume a speci-
fied shape for the interaction.
In this paper we address the problem by evaluating

the performance of a classification rule trained on the
data at hand; hopefully, this will enrich the typology of
interactions that might be hidden in the data. One of
the main drawbacks for facing up this problem is the
well known peaking phenomenon; it consists of the
deterioration of the performance of the designed classi-
fier when the number of inputs increases and many
noisy variables are involved in fitting the classifier, so
the signal gets masked and the classifier confuses it with
the noise. There is a great deal of literature discussing
this phenomenon; some recent papers [4,5] study the
problem within a general framework and [6] tackles it
in the context of feature selection.
The peaking phenomenon is more acute for weak

marginal/strong bivariate signals as pointed out in [7],
that is, for highly predictive interactions having useless
marginal distributions for classifying the outcome. This
paper studies the peaking phenomenon for this type of
bivariate interaction patterns. We propose a search pro-
cedure which utilizes the error rate of the quadratic dis-
criminant analysis (QDA) classifier to carry out an
exploration of the feature space in order to find such
signals. The use of the QDA classifier will hopefully
enlarge the type of patterns of bivariate differential
expression uncovered by the aforementioned methods
TSP and CorScor.

Methods
Motivation
This section gives a detailed description of how weak
marginal/strong bivariate interactions are lost by differ-
ent classification rules as the dimension of the feature

space increases and many noise predictors are involved
in training the classifier. For the sake of simplicity we
confine ourselves to the binary classification problem,
where n0 and n1 observations are drawn from each one
of the categories of the outcome variable.
Weak marginal/strong bivariate interactions
Four examples of weak marginal/strong bivariate inter-
action patterns are given by the following synthetic
scenarios.

Scenario 1
The observations are drawn from bivariate random vari-
able Z = (Z1, Z2) in accordance with the following
scheme: the conditional distribution of Z|Y = 0 —black
labels— is bivariate normal with mean vector µ0 = (0,
0); meanwhile, the other class conditional distribution
for Z|Y = 1 —red labels— is bivariate normal with mean
vector µ1 = (–1,1). We assume both distributions have
the same covariance matrix given by
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Scenario 2 (XOR)
The observations for the XOR pair are drawn from a
bivariate random variable X = (X1, X2) in accordance
with the following scheme: the conditional distribution
of the random variable X|Y = 0 —black labels— is uni-
form over the quadrants 0 0 1 0 1 1 0 1 0= × ∪ − × −[ , ] [ , ] [ , ] [ , ] .
On the other hand, X|Y = 1 —red labels— has a uni-
form distribution over 1 1 0 0 1 0 1 1 0= − × ∪ × −[ , ] [ , ] [ , ] [ , ] .

Scenario 3 (circular pattern)
Cases are simultated from a bivariate normal distribu-
tion R = (R1, R2) with vector means µ = (0, 0) and cov-
ariance matrix the indentity I. The labels are assigned in
accordance to the following rules: if R R1

2
2
2 1+ > then Y

= 0 —black labels— and if R R1
2

2
2 1+ ≤ then Y = 1 —

red labels.

Scenario 4 (V-shaped pattern)
Observations in this situation are drawn from uniform
distributions confined to the domain  = − ×[ , ] [ , ]1 1 0 1 .
The interaction between the pair V = (V1, V2) and the
outcome variable Y is given by the following rules: V|Y
= 0 —black labels— has a uniform distribution over
 ∩ 0 , with 0 1 2 2 1= >{( , ) : | |}v v v v . On the other
hand, V|Y = 1 —red labels— has a uniform distribution
over  ∩ 1 , with 1 1 2 2 1= ≤{( , ) : | |}v v v v .
Figure 1 shows the scatter plots obtained by simulat-

ing observations in accordance to the four schemes for
sample sizes n0 = n1 = 40. Note that if the points are
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projected on each one of the axes, both categories of the
outcome do overlap; however, if both variables of the
pair are considered together the classes are neatly sepa-
rated. Therefore, the discrimination comes from the
bivariate interaction between them. This is the reason
why we call this type of interactions weak marginal/
strong bivariate interactions.
The peaking phenomenon
We consider the previous synthetic scenarios and generate
samples of sizes n0 = n1 = 40. For each scenario, we add j
independent noisy features, j = 1, 2,…, 100, with standard
normal distribution and estimate the error rate for the fol-
lowing four classification rules: Adaboost [8], Random
Forests (RF) [9], a support vector machine (SVM) with

polynomial kernel [10] and the QDA classifier [11] . The
error rate is estimated by 10-fold cross validation. The
results are shown in the plots of Figure 2.
Note that the error rate of the polynomial kernel in

scenario 1 is high, around 0.5, when only the variables
of the pair (Z1, Z2) are used as predictors. This ugly per-
formance is related to the type of polynomial kernel we
used, a second order polynomial kernel, which is well
suited for tracing nonlinear quadratic patterns but poor
for identifying linear decision boundaries as in scenario
1; see the improvement of SVM classifier in scenarios 2,
3 and 4 where it makes a better job with the non linear
interaction patterns (X1, X2), (R1, R2) and (V1, V2) tra-
cing the separation between the classes.
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Figure 1 Weak marginal/strong bivariate signals. The figure displays the scatter plots for 80 observations —with sample sizes n0 = n1 = 40—
generated in accordance to the linear, XOR, circular and V-shaped patterns defined in scenarios 1, 2, 3, and 4. The components of the bivariate
interaction are weak for class prediction when considered individually; however, they exhibit a high predictive strength when taken jointly.
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In addition, we can observe that the error rate deterio-
rates as the number of features increases; this shows the
peaking phenomenon for weak marginal/strong bivariate
interactions. The QDA resistance to peaking compares to
RF and Adaboost, with the exception of scenario 3 when p
< 20; see that the error rates are nearly similar, specially
for a number of inputs under 10 or 15. In addition, the
QDA has the appealing property of requiring a low com-
putational cost for training the classifier; this fact is crucial
in the design of the search strategy since our procedure
will explore the feature space in an almost exhaustive way
by fitting thousands of times the QDA classifier.
Comparative study for a benchmark of classification rules
The CMA package [12] from Bioconductor project
repositories in [13] provides an interface for the analysis

of genomic data. One of the utilities of CMA is the pos-
sibility to carry out a comparative study of the perfor-
mance of classifiers for a benchmark of classification
rules.
In this section we revisit the effect of the peaking phe-

nomenon for a selection of classifiers from the CMA
package: k-nearest neighbors (knn) and neural networks
(nnet) [14], diagonal (DLDA), linear (LDA) and quadra-
tic (QDA) discriminant analysis as in [11], partial least
squares with lda, logistic regresion and RF variants
(pls_lda, pls_lr, pls_rf) as in [15], PAM classifier (scDA)
as introduced in [16], random forests [9], the compo-
nentwise boosting (compBoost) introduced in [17], the
ElasticNet [18] and two versions of the SVM (svm,
svm2) with second order polynomial and radial kernels
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Figure 2 Degradation of the performance for different classifiers. Performance of SVM with polynomial kernel (brown curve), Random
Forests (green curve), QDA (black curve) and Adaboost (gray curve), estimated by 10-fold cross validation (cv), as an increasingly number of
noisy features is added to the patterns defined in scenarios 1, 2, 3 and 4 (left to right and top to bottom).
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respectively. The error rate was estimated by 10-fold
cross validation.
The function compare gives a picture of how these

classifiers compare one with each other. For each one, it
displays the boxplot of the error rate over the 10 valida-
tion sets.
The data sets were generated by drawing n0 = n1 = 40

samples from scenarios 1, 2, 3 and 4. The boxplots in
Figures 3, 4 and 5 give a glance of the performance of
the classifiers. The experiment was carried out for p = 2

(the signal alone), p = 10 (signal and 8 noisy inputs) and
p = 20 (signal and 18 noisy inputs) features. We can see
that QDA outperforms the remaining classification rules
in almost all the scenarios. It is of special interest the
XOR interaction pattern as pointed out in [3]; in this
case, all these simulations have shown that the perfor-
mance of all the classifiers deteriorates when the num-
ber of features reaches p = 20. It is worth noting that
for p under 10 (see Figure 4) the most resistant classifier
to peaking for the XOR signal is QDA; meanwhile, for
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Figure 3 Boxplots of error rate over the 10 validation sets: p = 2. The figure displays boxplots of the performance of a benchmark of
classification rules by measuring the error rate over the 10 cross validation sets when only the bivariate patterns of scenarios 1, 2, 3 and 4 form
the feature space. The plots were obtained by the compare function of CMA bioconductor package.
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p = 20 all the classifiers are highly affected by peaking in
the XOR scenario (see scenario 2 in Figure 5). So we
conclude that QDA is a good candidate for designing a
search strategy that uncovers this type of interaction
patterns.
A closer look at QDA and its resistance to peaking
Now we explore with more detail the resistance of QDA
classification rule to peaking by means of a simulation
study.
Recall that binary QDA is concerned with the discri-

mination between two p-dimensional multivariate

normal class conditional populations N(µ1, Σ1) and N
(µ2, Σ2), where µ1 and µ2 are the mean vectors and Σ1
and Σ2 are the covariance matrices. The decision bound-
ary corresponding to the QDA classification rule is
given by

1
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balanced classes π1 = π2 = 0.5.
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Figure 4 Boxplots of error rate over the 10 validation sets: p = 10. The figure displays boxplots of the performance of a benchmark of
classification rules by measuring the error rate over the 10 cross validation sets when eight noisy variables along with the bivariate patterns of
scenarios 1, 2, 3 and 4 form the feature space. The plots were obtained by the compare function of CMA bioconductor package.
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When the sample estimates ∑1 , ∑ 2 , m1 , m 2 of the
covariances and the means are plugged in the expression
above, we obtain the QDA designed classifier.
The previous decision boundary defines an hyperquad-

ric whose shape depends on the elements involved in
the difference of inverses ∑ − ∑

− − 
1

1
2

1 , more specifically
on the product of its eigenvalues. This yields to ellipti-
cal, hyperbolic, parabolic or linear boundaries; see [19]
for details. Thus, the variety of patterns recognized by
QDA is rich enough to consider it a good classification

rule for pattern discovery. We now carry out a simula-
tion experiment in order to study its resistance to peak-
ing for weak marginal/strong bivariate interactions.
We have drawn 80 observations (n0 = n1 = 40)

according to patterns in scenarios 1, 2, 3 and 4, along
with 80 cases from p – 2 independent standard normal
variables, which are uninformative features for class pre-
diction. On the order hand, we have generated n0 + n1
= 80 samples from p independent standard normal vari-
ables and obtain a data set with only noisy features. The
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Figure 5 Boxplots of error rate over the 10 validation sets: p = 20. The figure displays boxplots of the performance of a benchmark of
classification rules by measuring the error rate over the 10 cross validation sets when eighteen noisy variables along with the bivariate patterns
of scenarios 1, 2, 3 and 4 form the feature space. The plots were obtained by the compare function of CMA bioconductor package.
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error rate of the QDA classifier was estimated by 10-
fold cross validation for each data set. We repeated the
experiment B = 100 times in order to get both popula-
tions of error rates: with the signal and with only noisy
features. We have considered feature spaces with p = 2,
5, 10, 15, 20, 30 predictors.
The boxplots of Figures 6 and 7 show the results of

the simulations. The amount of overlap between both
populations is shown for each p in parenthesis. This

overlap was measured by one of the alternatives widely
used in the statistical practice: the well known measure
F(–Δ/2), with F the distribution function of the stan-
dard normal variable and Δ the Mahalanobis distance.
This measure has an appealing theoretical flavor since
it provides the overall error rate of the linear discrimi-
nant classifier when the multivariate normality within
the classes and the equality of class covariance
matrices assumptions are met; see [11]. Note that the
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Figure 6 Boxplots of QDA performance. Scenarios 1 and 2. The figure displays boxplots of the QDA 10-fold cross validation error rate for
100 simulations of the following experiment: 80 observations, with class sizes n0 = n1 = 40, were generated for different dimensions p = 2, 5, 10,
15, 20, 30 of the feature space for chunks of noisy variables and once again for chunks containing the weak marginal/strong bivariate signal. The
QDA error rate is computed in both cases. Boxplots in blue correspond to the cv QDA error rate for chunks with the weak marginal/strong
bivariate signal; on the other hand, boxplots in pink correspond to the cv QDA error rate for blocks containing only noisy features. The amount
of overlap between both populations of boxplots is shown in parenthesis. The simulation was carried out for the weak marginal/strong bivariate
signals of scenarios 1 and 2.
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amount of overlap between both populations is always
less than 5% when the number of predictors is smaller
than 10, which means that QDA classification rule is
able to distinguish between chunks of inputs contain-
ing a weak marginal/strong bivariate signal and chunks
with only noisy features, provided that the size of the
chunk is not greater than 10. As p increases, the
amount of overlap becomes larger; therefore the QDA
would be unable to catch the signal and might confuse
it with the noise.

The QDA interaction detector procedure
The results of the simulations have shown that QDA
resistance threshold to peaking can be set at p = 10 (or
at most p = 15), when we are concerned with the detec-
tion of weak marginal/strong bivariate interactions in
high dimensional data sets. This finding is crucial and
puts the basis of the search strategy we will design to
uncover this type of interaction patterns. The rationale
behind this strategy is as follows. The naive solution
would explore the feature space in an exhaustive way by
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Figure 7 Boxplots of QDA performance. Scenarios 3 and 4. The figure displays boxplots of the QDA 10-fold cross validation error rate for
100 simulations of the following experiment: 80 observations, with class sizes n0 = n1 = 40, were generated for different dimensions p = 2, 5, 10,
15,20, 30 of the feature space for chunks of noisy variables and once again for chunks containing the weak marginal/strong bivariate signal. The
QDA error rate is computed in both cases. Boxplots in blue correspond to the cv QDA error rate for chunks with the weak marginal/strong
bivariate signal; on the other hand, boxplots in pink correspond to the cv QDA error rate for blocks containing only noisy features. The amount
of overlap between both populations of boxplots is shown in parenthesis. The simulation was carried out for the weak marginal/strong bivariate
signals of scenarios 3 and 4.
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fitting a QDA classifier to each pair of variables; a high
accurate classification would be highlighting the pre-
sence of a signal. Obviously, this alternative is time con-
suming prohibitive since it would require a total of p(p
– 1)/2 QDA fits; for example, if p = 2000 then 1999000
fits are needed.
Our search strategy proceeds in a nearly exhaustive

way by dividing the feature space in small blocks of
features of a specified size bsize and by fitting the
QDA for all pairs of blocks. As we know that QDA is
resistant to peaking while the number of features

ranges between p* = 10 and p* = 15, we propose to
take bsize such that 2 * bsize ≤ p*; in this way we pro-
tect ourselves against the danger of peaking when the
QDA classifier is fit with all the features belonging to
the union of both blocks. Once the QDA classifiers are
obtained for all the possible matchings of blocks, we
know that for a matching containing a bivariate inter-
action pattern, the classifier will give a very low error
rate; meanwhile, for a block matching with only noisy
features we will obtain a high error rate. Thus, we can
construct a ranking of block matchings, where the top
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Figure 8 Heat matrix for QDA cross validation error rate. Results for synthetic data. Results for synthetic data The figure displays the heat
matrix of the 10-fold cross validation error rate of the QDA classification rule, obtained for all pairwise combinations of features belonging to
the first position of the ranking of block matches. Four synthetic data containing the weak marginal/strong bivariate signals of scenarios 1, 2, 3
and 4, along with 198 noisy features, were generated. The signal represents 1% of the dimension of the feature space. The red color is a hot
spot corresponding to a low error rate and a fancy interaction; meanwhile light yellow spots represent large error rates corresponding to pairs of
noisy features.
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ranked matchings will contain the informative bivariate
interaction patterns, and the matchings at the bottom
of the ranking carrying on only noisy features. Now, at
a second stage we can restrict the search to the subset
of features belonging to the top ranked matchings of
blocks. For example if we confine the search to the 2 *
bsize features of the first block matching, we would
need to explore bsize × bsize interactions in order to
find out which one of them is responsible for the
observation of such a low error rate in the QDA;

usually this search is very low time consuming since
bsize is smaller than 7.
Searching in the feature space in a blockwise manner

has an enormous advantage with respect to the exhaus-
tive search; for example, if p = 2000 and we take bsize =
5, we would obtain 400 blocks; so the search would
need only 79800 QDA fits, much less than the 1999000
fits of the naive solution.
This procedure has been implemented using the R

platform for statistical computing downloaded from
[20]. The following steps summarizes the main stages.

QDA search procedure                                                                      

Let  be the set of predic ttors. Set the value 

for  usually 

Step 1

bsize bsize( , , )= 5 6 7

.. Divide  in blocks of  features

Step 2. For every p

 bsize

aair  of blocks, match  and . 

Fit a QDA classifier 

( , )i j i j

aand 

compute  cv error rate

Step 3. Rank the block 

err i j( , )

mmatchings in accordance to 

Step 4. Extraction of 

err i j( , )

tthe hidden signal from the top ranked blocks 

It is recommended to carry out a first screening step
in order to filter the strong marginal features highly cor-
related with the outcome before applying the search
procedure. Recall that our search strategy was designed
to uncover the weak marginal/strong bivariate interac-
tions which are usually rejected by traditional sequential
search procedures or pre-screening filtering tools (see
[7] for a detailed explanation of this fact).

Results and discussion
A simulation example for synthetic data
Let n0 = n1 = 40 be the class sizes. The cases were
drawn from p-dimensional random vectors, (Z1, Z2, E),
(X1, X2, E), (R1, R2, E) and (V1, V2, E) corresponding to
scenarios 1, 2, 3 and 4, with E = (E1, …, Ep–2) a vector
of independent noisy standard normal variables added
to the signal. For p = 200 the signal represents 1% of a
200-dimensional feature space.
We have applied the QDA interaction detector proce-

dure with bsize = 5 to the previous synthetic scenarios
and have obtained the ranking of block matchings. As
we have discussed, this ranking is a useful tool that
allows to restrict the search for the hidden interaction
patterns by exploring its top ranked positions. Figure 8
displays the heat matrix of QDA errors for all the bivari-
ate interactions obtained from the first position of the
ranking of block matchings. Light yellow and orange
shades represent a high error rate while the red color
represents a low error rate.
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Figure 9 Screeplot for Random Forests (RF) index of variable
importance. The screeplot of variable importance score for the
genes from the colon cancer data as provided by RF ranking table
of variable importance. The elbow is located at position 100 which
suggests a first selection of one hundred biomarkers which are put
aside at this screening stage.

Table 1 Subset of genes retained from a previous
Random Forests screening step

M76378 M63391 M76378 M36634 R87126 J02854 Z50753

M76378 H43887 T92451 J05032 R36977 X12369 X63629

T71025 H40095 Z49269 R44301 M22382 X14958 U25138

R78934 H06524 T86473 H77597 H64489 M64110 X12671

Z49269 X86693 L05144 U19969 M26697 T40454 H20709

X54942 T51534 X16356 X70326 R42501 X87159 D25217

Z24727 R08183 L07648 H08393 U31525 M36981 M26383

X74295 T51571 R48303 T95018 T67077 M80815 U22055

T86749 R46753 X07290 T51539 T60155 U17899 U32519

D31716 H20426 D16294 U09564 R28373 R64115 X12466

R44418 X53743 U14631 X53461 R37276 D31885 X56597

T96873 X15882 T94350 X12496 D59253 D29808 R75843

L41559 T40645 M69135 U26312 T51858 R60883 R84411

Z25521 M26683 D42047 D15049 D14662
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Note that the procedure has found interaction patterns
(Z1, Z2), (X1, X2) and (R1, R2). The red hot squares of
scenarios 1, 2, 3 and 4 in Figure 8 highlight the weak mar-
ginal/strong bivariate interaction hidden in the matching.
These matrices may also provide a useful tool for identify-
ing different types of weak marginal/strong bivariate sig-
nals: for example the first row of red squares in scenario 4
is highlighting the not so weak behavior of component V2

in the V-shaped pattern. On the other hand, the isolated
red hot spot in scenario 2, surrounded by light yellow and
orange spots, might be explaining the weak predictive

power of the components in the XOR interaction, where
both variables behave as noisy features.

An application to real data: the colon cancer dataset
The colon cancer data set is a publicly available experi-
ment which can be obtained from the package colonCA
in [20]. Gene expression levels for 2000 genes across 40
tumor and 22 normal tissue samples were collected with
Affymetrix oligonucleotide arrays [21]. The data were
preprocessed by a log transformation and standardiza-
tion across genes.
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Figure 10 Heat matrix for QDA cross validation error rate. Results for the colon cancer data set. The figure displays the heat matrices of
the 10-fold cross validation error rate of the QDA classification rule, obtained for all pairwise combinations of features belonging to the first six
positions of the ranking of block matchings when the method is applied to the colon cancer data set. The red color is a hot spot corresponding
to a low error rate and reveals a fancy gene to gene interaction; meanwhile light yellow spots represent large error rates corresponding to
uninformative gene interactions.
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Random Forests (RF) outlier detector utility identified
cases 18, 20, 52, 55 and 58 as outliers. These were pre-
viously identified in [22] as aberrant observations and
will be removed from the analysis.

Data analysis and findings
The table of variable importance of RF identifies the
most influential genes for class prediction. We took as a
measure of importance the mean decrease Gini score;
we utilized the values ntree = 5000 for the number of
trees in the forest and the default for mtry, the number
of eligible splitters. Figure 9 shows the screeplot for the
variable importance scores. After a deep decay, we find
a long plateau which begins at an elbow located at posi-
tion 100 of the ranking.

We pick up the first one hundred genes of RF table of
variable importance. The list has a great agreement with
other previous selections in the literature, in particular
with that one in [23]. Table 1 shows the identifiers of
the genes of the list (four biomarkers identified as con-
trol are not reported). We put them aside and retain the
remaining ones for the application of QDA interaction
detector procedure.
Application of the QDA interaction detector procedure
After putting aside the biomarkers identified in the
screening step and eliminating a few duplicated col-
umns, we end up with a data set containing 1891 fea-
tures along with the binary outcome.
Before applying the procedure, we set bsize = 5.

Figure 10 displays the heat matrix plots of the error
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Figure 11 Scatter plots for the selection given by the QDA interaction detector procedure. The figure shows the scatter plots of the best
gene to gene interactions: (H72234; D29641), (R88740; H05899), (T68848; H48072) and (D45887; H11084) provided by the QDA interaction
detector procedure.
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rate given by QDA classification rule for all the bivari-
ate associations obtained by pairwise matching of the
variables belonging to the six top positions of the
ranking of block matchings.
The heat matrix plots reveal interesting interactions

among features which were considered useless by RF
ranking of variable importance at the initial screening
step. Four bivariate interactions are standing out; they
correspond to the interaction of the genes at columns:
(G1334, G1573), (G792, G1526), (G85, G145) and
(G99, G1549) which come from the first, third, fourth
and fifth positions of the ranking of block matchings.
These associations correspond to the following gene to
gene interactions: (H72234, D29641), (R88740,
H05899), (T68848, H48072) and (D45887, H11084).
The scatter plots in Figure 11 contain the type of
bivariate interaction pattern displayed by each one of
them.
Note that none of the genes in the scatterplots exhi-

bit univariate differential expression since both classes
of the outcome do overlap when projected on the
axes. However, if both genes are considered together,
they discriminate the binary outcome; such discrimi-
nation stems from the bivariate association between
them. They are four cases of weak marginal/strong
bivariate gene interaction patterns uncovered by our
procedure.

Comparative analysis with TSP and CorScor methods
Table 2 shows the bivariate selection as provided by our
procedure and the TSP and CorScor methods; it also
provides the scores of the selected genes given by TSP
and CorScor indexes. These results bring out a distin-
guishing issue, perhaps the most meaningful one,
between the proposed method and some of the existing
alternatives in the literature as TSP or CorScor indexes.
The latter are identifying the interaction of genes
(R88740, H23544) as a high scored one. The scatter
plots in Figures 12 and 13 corroborates that both genes
of the pair don’t exhibit univariate differential expres-
sion; however, a remarkable pattern of class separation
stems from their association, which is described by a
nearly linear decision boundary. This situation, although
being very important for the aim of these two proce-
dures, does not play the key role in our proposal which
tries to detect, by means of a wider in purpose proce-
dure, interactions which are not necessarily described in
terms of such linear patterns of class separation. The
connection between our method and the aforemen-
tioned TSP and CorScor is seen with the interactions
(R88740, H05899), (T68848, H48072) and (D45887,
H11084) where an almost linear pattern of class separa-
tion can be traced, although not so neatly as with the
pair (R88740, H23544). Unlike them, the pair (H72234,
D29641), with moderate to low values of the TSP and

Table 2 Selection of genes given by the methods: QDA interaction detector procedure, TSP and CorScor

QDA interaction detector procedure TSP selection CorScor selection

(H72234, D29641)
TSP = 0.11 CorScor = 0.73

(T68848, H29170)
TSP = 0.92 CorScor = 0.77

(H23544, R88740)
TSP = 0.92 CorScor = 1.18

(R88740, H05899)
TSP = 0.84 CorScor = 1.05

(R88740, H23544)
TSP = 0.92 CorScor = 1.18

(D42047, H23544)
TSP = 0.81 CorScor = 1.14

(T68848, H48072)
TSP = 0.89 CorScor = 0.81

(H11084, X68277)
TSP = 0.81 CorScor = 1.10

(D45887, H11084)
TSP = 0.76 CorScor = 0.80

(T57468, D42047)
TSP = 0.84 CorScor = 1.09

Gene IDs Gene descriptions

H72234 DNA-(APURINIC OR APYRIMIDINIC SITE) LYASE (HUMAN)

D29641 Human mRNA (KIAA0052) for ORF, partial cds

R88740 ATP SYNTHASE COUPLING FACTOR 6, MITOCHONDRIAL PRECURSOR (HUMAN)

H05899 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEINS C1/C2 (HUMAN)

T68848 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE A (HUMAN)

H48072 CYTOCHROME C OXIDASE POLYPEPTIDE VIA-LIVER (HUMAN)

D45887 Human mRNA for calmodulin, complete cds

H11084 VASCULAR ENDOTHELIAL GROWTH FACTOR (Cavia porcellus)

H29170 ATP SYNTHASE B CHAIN, MITOCHONDRIAL PRECURSOR (HUMAN)

H23544 GTP-BINDING NUCLEAR PROTEIN RAN (Homo sapiens)

D42047 Human mRNA (KIAA0089) for ORF (mouse glycerophosphate dehydrogenase-related), partial cds

X68277 H.sapiens CL 100 mRNA for protein tyrosine phosphatase

T57468 FIBRILLARIN (HUMAN)
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CorScor, exhibit a non linear pattern of class separation
and is an example of the distinguishing feature between
these methods and our approach.

Conclusion
This paper has explored the peaking phenomenon in
the context of detecting marginal/strong bivariate
interactions in high dimensional settings. The appeal-
ing properties of the QDA classifier and its resistance
to peaking has justified its use as a search engine of a
procedure that explores the feature space in order to
look for this type of signals in high dimensional data.
The method was applied both to artificial data and to

a real microarray gene expression experiment, the colon

cancer data set. The application to real data has led to
promising results providing gene interactions that exhi-
bit bivariate differential expression but are not differen-
tially expressed when considered marginally. The results
show the usefulness of QDA interaction detector proce-
dure, which is expected to become an efficient tool for
biologists and bioinformaticians for the discovery of new
gene to gene interactions.
The proposed method has been developed for binary

classification; the analysis for multi-class problems is a
natural extension for conducting future research efforts.
Some research regarding the computational cost
involved in the QDA interaction detector search strategy
is also an issue for further improvements.

−2 −1 0 1 2

−2
−1

0
1

TSP Score =  0.92

T68848

H
29

17
0

−2 −1 0 1 2

−3
−2

−1
0

1

TSP Score =  0.92

R88740

H
23

54
4

Figure 12 Scatter plots for the best two top scoring pairs. The figure shows the scatter plots of the best gene to gene interactions, (T68848;
H29170) and (R88740; H23544), as provided by the TSP index.
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