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Abstract

Background: While contemporary methods of microarray analysis are excellent tools for studying individual
microarray datasets, they have a tendency to produce different results from different datasets of the same disease.
We aim to solve this reproducibility problem by introducing a technique (SNet). SNet provides both quantitative
and descriptive analysis of microarray datasets by identifying specific connected portions of pathways that are
significant. We term such portions within pathways as “subnetworks”.

Results: We tested SNet on independent datasets of several diseases, including childhood ALL, DMD and lung
cancer. For each of these diseases, we obtained two independent microarray datasets produced by distinct labs on
distinct platforms. In each case, our technique consistently produced almost the same list of significant nontrivial
subnetworks from two independent sets of microarray data. The gene-level agreement of these significant
subnetworks was between 51.18% to 93.01%. In contrast, when the same pairs of microarray datasets were
analysed using GSEA, t-test and SAM, this percentage fell between 2.38% to 28.90% for GSEA, 49.60% tp 73.01% for
t-test, and 49.96% to 81.25% for SAM. Furthermore, the genes selected using these existing methods did not form
subnetworks of substantial size. Thus it is more probable that the subnetworks selected by our technique can
provide the researcher with more descriptive information on the portions of the pathway actually affected by the
disease.

Conclusions: These results clearly demonstrate that our technique generates significant subnetworks and genes
that are more consistent and reproducible across datasets compared to the other popular methods available
(GSEA, t-test and SAM). The large size of subnetworks which we generate indicates that they are generally more
biologically significant (less likely to be spurious). In addition, we have chosen two sample subnetworks and
validated them with references from biological literature. This shows that our algorithm is capable of generating
descriptive biologically conclusions.

Background
There is a wealth of techniques for identifying signifi-
cant differential gene expression. These techniques can
be categorized into three approaches; viz., individual
genes, gene pathways and gene classes approaches.
• Individual genes
These techniques search for individual genes that are

differentially expressed. For example, the fold change, t-

test and Significance Analysis of Microarrays (SAM) [1].
The output of such algorithms is a list of genes that are
deemed differentially expressed.
• Gene pathway deduction
Methods of this genre attempt to infer biological infor-

mation from data without using pre-existing biological
information. Bayesian learning [2] and Boolean network
learning [3] are representatives of this approach. The
researcher will obtain a set of gene networks connected
and inferred solely from the gene expression data.* Correspondence: donnysoh@gmail.com
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• Gene classes
These techniques test how gene classes behave as a

whole. These techniques either pre-process or post-
process their information with existing biological
background knowledge to guide their analysis of the
microarray data. Examples include over-representation
analysis (ORA) [4], Functional Class Scoring (FCS) [5],
GSEA [6], NEA [7] and ErmineJ [8]. Results from such
methods are normally a list of pathways or gene groups
that are differentially expressed according to the
algorithms.
The commonly acknowledged challenge of these tech-

niques is obtaining reproducible results. For instance, in
differentially expressed gene discovery, there should be a
substantial overlap in the gene lists from different data-
sets of the same disease. This is inferred from the pre-
mise that similar underlying conditions cause the onset
of certain diseases. However it has been shown that there
is little concurrence among such gene lists [9-11].
For example, [11] demonstrated this inconsistency

using SAM. For a pair of datasets involving prostate can-
cer [12,13], he calculated the percentage overlap of differ-
entially expressed genes between them. The top 10 genes
had a percentage overlap of 30% while the top 100 genes
had a percentage overlap of 15%. The same calculations
were repeated for lung cancer [14,15] and DMD [16,17]
datasets, yielding similar low percentages.
In addition, the functional gene lists, pathways or

classes determined by such methods do not provide suffi-
cient descriptive information about the interplay and
relationship of genes [18]. Hence the generated hypoth-
eses are usually too general, rendering them ineffective in
guiding further research and treatment [19].
In this article we present our technique, SNet, to identify

subnetworks which are expressed significantly within a
phenotype of a microarray experiment. Furthermore, we
demonstrate the consistency—and thus reproducibility—
of the identified subnetworks by achieving a high overlap
(51.18% to 93.01%) between significantly differentially
expressed genes (found within the identified subnetworks)
of different microarray experiments of the same disease.
Finally, we show that the significant genes found by t-test/
GSEA formed much smaller subnetworks (<5 genes) than
ours. These experiments demonstrate the consistency,
reproducibility, descriptive power, interpretability and sig-
nificance of subnetworks obtained using our technique.

Approach
We hypothesize that specific biological processes within
pathways are relevant to specific diseases. Thus our
approach concentrates on identifying these biological
processes that we termed “subnetworks”. These subnet-
works should be largely the same across independent
datasets of the same disease. Because the probability of

such a subnetwork of highly expressed genes randomly
occurring is sufficiently low, we are able to conclude that
these subnetworks have a strong biological relevance
with respect to the disease. Furthermore, such a subnet-
work provides intricate information on the interplay and
relationship between the genes, which will be advanta-
geous in guiding subsequent research. This technique
also removes sporadic genes that appear solitary within a
biological pathway (because of their higher possibility of
being a false positive).
We define the term “subnetwork” as “a set of genes and

relationships where all genes in the subnetwork are
reachable by all other genes in the (undirected) subnet-
work. Reachability between genes is established by the
existence of an undirected path between the genes of the
subnetwork.” This is analogous to the definition of “con-
nected components” in graph theory [20].
Only two types of gene-gene relationships are consid-

ered: inhibition and activation. This information regard-
ing the relationship of two genes within a pathway is
already inherent within the database and our goal is to
find out if the microarray data complies with these rela-
tionships. In the example in Figure 1, we see the genes
ATM, CHK1, CHK2 and MDM2 with the relationships:
ATM activating CHK1, CHK2 and MDM2 inhibiting
p53. Thus we define the term “relationship” between a
pair of genes X and Y as a situation where either X “acti-
vates” Y or X “inhibits” Y.
Because of the fine granularity of analysis, the pathway

repository must allow us to easily segregate the original
microarray data into its relevant pathways, gene relation-
ships and subnetworks. Due to the large amount of data,
the pathway repository must also facilitate the develop-
ment of automated analysis workflows. The repository
therefore is required to have the following characteristics:
• Gene annotations have to be consistent with that in

microarray experiments.
• Individual gene relationships within pathways have

to be provided.
• The database must have a programmatic interface to

access the data.
This set of criteria eliminates contemporary pathway

sources such as Ingenuity [21], BioPax [22], and Gen-
Mapp [23], and we are left with KEGG. However,
KEGG has a number of limitations. Firstly, its collection
of pathways is not sufficiently comprehensive [24]. For
example, our analysis [25] shows that 78.8% of pathways
in Ingenuity and 64.4% of pathways in Wikipathways are
not contained in KEGG. Secondly, KEGG still uses an
old-fashioned SOAP/XML interface. So we developed
PathwayAPI [25] which offered the combined pathway
information of KEGG, Ingenuity, and Wikipathways
along with a modern JSON-based application program-
ming interface.
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Our technique (to be described later) was applied on
the disease types listed below with two different datasets
analyzed independently for each disease type. The selec-
tion of the two datasets for each disease is because they
were used to compare gene selection methods in earlier
papers [11]. In addition, the two datasets for each dis-
ease type are from different platforms, thus providing a
more stringent test as they make it harder for the gene
selection algorithms to consistently select the same
genes independently from the two datasets.
• Leukaemia: Comparison between leukaemia subtypes

ALL and AML. Golub et al. [26] uses the Affymetrix
HU6800 GeneChip with 47 ALL and 25 AML patients.
Armstrong et al. [27] uses the Affymetrix HG-U95Av2
GeneChip with 24 ALL patients and 24 AML patients.
• Childhood Acute Lymphoblastic Leukaemia (ALL)

Subtype: Comparison between two subtypes of child-
hood ALL leukaemia, namely E2A-PBX1 and BCR-ABL.
Ross et al. [28]) uses the Affymetrix HG-U95Av2 Gene-
Chip with 15 BCR-ABL patients and 27 E2A-PBX1
patients. Yeoh et al. [29] uses the U133A GeneChip
with 15 BCR-ABL patients and 18 E2A-PBX1 patients.
• Duchenne Muscular Dystrophy (DMD): Comparison

between patients suffering from DMD and normal
patients. Haslett et al. [17] uses the Affymetrix HG-
U95Av2 GeneChip while Pescator et al. [16] uses HG-
U133A GeneChip. Haslett et al.’s dataset contains 24
samples from 12 DMD patients and 12 unaffected con-
trols and Pescatori et al.’s consists of 36 samples from
22 DMD patients and 14 controls.
• Lung Cancer (Squamous): Comparison between

patients suffering from squamous cell lung carcinomas
and normal patients. For lung cancer, the cDNA micro-
array data consists of 13 samples with squamous cell
lung carcinomas and five normal lung specimens [14],
while the data by Affymetrix human U95A oligonucleo-
tide arrays consist of 21 squamous cell lung carcinomas
and 17 normal lung specimens [15].

Results and discussion
Significant subnetworks overlap
For each disease, two lists of significant subnetworks
were identified by applying our technique (SNet)

independently on the two different datasets for the dis-
ease. We next calculate the percentage overlap between
the two lists of significant subnetworks.
This result is compared with another algorithm (GSEA)

that extracts significant gene lists from microarray data.
The individual pathways from the database (PathwayAPI
[25], 386 pathways in total) and their associated genes
are used as input gene sets for GSEA. Hence running
GSEA with this database of pathways gives us a selected
set of pathways deemed as significant by GSEA. GSEA is
applied to both datasets of the same disease. For each
dataset, we obtain a list of pathways significantly
expressed and remove the pathways whose FDR q-value
falls below 0.25. Finally, we calculate the percentage
intersection between the remaining pathways within
these two lists.
Results indicate that our technique consistently gives a

higher percentage overlap for different datasets of the
same disease than GSEA. Here, our technique obtained
a high overlap percentage for these datasets (47.63% to
90.90%). As an example from Table 1, the percentage
overlap of pathways in determining the ALL Subtype
(second row in the table) in SNet is 47.63% while that
for GSEA is 23.1%. The full results can be observed in
Table 1. Table 2 shows the number of overlapping sig-
nificant pathways for each disease type.

Significant genes overlap
To demonstrate that the genes within the subnetworks
are consistent across the datasets of the same disease,

Figure 1 Example of the two gene-gene relationships. Example of the two gene-gene relationships. Left: an activating relationship between
ATM and CHK1. Right: an inhibiting relationship between MDM2 and p53.

Table 1 Percentage overlap significant subnetworks
between the datasets

Disease Dataset 1 Dataset 2 SNet GSEA

Leukaemia Golub Armstrong 83.33% 0%

ALL Subtype Ross Yeoh 47.63% 23.1%

DMD Haslett Pescatori 58.33% 55.6%

Lung Bhattacharjee Garber 90.90% 0%

Table showing the percentage overlap significant subnetworks between the
datasets. Each row refers to a separate disease (as indicated in the first
column). Each disease is tested against two datasets depicted in the second
and third column. The overlap percentages refer to the pathway overlaps
obtained from running SNet (column 4) and GSEA (column 5).
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we obtained independently a list of significant genes
from each dataset using SNet, GSEA, SAM and the t-
test. After which we would calculate the percentage
overlap between the same disease of each dataset.
Results demonstrate that our SNet algorithm has a
much higher overlap percentage as compared to the
other techniques surveyed.
For SNet, we select the significant genes from each

dataset by simply taking the genes from the subnet-
works generated from each dataset. (As there are two
independent datasets for each disease type, we generate
two gene lists for each disease type. We denote the
number of genes in the smaller list as g). For GSEA,
we obtain the list of significant genes by first selecting
the top g number of leading edge set of genes from the
well expressed pathways for each dataset. The lists of
significant genes for SAM and t-test are obtained by
selecting all the genes with a p-value less than 0.05, as
well as by selecting the top g significant genes. The
results shown in Table 3, Table 4 and Table 5 show
that the gene overlap obtained from GSEA, t-test and
SAM are consistently and significantly lower (2.38% to
28.90% for GSEA, 49.60% to 73.01% for t-test, 49.96%
to 81.25% for SAM) compared to that of SNet (51.18%
to 93.01%).

Size of subnetworks
This section shows that the size of the subnetworks
obtained by our algorithm is significantly larger than
those obtained from the t-test algorithm. We first obtain
a ranked gene list for each dataset using the t-test algo-
rithm. Assuming once again that the total number of
genes present within the significant subnetworks for a
dataset i is δi, we extract the top δi genes from the
ranked gene list for each dataset i. Lastly, we calculate
the size of the subnetworks formed by these top δi
genes. We compare these sizes with subnetworks
formed by SNet. The results in Table 6 show that the
subnetworks obtained by SNet are large (which always
contain at least 5 genes and many contain more than 8
genes), while subnetworks obtained by the t-test are
small in size (which generally contain 2 or 3 genes and
are always no more than 5 genes).

Validity of genes within each subnetwork
To check the validity of the subnetworks selected, we
compare the genes present within each subnetwork with

Table 2 Number of overlap significant subnetworks
between the datasets

Disease Dataset 1 Dataset 2 SNet GSEA

Leukaemia Golub Armstrong 20 0

ALL subtype Ross Yeoh 10 6

DMD Haslett Pescatori 7 10

Lung Bhattacharjee Garber 9 0

Table showing the number of significant overlapping subnetworks between
the significant pathways. Each row refers to a separate disease (as indicated in
the first column). Each disease is tested against two datasets depicted in the
second and third column. The overlapping figures refer to the pathway
overlaps obtained from running SNet (column 4) and GSEA (column 5).

Table 3 Number and percentage of overlap genes

SNet GSEA

Leukaemia Num Genes
Genes overlap

g =84
91.30%

84
2.38%

ALL subtype Num Genes
Genes overlap

g =75
93.01%

75
4.0%

DMD Num Genes
Genes overlap

g =45
69.23%

45
28.9%

Lung Num Genes
Genes overlap

g =65
51.18%

65
4.0%

Table showing the number and percentage of significant overlapping genes. g
refers to the number of genes compared against and is the number of unique
genes within all the significant subnetworks of the disease datasets. The gene
overlap refers to the percentage gene overlap between the two datasets of a
disease for SNet (column 3) and GSEA (column 4).

Table 4 Number and percentage of significant overlap
genes with t-test

SNet t-test t-test

Leukaemia Num Genes
Genes overlap

δ =84
91.30%

1239
73.01%

84
14.29%

ALL subtype Num Genes
Genes overlap

δ =75
93.01%

1072
60.20%

75
57.33%

DMD Num Genes
Genes overlap

δ =45
69.23%

1319
49.60%

45
20.00%

Lung Num Genes
Genes overlap

δ =65
51.18%

2091
65.61

65
26.16%

Table showing the number and percentage of significant overlapping genes. g
refers to the number of genes compared against and is the number of unique
genes within all the significant subnetworks of the disease datasets. The gene
overlap refers to the percentage gene overlap between the two datasets of a
disease for SNet (column 3) and t-test (column 4: for genes at P leg 0.05; and
column 5: for top g significant genes).

Table 5 Number and percentage of significant overlap
genes with SAM

SNet SAM SAM

Leukaemia Num Genes
Genes overlap

δ =84
91.30%

1305
49.96%

84
22.62%

ALL subtype Num Genes
Genes overlap

δ =75
93.01%

464
81.25%

75
49.33%

DMD Num Genes
Genes overlap

δ =45
69.23%

126
76.98%

45
42.22%

Lung Num Genes
Genes overlap

δ =65
51.18%

966
65.61

65
24.62%

Table showing the number and percentage of significant overlapping genes. g
refers to the number of genes compared against and is the number of unique
genes within all the significant subnetworks of the disease datasets. The gene
overlap refers to the percentage gene overlap between the two datasets of a
disease for SNet (column 3) and SAM (column 4: for genes at P leq 0.05; and
column 5: for top g significant genes).
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those deemed significant by the t-test. A high percen-
tage would mean that the genes within our captured
subnetworks are highly consistent to established meth-
ods such as t-test, yet at the same time rejecting genes
that are non-consistent over datasets (hence likely to be
false positives). Table 7, 8, 9, Table 10 show the differ-
ent subnetworks found significant within their respective
disease sets. The corresponding percentage depicts the
percentage of genes present within the subnetwork
which are also significant by the t-test (taken with a p-
value threshold of 0.05). We can observe from the tables
that the bulk of the subnetworks have a high consis-
tency percentage, falling between 70% to 100%.

Biological relevance of subnetworks
Two small sample subnetworks are chosen here to show
the biological significance of the results obtained. The first

which we describe below (and in Figure 2) is generated
from the leukaemia dataset. The genes within this subnet-
work are very substantially supported by literature with
respect to their role in leukaemia. For instance, the gene
RAC (which regulates a diverse array of cellular events) is
referenced in [30,31] as having an effect on leukaemia.
Other genes within the network are Rhoa (regulates the
actin cytoskeleton in formation of stress fibers) in [32,33],
Vav1 (plays a major role in development and activation of
T-cell and B-cell blood cells) in [34] and IQGAP (regulates
cell adhesion, morphology and motility) in [35].
The next subnetwork shown in Figure 3 is generated

from the DMD disease datasets, and is taken from the
Apoptosis pathway. Results from our algorithm indicated
that the genes groups MYL and MYH are significantly
differentiately expressed between the DMD patients and
the normal patients. MYH (myosin, heavy chain) and
MYL (myosin, light chain) are known to be major gene

Table 6 Size of largest subnetworks from t-test

Disease g Num genes (t-test) Num genes (SNet)

2 3 4 5 5 6 7 ≥ 8

Leukaemia 84 8 1 0 0 2 3 2 1

Subtype 75 5 1 1 1 1 0 1 6

DMD 45 3 1 0 0 1 0 0 5

Lung 65 3 2 1 0 5 3 0 1

Table comparing the size of the subnetworks obtained from the t-test and
from SNet. The first column shows the disease that is being considered and
the second column shows the number of genes used to create the
subnetworks. The third column (which comprises additionally of 4
subcolumns) depicts the number of genes present within each subnetwork
for the t-test. Similarly the fourth column depicts the number of genes
present within each subnetwork for SNet. So for instance in the leukaemia
dataset, we have 8 subnetworks with size 2 genes, 1 subnetwork with size 3
genes for the t-test. For SNet, we have 2 subnetworks with size 5 genes, 3
subnetworks with size 6 genes, 2 subnetworks with size 7 genes and 1
subnetwork with a size of ≥ 8 genes

Table 7 Percentage of genes from subnetworks for the
leukaemia dataset which are also considered significant
by t-test

Subnetwork name Percentage

leukaemia_B Cell_VAV1 81.82%

leukaemia_Purine metabolism_NP 83.33%

leukaemia_Phosphatidylinositol signaling_PLCG2 100.00%

leukaemia_Regulation of actin cytoskeleton_RAC1 57.14%

leukaemia_Proteasome Degradation_UBC 100.00%

leukaemia_Regulation of Actin Cytoskeleton_RAC1 57.14%

leukaemia_B Cell_NFKB1 80.00%

leukaemia_Regulation of actin cytoskeleton_CSK 75.00%

leukaemia_B Cell Receptor Signaling_POU2F2 75.00%

leukaemia_IL6 Signaling_IL8 75.00%

leukaemia_Focal Adhesion_ACTB 100.00%

Table depicting the percentage of genes from subnetworks which are also
significant for the t-test. The first column depicts the name of the subnetwork
considered. The second column depicts the percentage of genes from that
subnetwork which are also deemed significant for the t-test. (leukaemia
datasets [26,27])

Table 8 Percentage of genes from subnetworks for the
ALL subtype which are also considered significant by
t-test

Subnetwork name Percentage

MLLBCR_Fatty acid metabolism_ACAA1 28.57%

MLLBCR_Valine, leucine and isoleucine
degradation_HSD17B10

40.00%

MLLBCR_B Cell_BLNK 72.73%

MLLBCR_Valine, leucine and isoleucine
degradation_HSD17B10

33.33%

MLLBCR_B cell receptor signaling pathway_BLNK 72.73%

MLLBCR_Acute myeloid leukaemia_FLT3 44.44%

BCR_Chronic myeloid leukaemia_ABL1 75.00%

BCR_Fc Epsilon RI Signaling_PIK3C2B 70.00%

BCR_T Cell Receptor Signaling Pathway_RASA1 44.44%

Table depicting the percentage of genes from subnetworks which are also
significant for the t-test. The first column depicts the name of the subnetwork
considered. The second column depicts the percentage of genes from that
subnetwork which are also deemed significant for the t-test. (ALL Subtype
datasets [28,29])

Table 9 Percentage of genes from subnetworks for the
DMD dataset which are also considered significant by
t-test

Subnetwork name Percentage

DMD_Tight junction_RHOA 87.50%

DMD_Integrin Signaling_TTN 75.00%

DMD_ECM-receptor interaction_SDC3 88.89%

DMD_Tight junction_RHOA 85.71%

DMD_Leukocyte transendothelial migration_ACTB 83.33%

DMD_Actin Cytoskeleton Signaling_MYL9 78.57%

DMD_Calcium signaling pathway_CALM1 80.00%

Table depicting the percentage of genes from subnetworks which are also
significant for the t-test. The first column depicts the name of the subnetwork
considered. The second column depicts the percentage of genes from that
subnetwork which are also deemed significant for the t-test. (DMD datasets
[16,17])
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groups involved in release of mechanical energy allowing
muscles to contract. These genes are heavily quoted in
literature with regard to their involvement in the disease
DMD: MYH3 and MYH8 [17], MYH6 [36], MYH7 [37],
MYL1, MYL2, MYL3, MYL4, MYL5, MYL6 and MYL9
[36]. In addition, the gene titin was identified. Titin is a
gene which encodes a large protein of the spinal skeletal
muscles and its mutation is widely found to occur in var-
ious types of muscular dystropy [38-41].

Conclusions
Microarray experiments are crucial because they measure
the behaviour of individual genes with respect to diseases
or treatments. Results from these experiments are heavily
scrutinised to obtain biological insights into the occur-
rence of diseases or the effectiveness of certain types of
treatments. In order to provide more indepth analysis to

experiments, contemporary algorithms have incorporated
biological information into their analysis so that the ana-
lysis can be more descriptive and hopefully useful to the
researchers. Our techniques have taken this approach
one step further. Firstly, we no longer consider prior bio-
logical knowledge as a separate aspect of microarray ana-
lysis. Rather, we take into account the integrity of the
biological information that is being provided into the
algorithm for analysis. Secondly, our algorithm uses both
the gene-gene interaction information and pathway infor-
mation in our analysis. Because of these two enhance-
ments, we are able to generate subnetworks in real-time
according to the responses of the microarray experi-
ments. These contributions help us avoid some of the
potential caveats present within microarray experiments.
We are certainly not the first to integrate gene-expres-

sion data with gene-gene relationships. GNEA [42] is one
such example. GNEA uses a global protein-protein inter-
action network, finds subnetworks that correspond to
regions of significantly differentially expressed genes;
these subnetworks are called HSNs in the paper. GNEA
then determines which gene sets in a library of gene sets
are significantly enriched in HSNs. There are two possi-
ble shortcomings in this approach. Firstly, in using a sin-
gle global protein interaction network, GNEA makes the
biological assumption that the local behaviour of proteins
can be translated in a similar fashion globally and that
gene expression levels are in a tight correspondence to
protein levels (which is not generally true). A similar
issue is raised in [7] where the authors argued that pro-
teins which are very well connected have an extremely
high chance of obtaining a low p-value and being ranked
as significant. Because of the high connectivity of such
proteins, they are liable to be involved in various disjoint
biological processes, leading to the error of combining

Table 10 Percentage of genes from subnetworks for the
lung dataset which are also considered significant for the
t-test

Subnetwork name Percentage

SNet_Notch signaling pathway_NOTCH3 100.00%

SNet_ECM-receptor interaction_SDC1 69.23%

SNet_Adherens junction_CTNNB1 100.00%

SNet_Tyrosine metabolism_ADH1B 100.00%

SNet_Phenylalanine metabolism_ALDH3B1 100.00%

SNet_Tryptophan metabolism_WBSCR22 80.00%

SNet_Natural killer cell mediated cytotoxicity_TNFSF10 60.00%

SNet_Insulin Recpetor Signaling_AKT3 100.00%

SNet_Glycogen Metabolism_PYGM 60.00%

Table depicting the percentage of genes from subnetworks which are also
significant for the t-test. The first column depicts the name of the subnetwork
considered. The second column depicts the percentage of genes from that
subnetwork which are also deemed significant for the t-test. (Lung datasets
[14,15])

Figure 2 Sample subnetwork from leukaemia dataset. A sample subnetwork from leukaemia dataset [26,27].
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independent subnetworks through these proteins. To
prevent such scenarios, we instead implemented our
algorithm via identifying localised gene-gene subnet-
works within pathways. Secondly, while a gene set that is
significantly enriched in HSNs is likely to be relevant, a
large gene set may not be found significantly enriched in
HSNs even though it may have contained a subset that is
significantly enriched. This is also an issue that we find
in GSEA.
We obtain a low result overlap from GSEA possibly

because the pathways from PathwayApi are very large and
GSEA relies on a large portion of a pathway to exhibit a
correlated change. Hence when only a subset of a pathway
demonstrates differential expression, GSEA may be unable
to pick this up. We verified this hypothesis by feeding into
GSEA subnetworks that we found from our algorithm into
the leukaemia datasets. Indeed GSEA was then able to
obtain significant subnetworks that overlapped.
In addition, we show that our technique generates sig-

nificant subnetworks and genes that are more consistent
across datasets compared to the other popular methods
available (GSEA, t-test and SAM). The large size of sub-
networks which we generate indicates that they are gen-
erally more biologically significant (less likely to be
spurious). To validate our results, we show that most of
our genes from the generated subnetworks have also
been considered significant by the t-test. In addition, we
have chosen two sample subnetworks and validated
them with references from biological literature. This
shows that our algorithm is capable of generating
descriptive biologically conclusions.
Our final contribution lies in our ability to create con-

nected components (of known pathways) in real time

based on microarray data. This allows us to obtain con-
nected components according to the microarray data.
Both GNEA and GSEA use fixed gene sets and deter-
mines if these gene sets are significant or not. These
techniques assume that a gene set is significant only if a
substantial proportion of the genes within the gene set
is significant. This assumption might not be valid
because there are instances where only part of a gene
set becomes significant; and it would probably go unno-
ticed if most of the rest of the genes are unaffected. Our
ability to create connected components based on the
microarray data of the phenotypes—and use these as
gene sets—ensures that we have sufficient granularity to
capture portions of pathways or gene sets that are
affected.

Methods
Overview Let the phenotype of interest be d and the
remaining phenotypes be labelled as ¬d. We first extract
genes which are highly expressed within this phenotype
d from the microarray experiment. This set of genes is
next segregated into their respective subnetworks using
apriori biological information from the pathway reposi-
tory [25]. This gives us a list of subnetworks cc (whose
genes are highly expressed) within d. A score (depend-
ing on the size of the subnetwork and its consistency
among the patients) is next calculated and assigned to
each subnetwork. Finally we estimate the p-value of
every single subnetwork within the list and keep those
which are significant. This is elaborated in the following
steps:
Step 1: Subnetwork extraction We create a ranked

gene list for each patient within a phenotype according

Figure 3 Sample subnetwork from leukaemia database. A sample subnetwork from DMD dataset [16,17].
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to the gene expression level of that patient. From this
ranked gene list we extract only the top a% of genes for
each patient. This condensed gene list is referred to as
GPi

for the ith patient Pi. We next iterate across gene
lists GPi

only for patients of phenotype d, extracting
only genes which appear in more than b% of the
patients of phenotype d. This creates a list of genes GL
which turns up highly expressed across most of the
patients of phenotype d. Finally, using the programmatic
interface of PathwayAPI, gene list GL is segregated into
the respective subnetworks. In our experiments, a is
taken to be 10 and b to be 50.
To segregate GL into the different subnetworks, we

first split gene list GL into its pathways and the gene-
gene relationships within these pathways. (We highlight
that a gene is allowed to appear in more than one path-
way.) Next, by treating each gene as a vertex and each
gene-gene relationship as an edge, we can easily locate
the connected components (subnetworks) formed by
these edges (gene-gene relationships) and vertices (genes)
in each pathway. This process is illustrated in Figure 4.
Step 2: Subnetwork scoring For each subnetwork sp

within cc and for each patient Pi (regardless of phenotype),
we compute the overall expression level of sp in Pi by

SNet Sg Sg k nsp i sp g sp g

g GPi sp

, , ,, /= =
∈ ∩

∑  where (1)

Here, g denotes a gene in the subnetwork sp that is
highly expressed (top a%) in patient Pi ; k is the number

of patients of phenotype d who have gene g highly
expressed (top a%); and n is the total number of
patients of phenotype d.
Let P1, …, Pn be patients of phenotype d; and Pn+1, …,

Pm be patients of other phenotypes ¬d. We assign two
score vectors Sspsp,d and Sspsp,¬d respectively for these
two groups of patients, where

Ssp SNet SNet Ssp SNet SNetsp d sp sp n sp d sp n sp, , , , ,, , , , ,= =¬ +1 1   ,,m (2)

The t-statistics is now calculated between these two
vectors, creating a final score for each subnetwork sp
within cc. We call this score Sspsp,t.
Step 3: Subnetwork significance We repeat Steps 1

and 2 for all the phenotypes in the dataset to extract a
list of subnetworks SN. The significance of the observed
subnetworks is estimated by randomly permuting the
phenotypes labels, re-extracting the subnetworks and
recomputing their t-statistics scores. This generates a
null distribution for the score and size of the subnet-
works. The p-value of each subnetwork is then calcu-
lated relative to this null distribution. The null
hypothesis being that for a subnetwork obtained of size
|sp| and score Sspsp,t, the subnetwork is not significant.
An example of such a distribution is seen in Figure 5. In
detail, the procedure is as follows:
A Randomly swap the phenotype labels of the

patients, recreating the subnetworks and recalculating
their t-statistics scores.

Figure 4 Sample subnetwork formation. An example of how we form subnetworks from a sample pathway with its genes.
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B Repeat [A] for 1,000 permutations. This creates a
two dimensional histogram of the scores and sizes of
the subnetworks.
C Estimate the nominal p-value of each subnetwork

by using the histogram created in point [B].
Finally, we consider subnetworks whose p-value was

sufficiently small (≤ 0.05) to be significant. Doing so
would provide us with an independent set of significant
subnetworks SN for each dataset. Using our algorithm,
we have managed to show that we are able to obtain
consistent significant subnetworks across different data-
sets of the same disease.
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