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Abstract

Background: With the fast advances in nextgen sequencing technology, high-throughput RNA sequencing has
emerged as a powerful and cost-effective way for transcriptome study. De novo assembly of transcripts provides an
important solution to transcriptome analysis for organisms with no reference genome. However, there lacked
understanding on how the different variables affected assembly outcomes, and there was no consensus on how to
approach an optimal solution by selecting software tool and suitable strategy based on the properties of RNA-Seq
data.

Results: To reveal the performance of different programs for transcriptome assembly, this work analyzed some
important factors, including k-mer values, genome complexity, coverage depth, directional reads, etc. Seven
program conditions, four single k-mer assemblers (SK: SOAPdenovo, ABySS, Oases and Trinity) and three multiple
k-mer methods (MK: SOAPdenovo-MK, trans-ABySS and Oases-MK) were tested. While small and large k-mer values
performed better for reconstructing lowly and highly expressed transcripts, respectively, MK strategy worked well
for almost all ranges of expression quintiles. Among SK tools, Trinity performed well across various conditions but
took the longest running time. Oases consumed the most memory whereas SOAPdenovo required the shortest
runtime but worked poorly to reconstruct full-length CDS. ABySS showed some good balance between resource
usage and quality of assemblies.

Conclusions: Our work compared the performance of publicly available transcriptome assemblers, and analyzed
important factors affecting de novo assembly. Some practical guidelines for transcript reconstruction from short-
read RNA-Seq data were proposed. De novo assembly of C. sinensis transcriptome was greatly improved using
some optimized methods.

Introduction
With the fast advances in nextgen sequencing technology
in recent years, massively parallel cDNA sequencing
(RNA-Seq) has emerged as a powerful and cost-effective
way for transcriptome study. RNA-Seq has been widely
applied to both well-studied model organisms and non-
model organisms, to provide information on transcript
profile of organisms, and to give important insights into

biological processes [1-5]. For organisms with known
reference genomes, researchers usually take advantage of
mapping-first strategy to analyze transcriptome data.
However, mapping-first strategy is not suitable when
reference sequence is not available or incomplete. Thus,
for organisms with un-sequenced genome or cancer cells
with widespread chimeric RNAs [6,7], de novo assembly
is essential to provide a workable solution for transcrip-
tome analysis.
In theory, de novo assembly of short sequence reads

into transcripts allows researchers to reconstruct the
sequences of full transcriptome, identify and catalog all
expressed genes, separate isoforms, and capture the
expression levels of transcripts. However, in reality de

* Correspondence: lixuan@sippe.ac.cn; phao@sibs.ac.cn
1Key Laboratory of Synthetic Biology, Institute of Plant Physiology and
Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of
Sciences, Shanghai 200032, China
4Shanghai Center for Bioinformation Technology, 100 Qinzhou Road,
Shanghai, 200235, China
Full list of author information is available at the end of the article

Zhao et al. BMC Bioinformatics 2011, 12(Suppl 14):S2
http://www.biomedcentral.com/1471-2105/12/S14/S2

© 2011 Zhao et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:lixuan@sippe.ac.cn
mailto:phao@sibs.ac.cn
http://creativecommons.org/licenses/by/2.0


novo transcriptome assembly faced some unique chal-
lenges. Assemblers must be tuned to handle conditions
that were not present for genome assembly. Among
those conditions, transcripts are expressed at both low
and high levels, spanning a difference of ten thousands
folds. On top of that, sequence biases from nextgen
sequencing technology can further skew the expression
of transcripts. Expression of gene isoforms due to alter-
native splicing, and expression of genes with overlapped
regions would grossly compound the difficulty in de novo
transcriptome assembly.
Until recently, a few attempts were made to handle the

difficult tasks of assembling transcriptome from short-read
RNA-Seq data. Most of them were modified from the
breakthrough technology for genome assembly using short
sequence reads. SOAPdenovo [8], ABySS [9], and Velvet-
Oases (hereafter referred as Oases) [10] were reported to be
successfully applied to transcriptome assembly of various
organisms [3,9,11-13]. More recently, Grabherr et al. [14]
released Trinity, a program specially developed for de novo
transcriptome assembly from short-read RNA-Seq data,
which was shown to be efficient and sensitive in recovering
full-length transcripts and isoforms in yeast, mouse and
whitefly. Trinity constructed de Bruijn graph from large
amounts of short-read sequences, then used an enumera-
tion algorithm to score all possible paths and branches, and
retained those plausible ones as transcripts/isoforms. Tri-
nity was specially programmed to recover paths supported
by actual reads and remove ambiguous/erroneous edges,
thus ensured correct transcript reconstruction.
On the other hand, a different strategy, which employed

multiple k-mer (MK) values in building de Bruijn graph in
order to handle both highly and lowly expressed tran-
scripts, was proposed by Robertson et al. [11], and by
Surget-Groba and Montoya-Burgos [15]. While all de
Bruijn graph-based assemblers were programmed using a
single optimal k-mer length based on that whole-genome
shotgun sequencing libraries provided a uniform represen-
tation of genomic sequences, non-normalized mRNA
libraries can present a wide expression range of transcripts
in addition to transcript isoforms due to alternative spli-
cing events. Thus, it was likely that MK presented a strat-
egy advantageous over single k-mer (SK) for optimized
assembly of transcripts at different abundance.
With the challenges facing de novo transcriptome

assembly and emerging solutions from several research
groups, there has not been a consensus on what variables
to consider for choosing a suitable tool, how to approach
an optimal solution based on available information on
data, and even more importantly how to design an effi-
cient transcriptome study with maximizing reward by tak-
ing advantage of available assembly tools. We designed
this study to evaluate the performance of publicly available
assemblers for short-reads RNA-Seq data: SOAPdenovo,

ABySS, trans-ABySS, Oases and Trinity. Oases was
specially designed for transcriptome assembly, extended
from its corresponding Velvet version developed for gen-
ome assembly. SOAPdenovo and ABySS were originally
developed for genome assembly and also applied in tran-
scriptome assembly. In this study, we compared SK and
MK strategies, and examined how various coverage depths
affected assembly outcomes. In order to understand how
genome complexity influences transcriptome assembly, we
used two model organisms: D. melanogaster and S. pombe,
which differed in genomic properties. By running repeat
tests on identical machine, we gained the information on
assemblers’ resources requirement, memory usage, and
runtime. In addition, we applied the different methods to
reconstruct the transcripts for C. sinensis, an important
economic cultivar used to produce a good variety of tea
products. We were able to significantly improve on pre-
viously assembled transcriptome result by reconstructing
more full-length and high-quality transcripts with more
RNA-Seq reads incorporated.

Materials and methods
RNA-Seq data sets
RNA-Seq data sets used in this study were all publicly
available, and could be retrieved from NCBI SRA data-
base. They included a standard (non-strand specific)
Illumina data set from fruit fly, D. melanogaster, a
strand-specific data set from fission yeast, S. pombe, and
a standard data set from tea plant, C. sinensis.
The Drosophila melanogaster data (Dme-data) were 76bp

paired-end (76PE) Illumina reads. Their accession codes
are: SRR023199, SRR023502, SRR023504, SRR023538,
SRR023539, SRR023540, SRR023600, SRR023602,
SRR023604, SRR027109, SRR027110, SRR027114 and
SRR035403. Dme-data were obtained from mixture of
D. melanogaster embryonic samples from 0 to 24 hours
after egg laying [1]. The Schizosaccharomyces pombe data
(Spo-data) were strand-specific 68PE Illumina reads. Its
accession code is SRP005611. Spo-data came from four bio-
logical conditions, including late stationary phase, heat
shock, mid-log growth and growth after all glucose has
been consumed [14]. The Camellia sinensis data (Csi-data)
were 75PE Illumina reads. Its accession code is SRX020193.
Csi-data included samples from seven different tissues of C.
sinensis: tender shoots, young leaves, mature leaves, stems,
young roots, flower buds and immature seeds [3].

Preprocessing RNA-Seq data
Dme-data were preprocessed before used for de novo
assembly: reads that did not contain at least 41 Q20
bases among the first 51 cycles were removed. Q20 base
refers to the base with Q-value≥20, which is defined as
an error probability ≤ 1%. Low quality (<Q20) 3’ end of
reads were then trimmed off by custom PERL script.
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After preprocessing, we obtained totally 13.08 G bases
(Gb) quality filtered short reads data (~ 106.8 Million
read pairs). We randomly sub-sampled read pairs in
D. melanogaster quality filtered data set to generate 0.5
Gb (~ 4.1 M read pairs), 1 Gb (~ 8.3 M read pairs), 3 Gb
(~ 25.0 M read pairs), 5 Gb (~ 41.7 M read pairs) and 7
Gb (~ 58.3 M read pairs) subsets. Spo-data and Csi-data
were used without preprocessing step, thus to keep the
same data sets used in previous studies [3,14]. It has been
reported that 50 M paired-end S. pombe reads (~ 6.8 Gb)
were almost saturated for de novo assembly [14]. Thus,
we randomly subsampled read pairs in Spo-data to gen-
erate 50 M subset (~ 6.8 Gb) as well as three smaller sub-
sets, 0.5 Gb (~ 3.7 M read pairs), 1 Gb (~ 7.4 M read
pairs) and 3 Gb (~ 22.1 M read pairs) for purposes of
analysis. For Csi-data, all of the short reads (2.32 Gb, ~
15.46 M read pairs) were used for the analysis.

De novo assembly
Transcriptome short reads were de novo assembled using
SOAPdenovo (release 1.05)[8], ABySS (version 1.2.7)[9],
Velvet (version 1.1.04)[16] followed by Oases (version
0.1.21)[10] or Trinity (release 20110519) [14]. We
assembled each data set using similar assembly para-
meters (k-mer value = 25, CPU = 20), thus trying to keep
the same condition to compare their performance. The
Command-line parameters used with SOAPdenovo were
“-K 25 –p 20 -R -d -F”; ABySS: abyss-pe k=25 n=10 j=20
name=xx in=’fq1 fq2’; Velvet(multithreaded)-Oases:
“-cov_cutoff 2”; Trinity: –CPU 20 –bfly_opts “–edge-
thr=0.05 –compatible_path_extension” for D. melanoga-
ster and C. sinensis datasets; –CPU 20 –SS_lib_type RF
–jaccard_clip –bfly_opts “–edge-thr=0.05 –compatible_-
path_extension” for S. pombe dataset (strand specific),
also tested without –jaccard_clip option for Spo-6.8g
data set. Trans-ABySS was run by using a set of k-mer
values including 19, 25, 31, 37, 43 and 49, and then
merged assembled results by the first step of trans-
ABySS analysis pipeline. MK strategy was also applied to
SOAPdenovo and Oases using the same k-mer set and
merged by the first step of trans-ABySS analysis pipeline.
All the assemblies were performed on a server with 48
cores and 512 G of memory. The operating system is
Ubuntu 10.04 LTS. After assembly, only transcripts with
no less than 100 bases were used for the downstream
analysis.

Removal of redundancy
For MK strategy, merging all transcripts from different
k-mer assemblies will introduce redundancy. What’s
more, for some assemblers, occasionally, constructed
transcripts will also show redundancy (shorter transcript
was entirely covered by longer one with 100% identity).

For this scenario, CD-HIT-EST was used to remove the
shorter redundant transcripts when they were entirely
covered by other transcripts with 100% identity. This set
of transcripts was then aligned to CDS sequences and
genomes for the assessment. Since some isoforms of
reconstructed transcripts were different only for small
variations, such as SNPs, small insertions or deletions,
this may introduce bias for the basic assembly statistics.
CD-HIT-EST was used to remove the shorter redundant
transcripts when they were 100% covered by other tran-
scripts with more than 99% identity. The non-redundant
transcripts were then used to count the basic assembly
statistics for each method.

Mapping reads to transcripts
To get assembly statistics for the number of reads that
could be mapped back to transcripts (RMBT) , we used
bowtie (version 0.12.7) [17] to map back all input short
reads to the reconstructed transcripts, with parameters
“-q –phred33-quals –fr -1 fq1 -2 fq2 -v 3”.

Mapping reconstructed transcripts to reference
Genome sequence and gene annotations for S. pombe
(version 09052011) were downloaded from the ftp site of
Sanger institute (ftp://ftp.sanger.ac.uk/pub2/yeast/pombe/
). Genome data for D. melanogaster was downloaded from
download page of UCSC genome browser (http://hgdown-
load.cse.ucsc.edu). Existing gene models were downloaded
from UCSC Table Browser, and only the Ref genes were
used to evaluate the performance of each assembler. For
the protein coding sequences, a custom PERL script was
applied to remove the redundancy for those exactly identi-
cal sequences: the original 22680 protein coding tran-
scripts of D. melanogaster and 5174 transcripts of S.
pombe were reduced to 18558 and 5150 non-identical
coding transcripts, respectively. BLAT[18] with default
parameters was applied to map the reconstructed tran-
scripts from each assembler to non-identical reference
coding sequences and reference genomes. Four groups of
hits were classified for the evaluation of the capability for
CDS reconstruction: 1) Covered the entire reference cod-
ing sequence, having no mismatch, insertion or deletion
(100%); 2, 3, 4) At least 95%/80%/50% sequence identity
covering the entire reference coding sequence, respec-
tively. To assess the accuracy of reconstructed transcripts,
we aligned reconstructed transcripts to the reference gen-
ome using BLAT and then the number of equal or more
than 95% or 50% of reconstructed transcripts that could
be aligned back to its corresponding genome was used for
the assessment. Transcript with less than 50% of its length
could be mapped back to the genome was defined as
unmapped-transcript. Shared and unique transcripts
parsed from pairwise alignments were aligned to the
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reference genome. Transcript with at least 95% of its
length could be aligned to corresponding genomic locus
was considered for the assessment.

Expression quintiles
Short reads used for assembly were aligned to the CDS
sequences by Tophat (v1.2.0) [19], and then custom PERL
scripts were applied to computing normalized gene
expression level by calculating RPKM (Reads Per Kilobase
of exon model per Million mapped reads) of each tran-
script. Only paired end mapped reads were considered in
this study. Gene was defined as expressed if it’s RPKM >0,
and then all expressed genes were divided into expression
quintiles at 10% intervals for the evaluation.

Results
Study design and RNA-Seq data collections
Currently five publicly available assemblers have been
reported to be used for de novo assembling short-read
RNA-Seq data into transcripts. They are SOAPdenovo,
ABySS, trans-ABySS, Oases and Trinity. Trans-ABySS was
developed by ABySS team that adopted MK strategy to
ABySS. Following the same approach, we applied MK
strategy to SOAPdenovo and Oases (referred as SOAPde-
novo-MK and Oases-MK, respectively). Trinity, on the
other hand, fixed its k-mer value at 25 that was not
changeable. It used a specially designed algorithm to
recover possible transcripts/isoforms to ensure high plau-
sibility. But at the meantime, to assemble the same dataset
Trinity required runtime at least 20 folds more than the
other programs used under SK condition. So we found it
impractical to apply MK strategy to Trinity at current
stage. Thus, our design included 7 program conditions: 4
with SK (SOAPdenovo, ABySS, Oases and Trinity) and 3
with MK (SOAPdenovo-MK, trans-ABySS and Oases-
MK). All the tests were run on the same single-node
machine with 512G memory and 4 AMD Opteron 6168
(12-core) processors.
In order to examine how genome with different com-

plexity affects assembly outcomes, we selected public
RNA-Seq data from two model organisms as benchmark:
fruit fly (D. melanogaster) and fission yeast (S. pombe).
Fruit fly has a genome size of 117 Mb, having 22680 pro-
tein coding genes and average intron length ~ 2.3kb
(based on RefSeq gene sets). Fission yeast has a smaller
genome of ~ 12.5 Mb [20], with 5174 protein coding
genes, and average intron length ~ 81bp. Besides both
organisms have excellent genome reference available, their
distinct genome properties helped elucidate how simple
(fission yeast) or more complex (fruit fly) genomes influ-
enced transcriptome assembly. Tea plant, C. sinensis, has a
large genome (~ 4G) yet to be resolved. We hoped to sig-
nificantly improve on its existing transcriptome assembly,

so to demonstrate the usefulness of optimizing strategy
and guidelines for de novo transcriptome assembly.

Comparison of transcript assembly under different
program conditions
In order to compare the performance of each assembler,
we put in test two sets of benchmark data that displayed
different data properties. In addition, we varied the
amount of initial inputs from the two sets of data to evalu-
ate the effect of coverage depths on the assembly out-
comes (details in Materials and Methods). The outcomes
are summarized in Additional file 1 and 2.
When measured in the number of assembled transcripts,

total bases of transcripts, mean length, N50, percentage of
low quality transcripts, number of long-transcripts (≥1kb),
and number of reads that could be mapped back to tran-
scripts (RMBT), we observed significant improvement on
the outcomes when MK strategy was applied to each pro-
gram. For all paired tests: SOAPdenovo vs. SOAPdenovo-
MK, ABySS vs. Trans-ABySS, and Oases vs. Oases-MK,
there were at least 50% increases in the number of
assembled transcripts, total bases of transcripts, and num-
ber of long-transcripts comparing MK to SK (Additional
file 1 and 2).
With increasing coverage depth, each assembler gener-

ally produced a larger number of transcripts and more
total bases, but the mean transcript length and N50, after
an initial increase, peaked at a certain threshold and
started to decrease. The percentage of RMBT had a pat-
tern reversely correlated to increasing coverage depth for
all program conditions except for Trinity.
Overall, Oases-MK assembled the most transcripts and

long-transcripts, whereas trans-ABySS/ABySS produced
the longest mean transcript length and the largest N50.
While Trinity preformed the best in the percentage of
RMBT, SOAPdenovo was the worst in the category. The
percentage of RMBT is an important benchmark for eval-
uating the performance of each method. An optimal pro-
gram should use as many reads as possible to reconstruct
high-quality transcripts. Trinity reached almost 90% with
the D. melanogaster data, which may be attributed to its
greedy k-mer-based approach at the Inchworm step.
Oases-MK came in second for this measure. Given the
number of low quality transcripts, performance of SOAP-
denovo was not satisfactory.

Resources usage by different assemblers
The demand for resources to carry out de novo assembly
is an important factor to consider when choosing a soft-
ware tool. While it was proved to be critical in assembly
of large genome, resources usage for assembling tran-
scripts bears some equal importance for practical reason.
We monitored and recorded the runtime and memory
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usage for four SK assemblers running on testing data sets
on the same computer. We found the runtime and mem-
ory usage were two essential factors that limit the use of
a program. The measured data of runtime and memory
occupancy for each assembler tested with SK method are
illustrated in Figure 1.
The four SK assemblers displayed distinct memory

usage patterns through their processing steps. Among
them, Oases consumed the largest maximum memory (at
Velvetg step), whereas memory usage by ABySS was the
smallest (Figure 1a). It was assumed that larger data set
would consume more memory. This was generally true
with all four assemblers as the memory usage displayed a
good correlation with the size of testing data (Figure 1b),
though Oases was the most sensitive, and ABySS the
least sensitive in response to increasing data size. The k-
mer values also had great impact on both memory usage
and runtime. Memory usage displayed reverse correlation
with k-mer values for Oases but remained constant for

SOAPdenovo and ABySS (Figure 1c, Trinity remains
unknown as its k-mer value was not changeable). While
Trinity required the longest runtime and SOAPdenovo
the least for the same testing dataset, the time costs for
all four tools, as expected, were approximately propor-
tionate to the size of testing data set (Figure 1d). Run-
times for ABySS, Oases, and SOAPdenovo were reversely
correlated with the k-mer values (Figure 1e), but the
impact was not as dramatic as that of k-mer values on
memory usage.
These results indicated that assembly using Oases

with small k-mer value requires large memory and
may exceed the memory space of a typical computing
sever nowadays, and processing of a large data set by
Trinity can exceed reasonable execution time and
hence becomes impractical. Thus these factors warrant
careful consideration when one chooses a tool for ana-
lysis as well as setting parameters associated with the
tool.

Figure 1 Runtime and RAM usage performance for each assembler. Runtime and RAM usage for each assembler: Oases, SOAPdenovo,
ABySS and Trinity. (a) Real-time monitored runtime and RAM usage of each method using Dme-13g data set. The maximum RAM usage was
marked as asterisk for each assembler, and three stages of Oases and Trinity were shown by different colors (red: Velveth and Inchworm; green:
Velvetg and Chrysalis; blue: Oases and Butterfly). RAM usage (b) and runtime (d) of each method using different amounts of inputs with k-mer
value of 25. RAM usage (c) and runtime (e) of each method using Dme-13g data set with different k-mer value. #Alternatively, jobs from Butterfly
module could be distributed in clusters using a job array, which could greatly reduce the running time for this step.
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Validating assembled transcripts by mapping to reference
genome
To validate assembled transcripts, we mapped each tran-
script to its reference genome as described in Materials
and Methods: Map reconstructed transcripts to reference.
Transcripts assembled from D. melanogaster data sets
using different methods showed a high percentage in
alignment to its reference genome. Less than 0.5% of
assembled transcripts failed to align (Figure 2a, shown
using Dme-13g data set), and similar results were found
using smaller sampling data from D. melanogaster data
sets (data not shown). Pairwise alignment using BLAT
was performed for transcripts from SOAPdenovo-MK,
trans-ABySS, Oases-MK and Trinity. Shared (defined as
at least 95% sequence identical between two transcripts
from different methods) and unique (if the transcript is
not shared, then it was unique) transcripts were then
aligned to genome separately. While the shared tran-
scripts were generally validated by mapping to genome at
a high percentage, the unique ones were mapped to refer-
ence genome at various levels with Trinity being the best
and SOAPdenovo the worst (Figure 2b).
For S. pombe data set, Trinity, Oases and Oases-MK

showed worse performance than for D. melanogaster data
set, with more than 10% transcripts failing to be aligned to
reference (Figure 2c). Unique transcripts accounted for
more than 60% of all unmapped-transcripts (Figure 2d)
except for trans-ABySS (33.83%). Except for trans-ABySS
(19/45), the rests had over 50% of unique unmapped-
transcripts with BLASTX hits (E≤10-10) to Uniprot data-
base [21] (Figure 2d), representing some bona fide gene
transcripts. We further tested whether low quality
sequence in S. pombe data set contributed to the high per-
centage of unmapped-transcripts. After trimming low
quality nucleotides (<Q20) from 3’-end before re-assembly,
Trinity had a 6~7% increase in matched transcripts (data
not shown), confirming that sequence errors in S. pombe
data set were at least part of the reason for the higher level
of unmapped-transcripts.

Evaluating gene coverage and integrity of assembled
transcripts
The gene coverage and transcript integrity are important
performance benchmarks for transcriptome assembly. We
evaluated gene coverage and transcript integrity with D.
melanogaster and S. pombe data sets by matching recon-
structed transcripts to CDS and examining the numbers of
covered full-length genes. The full-length transcripts
reconstructed by different program conditions displayed
some similar patterns: the numbers of full-length tran-
script initially went up with increasing sequence reads; in
cases of SOAPdenovo-MK, ABySS, trans-ABySS, Oases-
MK and Trinity their numbers leveled off at certain data
levels, whereas for SOAPdenovo and Oases their numbers

started to drop (Figure 3a, b). The turning points appeared
to be related to the complexity of the genome. The turning
point was around 3G for fruit fly, and between 1-3G for
fission yeast.
For D. melanogaster, there is totally 55.46Mb of unique

transcripts from RefSeq or 53.80Mb from Ensemble gene
sets. Assuming 80% of the genes expressed, the 3Gb-
sequence reads, where the turning point was observed,
amounts to ~75× average coverage on total expressed
genes. For S. pombe, the turning point equals to approxi-
mately 100× average coverage. These numbers are impor-
tant reference in design of future de novo transcriptome
study, in which some estimate and careful testing are
recommended to find the optimized parameters for a
given organism. Full-length, partial-length, and fused CDS
were illustrated for transcripts reconstructed from D. mel-
anogaster (Figure 3c, d) and S. pombe (Figure 3e, f) data
sets. At the curve-turning point or the full-data point, MK
methods appeared to build more full-length CDS compar-
ing to SK with same assemblers, whereas partial-length
CDS remained almost unchanged. On the other hand,
there was an increase in the numbers of fused CDS being
associated with the MK methods.
It’s worth noting that the number of fused genes was

low for S. pombe transcripts reconstructed by Trinity,
which took use of strand-specific information for assembly
(Figure 3e, f). This was not observed with D. melanogaster
transcripts, where no strand-specific information was
available. In addition, Trinity had a “–jaccard_clip” option
that was recommended for gene dense genome with lots
of transcripts overlapping on the same strand. For S.
pombe transcripts, the option significantly reduced the
number of fused genes (Figure 3f, personal communica-
tion with Brian J. Haas).
In comparison of different program conditions, Oases-

MK appeared to cover the most in number of genes as
well as the most in number of full-length genes. While
comparable in total number of assembled transcripts,
SOAPdenovo-MK and trans-ABySS were lagging in the
number of reconstructed full-length genes (Figure 3c, d, e,
f). For SK methods, Oases’s performance was satisfactory
at small data set, but lagged behind with increased inputs.
Again, SOAPdenovo was the worst performer for this
measurement, especially with large inputs data at high
coverage depth.

Evaluating sensitivity of assemblers to genes expressed at
different levels
The sensitivity of program condition to gene expression
level was examined by counting the full-length transcripts
of various expression levels. As shown in Figure 4a and 4b,
using varying k-mer values Oases captured transcripts in a
different range of expression quintiles. The small k-mer
value, i.e. k=19, worked better for transcripts at low

Zhao et al. BMC Bioinformatics 2011, 12(Suppl 14):S2
http://www.biomedcentral.com/1471-2105/12/S14/S2

Page 6 of 12



quintiles, whereas a large k-mer value, i.e. k=49 only
worked in a high quintile range. On the other hand, the
MK methods took advantage of these properties from dif-
ferent k-mer values, and can cover transcripts in a broad
expression range (Figure 4c, d).
Comparing the different program conditions, our data

showed that all had a poor performance at 10%~30% low-
est quintiles (Figure 4c, d). Surprisingly, Trinity recon-
structed a steady number of CDS at above 30% quintiles.

The others, SOAPdenovo, Oases, and ABySS when using
SK strategy did not perform well for either the lowly or
the highly expressed genes. However, when employing
MK strategy, the performance of SOAPdenovo, Oases, and
ABySS was greatly improved, especially on the high quin-
tile levels (Figure 4c, d). We observed that highly
expressed genes were often assembled into incomplete
transcripts. As shown in Figure 4e, NM_079795 represents
one of the highly expressed genes in D. melanogaster.

Figure 2 Number of transcripts that could be aligned to the genome. Shown are the percentages of transcripts that could be successfully
aligned to its corresponding genome with Dme-13g (a) and Spo-6.8g (c) data sets. (b) Percentage of unique and shared transcripts that could
be successfully aligned to the genome using Dme-13g data set by each of SOAPdenovo-MK, trans-ABySS, Oases-MK and Trinity. (d) The
percentage of unique unmapped-transcripts produced from each of assembly methods using Spo-6.8g data set. Numbers above the histogram
are the number of unique unmapped-transcripts (left) and number of unique unmapped-transcripts that had BLASTX top hits (E≤10-10) to
Uniprot database (right, within the brackets).
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Figure 3 Number of reconstructed protein coding genes. Number of full-length protein coding genes reconstructed by each method using
inputs with different depth of coverage: D. melanogaster data sets (a), S. pombe data sets (b). Number of reconstructed genes were shown using
Dme-3g (c), Dme-13g (d), Spo-1g (e) and Spo-6.8g (f) data sets, which included full-length reconstructed genes with 100% (blue) and at least
95% identity (reddish brown); partial-length reconstructed genes: 80% (green) and 50% (purple). Trinity assembly with strand specific option
“–SS_lib_type RF” was marked as asterisk. The assessment of Trinity without “–jaccard_clip” option was shown as “Trinity#” using Spo-6.8g data
set (f).
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Figure 4 Full-length genes reconstructed by each method at different expression quintiles. Shown are the percentages of reconstructed
full-length genes (Y axis) at different expression quintiles (X axis, 10% increment) by Oases with different k-mer values using Dme-3g (a) and
Spo-1g (b) or by each assembler using Dme-3g (c) and Dme-13g (d) data sets. (e) An example is shown as an assembled transcript in D.
melanogaster by different assembly methods. NM_079795 is one of the highly expressed genes at highest expression quintile, which could be
completely reconstructed by Trinity (red), but failed by other methods. Only incomplete transcripts (green) were reconstructed and both ends of
coding region were lost. Incomplete transcript with 1 bp deletion assembled by Oases-MK is shown below its gene model. Reads coverage is
shown at the bottom.
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While Trinity correctly reconstructed the entire transcript
of NM_079795, various short forms were generated by
other program conditions.

De novo assembly of C. sinensis transcriptome by
different assemblers
The tea plant, Camellia sinensis, is one of the most impor-
tant economic cultivar that is used to produce a good vari-
ety of tea products. It has an estimated genome size of
about 4.0Gb [22]. With its large genome size and no gen-
ome draft being available, the transcriptome analysis pro-
vided a good option to study the gene composition,
genetic polymorphism, and metabolic basis of this impor-
tant economic plant. However, there were some great
challenges researchers faced. They included unknown
number of genes in C. sinensis, potentially very large
genetic diversity of the studied population, and unclear
evolution history, etc.
We performed de novo assembly analysis to the pub-

lished RNA-Seq data set from C. sinensis [3], which con-
sisted of 15.46 million pairs of 75bp Illumina sequence
reads. To calibrate the system and make our results com-
parable to the original published work (used SOAPde-
novo), we first tested different k-mer values with
SOAPdenovo, and found k =25 produced similar results
with N50 and mean transcript length comparable to the
recently published results (Additional file 3: columns
“Published data” and “SOAPdenovo”). Then we performed
de novo assembly using different program conditions on
the C. sinensis RNA-Seq data (basic statistics are shown in
Additional file 3). Overall, the MK methods (SOAPde-
novo-MK, trans-ABySS and Oases-MK) produced much
larger numbers of transcripts (≥100bp) with more total
bases than the original published assembly data and
SOAPdenovo results we obtained. SOAPdenovo-MK,
trans-ABySS and Oases-MK also produced superior
results in mean length, N50 and numbers of long-tran-
scripts (≥500bp and ≥1kb) than the original published
results. Within SK methods, Trinity generated significantly
better results than the original published assembly data
and SOAPdenovo results in almost all categories except
mean length and N50. The better assemblies by MK meth-
ods and Trinity were translated into larger numbers of
coding proteins. We observed significant increases in
BLASTX hits to Uniprot database [21] and in the numbers
of unique Uniprot proteins identified (Additional file 3).
These additional genes would certainly help reveal the
complete metabolic pathways in C. sinensis and identify
the missing genes in natural molecule synthesis important
to tea flavor and quality. One good example is Cinnamate
4-hydroxylase (C4H, EC1.14.13.11), which is an important
enzyme that converts cinnamate to p-coumarate in flavo-
noid biosynthesis pathway. In the original paper [3], it was
indicated that there was no cinnamate 4-hydroxylase in

C. sinensis. However, in our assembly results from either
Oases-MK or Trinity, while performing BLASTX against
the KEGG database [23], we were able to identify multiple
C4H gene transcripts (Additional file 4 and 5) that filled
into the gap in flavonoid biosynthesis pathway.

Discussion and conclusions
De novo assembly of transcriptome from short-read RNA-
Seq data presented some unique challenges to bioinforma-
ticians. This study was designed to evaluate the perfor-
mance of five publicly available assemblers that were
previously used to assemble short-reads transcriptome
data: SOAPdenovo, ABySS, trans-ABySS, Oases, and
Trinity. In order to reveal the important factors to con-
sider for choosing an optimal strategy and software tool,
we set up variable testing conditions: single k-mer vs. mul-
tiple k-mer, simple genome vs. complex genome, low cov-
erage depth vs. high coverage depth, non-directional reads
vs. directional reads, etc. We measured results in terms of
resources usage, transcript accuracy, integrity and comple-
teness, and sensitivity to assemble transcripts from low to
high expression levels. By analyzing and comparing the
assembled results from various conditions, we were able to
develop some useful guidelines that help direct future
transcriptomics studies.

Performance by different tools using SK method
Trinity had a consistently better performance in almost all
the categories than the other SK tools, on the cost of
longer runtime (sometimes 20~100× longer). SOAPde-
novo, although using less memory and runtime, was the
least satisfactory. It performed poorly for reconstructing
CDS and for measurements like low quality transcripts
and RMBT. Other assemblers: ABySS and Oases, had an
impaired performance when reconstructing transcripts of
high coverage depth. We observed that highly expressed
transcripts were often incompletely assembled. However,
its reason remains unclear to us and we can only speculate
that sequence repeats or homologous genes may be the
cause.
The size of sequencing data from Illumina platform is

often very large, and therefore required substantial mem-
ory and long computing time, even for the very efficient
de Bruijn graph-based assemblers. For large datasets,
Oases required the largest memory, and Trinity took the
longest runtime. ABySS and SOAPdenovo showed some
good balance between memory usage and runtime.

MK strategy enhancing performance compared to SK
method
We for the first time applied MK strategy to SOAPdenovo
and Oases, and systematically evaluated the performance
of MK vs. SK on 3 assembler tools. By taking use of differ-
ent k-mer values, the MK method was able to capture
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both lowly expressed transcripts with small k-mer value
and highly expressed genes with large k-mer value. This
strategy ensured recovering more assembled full-length
transcripts at very low redundancy. The MK method
appeared to work well across all spectrums of coverage
depth, and with all programs tested. There can be further
improvement if MK strategy is applied to Trinity. How-
ever, the application is limited to its long runtime and
fixed k-mer value, so it is impractical to apply MK strategy
to Trinity with the current version.
We observed a decrease in transcripts mapping to refer-

ence genome and increase in fusion genes by MK method
when compared to SK method of the same tools. It may
indicate that MK method can lead to and accumulate
some incorrect assemblies or artificially fused transcripts.
Given the longer and more diverse transcripts recon-
structed by MK methods, the benefits clearly outweigh the
pitfalls. We observed some interesting results that showed
Trinity reduced the number of fused transcripts by taking
use of strand-specific read information in assembly, which
suggested that strand-specific sequencing was useful to
tease apart overlapping transcripts on opposite strands.
The benefits of MK strategy were most demonstrated by

the results from de novo assembly of RNA-Seq data from
C. sinensis. The numbers of transcripts (≥100bp) and
long-transcripts (≥1kb) were doubled or even tripled with
MK strategy for different assemblers. There is certainly
much room for improvement on reducing the artifact and
redundant transcripts, which remains the main focus of
future study on MK methods.

Effects of coverage depth and genome complexity
The effect of sequence coverage depth on assembly out-
come showed some interesting patterns. With the excep-
tion of SOAPdenovo and Oases, the others had generally
increased number of full-length genes corresponding to
increased coverage depth. Such positive correlation seems
to reach plateaus at 3G data point for fruit fly. The 3G
data point is also the turning point for SOAPdenovo and
Oases, where the number of full-length gene assemblies
started to decrease. For S. pombe, which has a much smal-
ler genome compared to that of fruit fly, the turning point
was between 1 and 3G. These results suggest the turning
point is intrinsic to each organism, probably related to the
complexity of their genome: number of genes/transcripts,
average size, gene density, range of expression levels, etc.
The genome properties of fruit fly and fission yeast were
most related to their numbers of genes (22680 vs. 5174).
The estimated number of genes is certainly important
basis for designing a transcriptome experiment.

Useful guidelines for de novo transcriptome assembly
It is impossible to choose an optimal tool and computa-
tion parameters for transcriptome assembly without

comprehensive understanding the performance of var-
ious tools and program settings at work. By comparing
the performance of these tools and assembly outcomes
from variable test conditions, we recommended some
basic and useful guidelines to help people choose the
best tools and strategy, and to optimize program settings
for transcriptome assembly work. We also summarized
some shortcomings and limitations for programs and
methods, hopefully for people to avoid or improve on
them. In light of our results, the followings are recom-
mended for selecting the optimal tools and conditions for
de novo transcriptome assembly studies:
1) Generally, MK approach should be considered to

achieve better assembly results.
2) Trinity is the best SK assembler for transcriptome

assembly for both small and large data set across various
conditions. But don’t choose Trinity if long running
time is to be avoided.
3) Oases-MK and trans-ABySS produce the most

diverse long transcripts. But one must avoid Oases if
machine memory is limited.
4) SOAPdenovo uses smallest memory and shortest

runtime. But one should avoid SOAPdenovo in general
if full-length genes and complete transcriptome are
desired, especially for large amounts of sequence inputs
with high coverage depth.
5) Large data set can be divided into a serious of 0.5,

1, 3G subsets to test for the optimal conditions for
assembly.
6) For design a transcriptome study, usually 100× aver-

age coverage on estimated size of expressed transcripts is
recommended to start with for de novo assembly.

Additional material

Additional file 1: Basic statistics for de novo assembly with D.
melanogaster data sets. The outcomes of transcript assemblies by each
method: SOAPdenovo, SOAPdenovo-MK, ABySS, trans-ABySS, Oases,
Oases-MK and Trinity. Assembled transcripts with no less than 100 bases
are included. Low quality transcripts are defined as transcripts with more
than 5% ambiguous nucleotides. #Since scaffolding system hasn’t been
built in Trinity yet, the measure of low quality transcripts for Trinity is left
as “-”.

Additional file 2: Basic statistics for de novo assembly with S.
pombe data sets. The outcomes of transcript assemblies by each
method are shown.

Additional file 3: Basic assembly statistics and BLASTX hits to
Uniprot database using C. sinensis 2.3g data set. The outcomes of
transcript assemblies by each method and measurements in the previous
study are shown. §Some measurements are not available in the previous
study, which are left as “-” in the table.

Additional file 4: List of C4H related transcripts assembled by
Trinity and Oases-MK. BLAST results against the KEGG database with E-
value ≤ 1.0e-5, and only transcripts with top blastx hits to Cinnamate 4-
hydroxylase (EC1.14.13.11) are shown.

Additional file 5: Sequences of C4H related transcripts assembled
by Trinity and Oases-MK. Fasta formatted sequences of C4H related
transcripts that were listed in Additional file 4 are shown.
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mapped back to transcripts.
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