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Abstract

Background: Infections due to parasitic nematodes are common causes of morbidity and fatality around the
world especially in developing nations. At present however, there are only three major classes of drugs for treating
human nematode infections. Additionally the scientific knowledge on the mechanism of action and the reason for
the resistance to these drugs is poorly understood. Commercial incentives to design drugs that are endemic to
developing countries are limited therefore, virtual screening in academic settings can play a vital role is discovering
novel drugs useful against neglected diseases. In this study we propose to build robust machine learning model to
classify and screen compounds active against parasitic nematodes.

Results: A set of compounds active against parasitic nematodes were collated from various literature sources
including PubChem while the inactive set was derived from DrugBank database. The support vector machine
(SVM) algorithm was used for model development, and stratified ten-fold cross validation was used to evaluate the
performance of each classifier. The best results were obtained using the radial basis function kernel. The SVM
method achieved an accuracy of 81.79% on an independent test set. Using the model developed above, we were
able to indentify novel compounds with potential anthelmintic activity.

Conclusion: In this study, we successfully present the SVM approach for predicting compounds active against
parasitic nematodes which suggests the effectiveness of computational approaches for antiparasitic drug discovery.
Although, the accuracy obtained is lower than the previously reported in a similar study but we believe that our
model is more robust because we intentionally employed stringent criteria to select inactive dataset thus making it
difficult for the model to classify compounds. The method presents an alternative approach to the existing
traditional methods and may be useful for predicting hitherto novel anthelmintic compounds.

Background

Besides malaria, infections due to nematodes are the
leading cause of ailment to human beings. In particular,
parasitic flatworms (cestodes and trematodes) and round-
worms (nematodes) are a major cause of considerable
suffering, mainly in children. According to a report by
the World Health Organization (WHO) it is estimated
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that 2.9 billion people are infected with nematodes [1].
Therefore, to search for nematode specific targets is an
active area under research. In Table 1, we present the list
of successful biochemical targets and corresponding drug
classes that are known to be active against those targets
in helminths. With the availability of the completely
sequenced nematode genomes, currently there is much
interest to investigate drugs targeting their gene
products.

At present however, only a couple of drugs are being
used to control most worm infections in humans and
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Table 1 List of successful targets in helminths and corresponding drug class known to be active against those target

S.No Target Biochemical class BLAST score Drug family
1. Nicotinic acetylcholine receptor beta 1 lon transport E: 7e-27 Cholinergic Agents
62% identity with human NAch receptor beta 2
2. Glutamate-gated chloride channel lon transport E e-137 Macrolides
54% similarity with human glutamate receptor
3. Glutathione S-transferase Transferases transferring alkyl or aryl groups E: 6e-47 Isoquinolines
61% identity with human Mu isoform
4. Tubulin beta - E0 Benzimidazoles
96% similarity to human tubulin beta
5. Gamma-aminobutyric acid receptor Chloride channel - Piperazines
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animals. There are only three major classes of anthelmin-
tic drugs available in the market. Benzimidazoles are
broad spectrum anthelmintics and inhibit f3-tubulin
resulting in impaired microtubule formation during cell
division [2]. The benzimidazoles have greater affinity for
tubulin in helminth cells than the tubulin found in the
cells of mammals as first reported by Friedman and
Plazer [3]. They found that fenbendazole was 250 times
and mebendazole was 400 times more potent inhibitors
of colchicine binding to A. suum embryonic tubulin than
to mammalian tubulin and concluded that benzimida-
zoles clearly exhibit higher affinity to helminth tubulins.
However, direct binding studies by Kohler and Bach-
mann [4] failed to find a significant change in benzimida-
zole affinity using mebendazole and intestinal A. suum
tubulin. The authors surmised that differential pharma-
cokinetic behaviour of mebendazole could be responsible
for the difference in drug susceptibility between host and
parasite. Macrocyclic lactones form the second class of
anthelmintics, interacting with a range of ion channels
including glutamate-gated [5], y-aminobutyric acid-gated
[6] and acetylcholine-gated [7] chloride channels. Leva-
misole, pyrantel and morantel belong to the third class
and bind to the nicotinic acetylcholine receptors causing
muscle paralysis due to extended muscle contraction and
spastic paralysis of the parasite [8]. Given the diversity in
the chemical structures of these classes, predicting novel
anthelmintics is a challenging task.

Nematodes infect the majority of the farm animals, and
consequently, present a huge risk to livestock industry and
exacerbate global food shortages. It is therefore not sur-
prising that most of the anthelmintic drugs were originally
developed to treat animal infections but were subsequently
approved for human use with little or no modification.
However, due to the disproportionate use of anthelmintics,
currently the livestock industry is facing a very serious
challenge with drug resistance in farm animals [9,10].
Furthermore, with a limited number of drugs being used,
worm strains are able to develop drug resistance easily. In
fact, there have also been reports of resistance for the pre-
sent day anthelmintic drugs in humans [11]. Hence, there
is an urgent need to discover novel safe and efficacious
classes of anthelmintics with a new mode of action.

Recent efforts in anthelmintic drug discovery

An excellent review on the current anthelmintics and
existing research gaps that need to be addressed in order
to discover novel anthelminthic drugs are summarized
recently by Keiser and Utzinger [12]. Kaminsky et al. [13]
reported a new class of synthetic anthelmintics, amino—
acetonitrile derivatives (AADs) that are active against
a variety of livestock pathogenic nematode species.
The authors reported that the optimized AADs were able
to eliminate fourth larval stages of H. contortus,
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T. colubriformis in sheep and Cooperia oncophora, Oster-
tagia ostertagi in cattle at a single oral dose of 20 mg
racemate kg . The authors surmised that a unique group
of nematode specific nAChR protein from acr-23 gene is
responsible for AAD efficacy. Hu et al.[14] have demon-
strated that the mechanism of action of a novel anthel-
minthic drug, tribendimidine, approved recently in
P.R. China. They concluded that tribendimidine is an L-
subtype nAChR agonist, similar to levamisole pyrantel.
The anthelminthic properties of cyclooctadepsipeptides
have also been reported recently in vitro and in vivo
[15,16]. Mefloquine is an antimalarial drug and has been
used successfully for past four decades to treat prophy-
laxis of malaria. However, recent research revealed pro-
mising antischistosomal properties of mefloquine in
Schistosoma mansoni- and Schistosoma japonicum-
infected mouse models [17,18]. Ponce-Marrero et al. [19]
introduced a novel approach for in silico design of new
anthelmintic drugs using linear discriminant analysis to
obtain a quantitative model that classified anthelmintic
drug-like from non-anthelmintic compounds. The devel-
oped model correctly classified 88.18% of the compounds
in external test set. The model was then used for virtual
screening and several compounds from Merck Index and
Negwer’s handbook were identified by the model as
anthelmintic. Subsequently in vivo test were carried out
to validate the predictions.

Overview of the ligand-based virtual screening methods

Antiparasitic drugs historically have been discovered by
experimental screening against intact parasites, but due to
the enormity of the task and availability of better computa-
tional facilities there has been a shift towards computa-
tional screening. Computational screening (also known as
virtual screening) has inherent advantage over traditional
and even experimental high throughput screening (HTS)
due to its massive parallel processing ability; millions of
compounds per week can be tested. Virtual screening (VS)
has been widely used to discover new leads by computa-
tionally identifying compounds with higher probability of
strong binding affinity to the target protein. Successful stu-
dies have led to the identification of molecules either
resembling the native ligands of a particular target or novel
compounds [20,21]. VS methods can be classified into
structure-based and ligand-based approaches based on the
amount of structural and bioactivity data available. If the
3D structure of the receptor is known, a structure-based
VS methods that can be used is high-throughput docking
[22] but where the information on the receptor is scant,
ligand-based methods [23] like similarity searching and
machine learning techniques are commonly used. Docking
involves a complex optimization task of finding the most
favourable 3D binding conformation of the ligand to the
receptor molecule. Being computationally intensive,
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docking is not suitable for very large virtual screening
experiments. On the other hand, ligand-based methods are
popular because they are computationally inexpensive and
easy to use. Furthermore, the assumption that structurally
similar molecules exhibit similar biological activity than
dissimilar or less similar molecules is generally valid. Thus,
ligand-based methods are increasingly playing an impor-
tant role at the beginning of the drug discovery projects
especially where little 3D information is available for the
receptor. Particularly interesting are machine learning
based approaches such as neural networks, genetic algo-
rithms and support vector machines (SVM). SVM is a
powerful classification technique that has found numerous
applications in chemistry such as drug design, quantitative
structure property prediction and chemical data mining.
Many studies in the past have shown SVM to be one of
the best methods for correctly classifying molecules
[24-26]. Zernov et al. [24] used SVM and neural networks
to predict the drug-likeness and agrochemical-likeness for
large compound collections. They showed that for both
kinds of data, SVM outperformed all neural networks
under the same training conditions. Warmuth et al.[25]
investigated a large collection of compounds to find those
that bind to the target of interest in as few iterations of bio-
chemical testing as possible. The authors compared various
search strategies including maximum margin hyperplane,
generated by SVM. They concluded that the strategies
based on SVM clearly outperform the simpler ones. Simi-
larly, Burbidge et al. [26] carried out a comparative study
that involved prediction of the inhibition of dihydrofolate
reductase by pyrimidines, using SVM, ANN and decision
trees. They found that SVM outperformed the other meth-
ods, except in a manually capacity-controlled ANN, which
required significantly longer training time. Nonetheless,
ligand-based VS still remains an unproven approach in the
discovery of antiparasitic medicines [27].

In this investigation, we have developed an in silico
classification model using SVM to predict potential
anthelmintic leads targeted towards parasitic nematodes.
Our model has an estimated accuracy of ~82.0% for the
test dataset. We have applied this model to a large public
database to predict novel anthelmintic compounds and
identified a set of 45 compounds, of which six are pro-
mising as potential therapeutic agents.

Methods

Preparation of the dataset

The quality of the data available largely determines the
quality of any machine learning model [28]. Our primary
dataset contains 295 unique compounds (148 actives and
147 inactives). The library of active molecules (com-
pounds active against parasitic nematodes) was carefully
collated from PubChem [29] and other literature sources
[30-33]. For inactive compounds, we searched the
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DrugBank [34] database for similar molecules to the ones
present in the active set with a Tanimoto cut-off range
from 0.25 to 0.75. As a result, compounds from various
pharmacological uses (anticancer, antibacterial, sedatives,
antifungal) were collected into the inactive dataset. Since
no true negatives (compounds without any anthelmintic
activity) are reported in the literature, inactive com-
pounds used in this study may possess residual anthel-
mintic activity. In Figure 1, we present representative
active and inactive compounds used in this study for
developing models. Further, the primary dataset was
divided into training (80%) and testing sets (20%). The
sampling was carried out at random and compounds in
the test set were excluded from model development. In
Table 2, we present the composition of the datasets used
in this study. The training dataset was used for optimiz-
ing and training the SVM classifier [35] in order to pre-
dict compounds from an unseen test set. The training
dataset contains 240 compounds (126 active and 114
inactive). The test dataset on the other hand was used for
evaluating the performance of the SVM method and con-
tains 55 compounds (22 active and 33 inactive). All the
training set and test set compounds are available in Addi-
tional file 1. Based on our previous study, where we
reported that the ChEMBL database [36] is quite diverse,
contains many drug-like and interesting compounds,
therefore, we used the ChEMBL database compounds
for prediction set. Currently, the database holds over
650,000 compounds with calculated physicochemical
properties (log P, molecular weight, Lipinski properties)
and abstracted bioactivities (binding constant, pharma-
cology and ADMET data). We downloaded the ChREMBL
dataset in SD format. After cleaning the dataset of any
inconsistencies and inorganic structures, we removed the
compounds with 0.8 or greater Tanimoto similarity to the
compounds in primary dataset. Then we clustered the
dataset to remove similar structures. Cluster centres were
selected from each cluster while singletons were retained
as such. For clustering, we employed the functional class
substructural fingerprint as implemented in Pipeline Pilot
software [37] with the Tanimoto cut-off value 0.7. This
reduced our dataset to around 300,000 compounds.
Finally, we randomly selected 10,000 compounds from
ChEMBL dataset for descriptor calculation and further
analysis.

Defining scaffolds

In order to study the patterns in chemical compounds, it
is important to decompose the molecules into fragments.
There are a number of ways to fragment molecules as
discussed elsewhere [38]. We describe below the specific
method used in this study to obtain molecular scaffolds,
where the term scaffold describes the core structure of
the molecule (carbon skeleton). To obtain the carbon
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Actives

Amocarzine

Inactives

Balsalazide

Amoscanate
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Figure 1 Examples of active and inactive compounds used in this analysis. The active compounds are collected from various literature
sources and PubChem database while inactive compounds are adapted from DrugBank.

Flurantel Phenithionate

Tamsulosin

skeleton of the molecule, all the heavy atoms are repre-
sented as carbon and all bonds are converted to single
bonds as shown in Figure 2.

Descriptor calculation and selection
The determination of relevant features is an important
step in any machine learning process [39]. Moreover, with
hundreds of descriptors available it is essential to choose
the best subset of descriptors because many of the descrip-
tors are noisy and some are irrelevant to the target activity.
Feature selection is the effective way to remove noisy or
irrelevant descriptors and reduce the dimensionality of the
feature space to avoid overfitting. This leads to simple and
robust computational models with improved prediction
accuracy.

There are two main approaches for feature selection in
a supervised learning context. The first one is the filter
approach [40]. It consists of selecting the best subset of
features in an independent way, with ad hoc criteria. Fil-
ter methods are fast and can be easily implemented;

Table 2 Composition of the datasets used in this study

Dataset Training set  Testing set Total
Active 126 22 148
Inactive 114 33 147
Total 240 55 295
Prediction set (from ChEMBL) - - 10,000

however, there is no guarantee that the best subset of
descriptors has been selected. The second method is the
wrapper approach [41] which evaluates the performance
of a predetermined learning algorithm and uses it as an
evaluation criterion to select the optimum subset of
features.

The Molecular Operating Environment (MOE) [42]
software was used for descriptor calculation. It calculates
333 descriptors, which are classified as one-dimensional
(physicochemical properties), two-dimensional (topologi-
cal) and three-dimensional (volume and surface area)
descriptors. In Figure 3 we show the overall methodology
adopted for descriptor calculation and selection. Due to
the large number of descriptors available, we first filtered
out constant and near constant descriptors (descriptors
with <0.3 standard deviation). This resulted in the
removal of 81 descriptors. Following this, we removed
descriptors with a correlation coefficient greater than or
equal to 0.8. The removal of correlated descriptors
resulted in a set of 113 descriptors. Before performing
univariate analysis, we normalized the dataset using the
z-transformation. We then performed the normality test
and those descriptors that passed the normality test were
retained while the others were rejected. This reduced our
previous set of 113 descriptors to 34 descriptors. For
further selection of descriptors, we used the Stepwise
Discriminant Analysis (SDA) [43] using a free data
mining tool Tanagra [44]. SDA is often associated with
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bonds to single bonds

\

Figure 2 Definition of the scaffold used in this study. The scaffold is obtained by iteratively removing side chains and converting all the

Carbon skeleton

discriminant analysis but in fact, it can be applied to var-
ious linear models such as linear SVM and logistic
regression. However, it is not suitable for non-linear
models such as multi-layer neural networks and nearest
neighbours. We implemented SDA with both forward
and backward elimination strategies. In the forward
approach, at each step, all the variables are evaluated to
determine which variables contribute maximum to the
discrimination between the groups. Variables with signifi-
cant contributions are included and the process starts
again till there is no attribute to add to the model. In the
backward approach, all the descriptors are included in
the model and then, at each step, the descriptor that con-
tributes least to the discrimination is eliminated, termi-
nating when there is no descriptor to remove. For our

problem, we found that the forward approach performs
better than the backward elimination strategy. We used F
statistics as the termination criterion, with a predefined
threshold value of 3.44, where the F value for a descriptor
indicates its statistical significance to discriminate
between the positive and negative data groups. This
resulted in the selection of final 14 descriptors out of 34.
In Table 3 we present the final 14 descriptors used in this
study.

SVM algorithm

The SVM algorithm was developed by Vapnik [45].
Recently, SVM has been applied to chemoinformatics,
due to its robustness and ability to classify objects into
two classes as a function of their features [46,47]. Many

Constant or near
constant descriptors

Correlation coefficient
>0.8

Z-transformation,
normality test

Stepwise Discriminant
Analysis, forward approach,
F=3.44

333 MOE descriptors

252 MOE descriptors

113 MOE descriptors

34 MOE descriptors

14 MOE descriptors

Figure 3 Overall methodology adopted for descriptor selection. Out of the total 333 MOE descriptors only 14 are used in this analysis.

k—? 81 descriptors

l\_y 139 descriptors
|'\ 79 descriptors

20 descriptors
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Table 3 List of final 14 descriptors used in this analysis
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S.No. Descriptor Description
1. AM1_HF The heat of formation (kcal/mol)
2. AM1_HOMO The energy (eV) of the Highest Occupied Molecular Orbital
3. ASA+ Water accessible surface area of all atoms with positive partial charge
4. ASA- Water accessible surface area of all atoms with negative partial charge
5. ASA_P Water accessible surface area of all polar
6. E_ele Electrostatic component of the potential energy.
7. KierFlex Kier molecular flexibility index
8 LogS Log of the aqueous solubility (mol/L).
9. Std_dim3 The square root of the third largest eigenvalue of the covariance matrix of the atomic coordinates.
10. Vsurf_CP
11. Vsurf_CW2 Capacity factor
12. Vsuf_D8 Hydrophobic volume
13. Vsurf_EWmin Lowest hydrophilic energy
14. Vsurf_HB1 H-bond donor capacity

All the descriptors are derived from MOE software.

studies in the past have shown SVM to be one of the best
methods for correctly classifying molecules [25,48]. A
standard application of SVM involves defining two
classes of objects, determining the set of features that dis-
tinguish these objects and use the trained SVM model to
predict the classes of unknown data. Detailed accounts of
the SVM methodology are present in literature [35,49].
Briefly, SVM is a new algorithm and is based on struc-
tural risk minimization principle from statistical learning
theory. Each molecule to be classified by SVM is repre-
sented by a feature vector x; (i=1,2...N) of M real num-
bers (descriptors) with the corresponding label y; € {+1,-
1}, where y; = -1 means inactive and y; = +1 means active.
To classify the data, the SVM attempts to find the opti-
mal hyperplane {x ¢ R™ w.x +b =0} that best separates
the input data into two classes in M dimensional space.
The optimal hyperplane is defined in such a way that
margin of separation between positive {x ¢ R™ w.x +b >
0} and negative {x ¢ R™ w.x +b < 0} examples is maxi-
mized with minimal error; where w is the normal vector
of the hyperplane and b is the scalar. In other words, the
optimal hyperplane passes through the “midpoint”
between these sets. The decision function for new predic-
tions on unseen examples is given in equation 1:

N

f(x) = sign Zai Vi K (xixj)+b (1)
i=1

where K(xi.xj) is the kernel function and the para-

meters are determined by maximizing the following
equation 2:

iai—%Ziai oj yi yj K(xi.xj) (2)
i=1 ‘

i=1 j=1

under the conditions (equation 3):

N
2aiyt=0and0£aiSC (3)

i=1

The penalty constant C serves as a regularization para-
meter and represents the trade-off between minimizing
the training set error and maximizing the margin. Higher
number of support vectors is due to a small C and vice
versa. If we use a very small C value, then almost all the
samples would influence the model equally to build a
decision boundary regardless of their position. As a
result, virtually all the samples become support vectors.
On the other hand, if we use a large C it may cause
overfitting.

Since there are different types of kernels present (linear,
polynomial, radial basis function, sigmoid) we explored
various kernels for the efficacy of SVM prediction. From
our analysis we note that radial basis function (RBF) kernel
(equation 4) was found to be most effective (data not
shown) therefore we have chosen the RBF kernel for
further analysis.

K(xi, xj) = exp (4)

Two parameters viz., ¥ which determines the capacity
of the RBF kernel and the regularization parameter, C
are required for optimization of SVM classifiers. To
optimize the SVM parameters, C and ¥, we carried out
an extensive grid search to build accurate models. The
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resulting optimized parameters were C = 1.4 and
y = 0.43.

Model validation

The prediction accuracy of the models developed was
tested using ten-fold cross-validation technique. In a ten-
fold cross-validation, the dataset was split into ten sub-
sets of equal proportions. One of the subsets was used as
the test set while the rest were used for training the clas-
sifier. The trained classifier was tested using the test set.
This was repeated ten times using a different subset for
testing and thus ensuring that every compound was used
in prediction once.

Performance measure
The prediction results from SVM were evaluated for the
test dataset using the following statistical measures.

« TP, true positive — the number of correctly classified
active compounds.

+ TN, true negative — the number of correctly classi-
fied non-active compounds.

« FD, false positives — the number of incorrectly classi-
fied non-active compounds.

« EN, false negative — the number of incorrectly classi-
fied active compounds.

Using the variables above, a series of metrics were
computed sensitivity (SN), specificity (SP), balanced
accuracy (BA), F-measure and Matthews correlation
coefficient (MCC).

The recall rate for the members of positive class
(actives) is given by sensitivity, equation 5:

L TP
sensitivity = PN *100 (5)
+

Similarly, the recall rate for the members of the negative
class (inactives) is given by the specificity, equation 6:

specificity = % *100 (6)

Accuracy measures the ratio of correct predictions to
the total number of classes evaluated. We calculated
balanced accuracy which is given by the equation 7:

specificity + sensitivity
2

(7)

balanced accuracy =

Further, we calculated the F-measure, which is given
by equation 8:

F — measure = 2’ (8)
2TP + FN + FP
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Finally we calculated MCC from equation 9; the coeffi-
cient returns a value between +1 and -1. The higher the
value of MCC, the better the classification result.

TP * TN — FP * FN

matthews correlation coffecient = (9)
J(TP+FP) (TP + EN) (IN + EP) (IN + FN)

Results and discussion

The main aim of this study was to classify and predict
novel compounds active against parasitic nematodes. The
various molecular descriptors (333 in total) were calcu-
lated initially, using MOE [42]. After removing insignifi-
cant attributes (standard deviation < 0.3) and applying a
correlation test with a cutoff value of 0.8 we were able to
reduce the total number of attributes to 113. Subsequently
the SDA algorithm was applied and finally a set of 14
descriptors was selected for the development of classifica-
tion model (details in Methods section).

The obtained model correctly classified 87.56% of the
active compounds and 85.30% of the inactive compounds
with the overall accuracy of 86.43% in the training set
while 81.82% in the test set. The F-measure of the train-
ing and test sets are 86.52% and 79.17% respectively.
Table 4 shows the result of the classification for the
training and testing sets. All the predicted compounds
can be found in Additional File 2.

The machine learning systems such as this could
clearly reduce the cost involved in experimental methods
involved in drug discovery pipeline. As the SVM algo-
rithm has been effectively applied in various classification
problems, we investigated the utility of SVM approach
for the prediction of potential anthelmintic lead com-
pounds. The accuracy of the model on the training data-
set may indicate the effectiveness of a prediction model
however; it may not be able to accurately show how the
model will perform on novel compounds. Therefore, it is
critical to test the model on an independent dataset, not
used in training. In our case we trained and optimized
the SVM classifier separately using the entire training set
and evaluated the model on the test set. As shown in
Table 4, the SVM model obtained an accuracy of 81.79%
for the test set. On careful examination of our prediction
result, we find that structural similarity of many false

Table 4 Performance measure of SVM classifier in
training and test dataset

Dataset SN (%) SP (%) BA (%) F-measure (%) MCC
Training set 87.56 85.38 8643 86.52 0.75
Test set 83.82 79.76 81.79 79.17 063

SN: sensitivity, SP: specificity, BA: balanced accuracy, MCC: Matthews
correlation coefficient
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Table 5 The number of unique scaffolds found in active and inactive sets along with the percentage relative to the

dataset size

Datasets Size of the dataset Non-redundant scaffolds Percentage (relative to dataset size)
Actives 148 48 3243%
Inactives 147 80 54.42%

positives to the compounds in the active set is quite high,
which may suggest a lower accuracy figure for the test
set, due to our stringent threshold values. Further, we
also note that a few false negatives are at the borderline
and are thus classified as inactive by our model. To best
of our knowledge, there are not many reported studies
on the prediction of anthelmintic compounds therefore
we were able to compare our results with only one study.
We find that our results are comparable to that study.
Marrero-Ponce et al.[19] used linear discriminant analy-
sis to classify anthelmintic drug-like from non-anthel-
mintic compounds. The authors reported the accuracy of
around 90.4 % in the training set while 88.2% in the test
set which is slightly higher than ours. However, we
believe our model is more robust because our selection

criterion to pick inactive compounds was quite stringent.
We selected molecules within the Tanimoto range of
0.25 to 0.75 of the compounds present in the active set
which would make it relatively difficult to classify than if
chosen randomly. The idea was to build a robust model
that can classify compounds into separate groups even
with structural similarity. Further, we surmise that since
DrugBank covers most of the FDA approved drugs, the
inclusion of DrugBank compounds in our inactive dataset
would allow us to navigate to the unexplored regions of
drug-like chemical space.

The results obtained are particularly interesting from a
clinical perspective. From our scaffold analysis we note
that even though the size of both the dataset (active and
inactive) is approximately same, the number of unique

Actives

18.4% 9.0% 9.0% 7.0% 5.0%

5.0% 4.1% 3.4% 3.4% 3.0%

Inactives :

18.0% 6.0% 51% 5.1% 51%

3.2% 2.6% 2.0% 2.0% 2.0%

Figure 4 Top ten scaffolds present in active and inactive dataset. Inactive dataset is more diverse than active dataset. Five out of top ten
scaffolds are shared in both the datasets.
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scaffolds found in the inactive set is almost twice the
number of unique scaffolds found in active set. This
clearly indicates that the inactive set is more diverse than
the active set. The number of unique scaffolds, along
with the relative percentage according to the total num-
ber of molecules present in the dataset is reported in
Table 5. In Figure 4, we report the top ten molecular
scaffolds in both the datasets. We note that, over 70.0%
of the active compounds are represented by the top 10
scaffolds whereas only 51.1% of the inactive compounds
are represented by the same number of scaffolds. This
again suggests high scaffold diversity in inactive dataset.
It should also be noted that five of the top ten scaffolds
shown in Figure 4 are shared by both datasets.

In the 45 predicted compounds, we note that pipera-
zine-like substructures appear frequently suggesting that
the nitrogen atom in the piperazine ring might be
involved in binding to the receptor. Figure 5 shows an
example set of predicted active compounds. Also, we
note that many predicted compounds either contain ben-
zimidazole scaffold or are derived from it e.g. in Figure 5,
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six compounds out of twelve are a derivative product of
the benzimidazole scaffold. This shows the validity of
the above method since the benzimidazole class of
compounds are well recognized for anthelmintic activity
[2]. Further, we searched the ChREMBL database for the
binding affinity, assay type and target information of the
identified compounds. We note that many predicted
compounds bind to targets of interest in model organ-
isms but experimental validation in the case of nema-
todes needs to be further carried out. Out of the total 45
predicted compounds six compounds are particularly
interesting. Compound 3 with antiviral activity, com-
pound 10 with inhibitory activity against Ancylostoma
ceylanicum (a nematode), compound 12, compound 37
with antimicrobial activity against Staphylococcus aureus,
compound 26 with activity to inhibit SARS-CoV 3CL
protease enzyme and compound 40 with activity against
Rhinovirus. In addition, there are compounds that bind
to nicotinic acetylcholine receptor and tubulin -1 chain
in rats or humans. Since these two receptors are success-
ful targets in nematodes, predicted compounds that bind
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Figure 5 Examples of the actives predicted in the prediction set derived from ChEMBL database. All the molecules shown in the figure
pass “rule of five" (Ro5) test and are medicinal chemist friendly (MCF). Further a few of them also pass lead-likeness “rule of three” (Ro3) test.
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to these targets can be used as leads to design novel com-
pounds with high binding affinity to nematodes nicotinic
acetylcholine and tubulin -1 chain receptor.

Conclusions

We were able to compile an extensive dataset of anthel-
mintic compounds for the development and validation of
support vector machine model. We thoroughly tested the
SVM approach for identifying the potential compounds
with anthelmintic activity. From our results we conclude
that SVM method is well suited for the prediction of
anthelmintic (or antiparastic) compounds. We were also
able to identify a number of interesting compounds with
potential activity against parasitic nematodes however;
experimental validation of the predicted compounds is
needed.

Additional material

Additional file 1: Table S1 Dataset used for training, testing and
validation of the model.

Additional file 2: Table S2 Predicted compounds with AlogP, molecular
weight and SMILES information.
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