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Abstract

Introduction: A gene tree for a gene family is often discordant with the containing species tree because of its
complex evolutionary course during which gene duplication, gene loss and incomplete lineage sorting events
might occur. Hence, it is of great challenge to infer the containing species tree from a set of gene trees. One
common approach to this inference problem is through gene tree and species tree reconciliation.

Results: In this paper, we generalize the traditional least common ancestor (LCA) reconciliation to define a
reconciliation between a gene tree and species tree under the tree homomorphism framework. We then study the
structural properties of the space of all reconciliations between a gene tree and a species tree in terms of the
gene duplication, gene loss or deep coalescence costs. As application, we show that the LCA reconciliation is the
unique one that has the minimum deep coalescence cost, provide a novel characterization of the reconciliations
with the optimal duplication cost, and present efficient algorithms for enumerating (nearly-)optimal reconciliations
with respect to each cost.

Conclusions: This work provides a new graph-theoretic framework for studying gene tree and species tree
reconciliations.

Background
With much higher speed than the traditional Sanger
sequencing technology, the ultra-deep sequencing tech-
nology has made huge amounts of molecular data avail-
able for genomics study [1]. It provides an
unprecedented opportunity to infer phylogenetic trees
from multilocus and genomics data. One approach to
inferring phylogeny from multilocus data is to recon-
struct a gene tree from each locus and then to combine
the resulting trees into a phylogeny, called the contain-
ing species tree. Gene trees are often different since

each gene family might undergo different mutational
events such as gene duplication and loss, horizontal
gene transfer, and incomplete lineage sorting [2,3].
Therefore, the containing species tree is inferred from
gene trees by reconciling it with each gene tree to mini-
mize the total number of hypothetical evolutionary
events that are responsible for the discordance between
the trees.
The gene tree and species tree reconciliation was first

introduced by Goodman et al. [4] and formally defined
by Page [5]. Given a gene tree for a gene family and a
containing species tree, a reconciliation between them
represents an evolutionary scenario of the gene family
within the evolutionary history represented by the spe-
cies tree [4]. To study gene duplication history, gene
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tree and species tree are reconciled to minimize the
number of gene duplications and/or losses. The mathe-
matical and algorithmic issues of gene tree and species
tree reconciliations have been intensively studied in the
past decade [6-14]. For example, it has been shown that
the so-called least common ancestor (LCA) reconcilia-
tion has the minimum duplication and loss cost [9,15].
Although the LCA reconciliation is optimal in terms

of the duplication cost, it may not represent the true
evolution of the gene family being considered. Indeed,
recent studies suggest that more than one reconcilia-
tions may occur with the highest probability [16,17].
Such studies [3,14,17,18] in the stochastic framework
assume that the discordance between a gene tree and a
species tree is caused by incomplete lineage sorting and
adopt Kingman’s coalescent theory from population
genetics [19].
The fact that the LCA reconciliation may not be the

unique optimal with respect to the duplication cost
motivates researchers to study the space of all the
reconciliations and develop algorithms to enumerate
nearly-optimal reconciliations for a species tree and a
gene tree [20,21]. In this paper, we take a different
approach to these two issues. We generalize the LCA
reconciliation to define an arbitrary reconciliation as a
vertex-mapping from a gene tree to a species tree that
preserves the hierarchical structure of the gene tree.
Our approach is essentially different from the existing
ones [20,22], where the specific mutation events are
used and a gene tree vertex is mapped to a species
tree branch to specify a duplication event. One advan-
tage of our approach over the others is that we sepa-
rate reconciliation concept from the cost models that
are used to measure the tree discordance. Because of
this, we are able to study the structural properties of
the space of all reconciliations between a gene tree
and a species tree in the same manner for each of the
three cost models. We show that the LCA reconcilia-
tion has not only the minimum duplication and loss
cost [9,15], but also the minimum deep coalescence
cost. We also present a novel characterization of the
reconciliations with the optimal duplication cost, and
develop efficient algorithms for enumerating (nearly-)
optimal reconciliations with respect to each cost
model.

Methods
Basic notations
Species evolve from their common ancestor through a
series of speciation events. A species tree represents the
evolutionary history of a set of species. A gene family
might evolve from its common ancestral gene through
gene duplication and loss events. Here we will assume
that no lateral gene transfer has occurred.

Both gene and species trees are rooted trees with
labeled leaves. In a species tree, a leaf x represents a
species, the label of x. Hence, the species tree is
uniquely leaf-labeled. In a gene tree, a leaf y represents
a gene found in a species. To infer the duplication his-
tory of a gene family, its gene tree and the containing
species tree is reconciled [4]. For this purpose, a leaf of
a gene tree is labeled with the containing species. Since
a species may contain duplicate genes, two leaves in a
gene tree can have the same label.
Let T be a species or gene tree; its vertex set and edge

set are denoted by V(T) and E(T), respectively. Given
two vertices u and v in T, there exists a unique path P
(u, v) from u to v. The number of edges in P(u, v),
denoted by d(u, v), is called the distance between u and
v. Note that d(u, v) = 0 if and only if u = v. The node v
is a descendant of u or u is an ancestor of v, denoted by
v ≤ u, if u is on the unique path from r(T), the root of
T, to v. For simplicity, we also write v <u if v ≤ u and v
≠ u. Given a set A of vertices in T, u is a common
ancestor of A if and only if v ≤ u for every v Î A. In
addition, if u ≤ u′ for any other common ancestor u′ of
A, then we say u is the least common ancestor of A,
written as lca(A), or lca(u1, ..., uk) if A = {u1, ..., uk}.
For each vertex u in T with u ≠ r(T), the parent of u,

denoted by p(u), is the unique vertex in T that is adja-
cent to u and contained on the path from r(T) to u. In
this case, u is also called a child of p(u). The out-degree
of u, denoted by d(u), is defined as the number of the
children of u. Obviously, a node is a leaf if and only if
its out-degree is 0. Non-leaf nodes are internal nodes;
they form a subset V°(T) of V(T). If every internal vertex
has out-degree two, then T is binary. For an internal
vertex u in a binary tree, its two children are denoted
by u1 and u2, unless stated otherwise. In this study, we
will focus on the case that gene trees and species trees
are binary. For a vertex u, we use L(u) to denote the set
of the labels of its leaf descendants and call it the cluster
induced by u. Finally, we use L(T) to denote the set of
leaf labels, i.e., the cluster induced by the root of T.

Reconciliation between gene tree and species tree
Let S be a species tree over a set of species and G a
gene tree such that L(G) ⊆ L(S), i.e., G is over all the
homologous genes of a gene family found in some spe-
cies. A map f from V(G) to V(S) is order-preserving if
for each pair of vertices u, v in G, u ≤ v implies f(u) ≤ f
(v); it is leaf-preserving if, for each leaf x in G, f(x) is the
unique leaf in S that has the same label.
A reconciliation between a gene tree G and a species

tree S is a leaf-preserving and order-preserving map
from V(G) to V(S). Clearly, a reconciliation f between G
and S is necessarily an inclusion-preserving mapping
(see [8]), that is, for each pair of vertices u, v in G, u ≤
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v implies L(f(u)) ⊆ L(f(v)). However, the reverse state-
ment is not true. For instance, the mapping that maps
each vertex of G to the root of S is an inclusion-preser-
ving mapping, but according to our definition, it is not
leaf-preserving, and hence not a reconciliation.
Note that our definition is consistent with the one

used in [20], where a reconciliation is defined as a
mapping from V(G) to V(S) ∪ E(S) that satisfies three
constraints: base constraint, tree mapping constraint
and ancestor consistency constraint. Roughly speaking,
our order-preserving condition corresponds to the
ancestor consistency constraint, and the leaf-preser-
ving condition is related to the base constraint, while
the tree mapaaping constraint is not needed in our
setting. The main difference between these two frame-
works is the model used to interpret mappings. For
example, in [20], a duplication event is associated to a
vertex v in G if and only if v is mapped to an edge,
while in our model, whether v is associated with a
duplication event is not solely determined by the
image of v.
A reconciliation represents a hypothetical evolutionary

history of the gene family. In a gene tree, an internal
vertex u represents the common ancestor of the genes
represented by the leaves below it. The property just
reflects the intuitive fact that u is an ancient gene
appearing in some common ancestor of the species
from which the genes are taken. Recall that in species
tree each branch represents an ancestral species. Under
the reconciliation f, we considered u as the gene ances-
tor found in the species represented by the branch
entering f(u).
There is a canonical partial order ≼ on the set of

reconciliations between G and S: for any f′ and f, f′ ≼ f if
and only if f′(v) ≤ f(v) holds for every vertex v in G.
Define a mapping M from G to S recursively as:

M u
u

( )
,

=
the unique leaf with the same label  if  is a leaf;

lcca otherwise.( ( ), ( )),M u M u1 2

⎧
⎨
⎩

M is called the least common ancestor (LCA) reconci-
liation between G and S. Note that we have M ≼ f for
every reconciliation f between G and S, because it is
easy to see that M(u) ≤ f(u) holds for all u Î V(G), by a
bottom-up traversal.

Inference of gene duplications
If the discord of a gene tree G and its containing species
tree S is due to gene duplication, a reconciliation f between
them represents a plausible duplication history of genes.
For an internal vertex u, a duplication event is associated
with u if and only if one of the following two conditions
holds: (D-i) f(u) = f(u1), f(u) = f(u2) or both hold; (D-ii) P(f
(u), f(u1)) and P(f(u), f(u2)) contain a common edge. In the
literature (see [5]), when the LCA reconciliation M is used
for inferring gene duplications, the duplication condition
used is (D-i). This is correct for the LCA reconciliation
between a gene tree and a species tree. However, this
stringent condition is no longer appropriate as the defini-
tion of duplication events for arbitrary reconciliations. For
example, consider the reconciliation f between the gene
tree G and the species tree S as in Figure 1. If the original
definition is used, as proposed in [8], only one duplication
is inferred, which is associated with r. However, one dupli-
cation cannot produce such a gene family having the gene
tree G. On the other hand, if our proposed definition is
used, two duplications are inferred, one associated with r
and the other with b; the implied duplication scenario is
given in Figure 2.
Now, for an internal node u, we let δf(u) = 1 if there is

a duplication event associated with it, and δf(u) = 0
otherwise. Then the gene duplication cost gd (f) of f is
defined as:

X

r
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Figure 1
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gd( ) : ( ).
( )

f uf

u V G

=
∈
∑ d (1)

Gene loss cost
Let G be a gene tree, S a species tree and f a reconcilia-
tion between G and S. Then the number of losses lf(u)
associated to an internal vertex u is defined as:

l u
d f u f u d f u f u u

d f u f uf
f( ) :

( ( ), ( )) ( ( ), ( )), ( ) ,

( ( ), ( )
=

+ =1 2

1

1if d
)) ( ( ), ( ))+ −

⎧
⎨
⎩ d f u f u2 2 otherwise.

Note that our definition of lf(u) is a generalization
of the one introduced by Ma et al. in [6], and is con-
sistent with the one in [20]. When f is the LCA
reconciliation, our definition agrees with the tradi-
tional one [5,6]. For later use, it is often convenient
to combine the two formulae in the above definition,
i.e., we have:

l u d f u f u d f u f u uf f( ) ( ( ), ( )) ( ( ), ( )) ( ( ) ).= + + ⋅ −1 2 2 1d (2)

For simplicity, we also set lf(x) = 0 for any leaf x of G.
The gene loss cost gl(f) of f is defined as:

gl( ) : ( ).
( )

f l uf

u V G

=
∈
∑ (3)

For example, for the reconciliation f in Figure 1, we
have gl(f) = 7 by noting that:

l a l c l r l bf f f f( ) ( ) ( ) ( ) ,= = = =1 4 and 

which can also been observed from Figure 2.

Deep coalescence cost
If the discord of a gene tree G and a species tree S is
due to incomplete lineage sorting, a reconciliation f

gene loss

1 2 543

speciation

duplication

Figure 2
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between them is measured by the deep coalescence cost
[3]. Given a branch e in S, we say that there are k (k >
0) extra lineages (with respect to f) failing to coalesce on
e, denoted by τf(e) = k, if there exist k + 1 distinct edges
(ui, vi) (1 ≤ i ≤ k + 1) in G such that e is on the path P(f
(ui), f(vi)) for each i; otherwise, we let τf(e) = 0. The deep
coalescence cost dc(f) of f is then defined as:

dc( ) : ( )
( )

f ef

e E S

=
∈
∑ t

i.e., the total number of the extra lineages with respect
to f on all branches of S. For example, for the reconcilia-
tion f in Figure 1, we have dc(f) = 3 by noting that:

t t tf f fR X X Y Y Z(( , )) (( , )) (( , )) .= = = 1

Results
The monotonicity of the reconciliation costs
We first have the following useful observations on the
gene duplication cost.
Lemma 1 Let f be a reconciliation between a gene tree

G and a species tree S. If u is an internal vertex in G
with children u1 and u2, then the following observations
hold.
(i): δf(u) = 1 if and only if f(u) Î {f(u1), f(u2)} or lca(f

(u1), f(u2)) <f(u).
(ii): δf(u) = 0 if and only if f(u1) ≠ f(u) ≠ f(u2) and lca(f

(u1),f(u2)) = f(u).
(iii): If L(f(u1)) ∩ L(f(u2)) ≠ ∅, then δf(u) = 1.
(iv): If f(u) >M(u), then δf(u) = 1.
(v): If δf(u) = 0, then f(u) = M(u) and L(f(u1)) ∩ L(f(u2))

= ∅.
Proof: Since δf(u) is either 0 or 1, (ii) clearly follows

from (i), and (v) follows from (iii) and (iv).
To establish (i), it suffices to show that lca(f(u1), f(u2))

<f(u) if and only if P(f(u), f(u1)) and P(f(u),f(u2)) share a
common edge. Indeed, if we have lca(f(u1),f(u2)) <f(u),
then P(f(u), f(u1)) and P(f(u), f(u2)) share the edge that is
incident to lca(f(u1), f(u2)) and its parent. On the other
hand, if P(f(u), f(u1)) and P(f(u), f(u2)) share a common
edge (s, s′) with s′ <s, then s′ is a common ancestor of f
(u1) and f(u2) such that s′ <s ≤ f(u). Therefore we have L
(f(u1), f(u2)) ≤ s′ <f(u), as required.
Now we proceed to prove (iii). If L(f(u1)) ∩ L(f(u2)) ≠

∅, then we have either f(u1) ≤ f(u2) or f(u2) ≤ f(u1). By
symmetry, we may assume f(u1) ≤ f(u2), and hence lca(f
(u1), f(u2)) = f(u2) holds. Now there are two cases to be
considered, i.e., f(u2) = f(u) and f(u2) <f(u). By (i), we can
conclude δf(u) = 1 in both of them.
It remains to show (iv). Note first that we can

assume lca(f(u1), f(u2)) >M(u), because otherwise we
have lca( f(u1), f(u2)) = M(u) <f(u), and hence δf(u) = 1
by (i). It follows that f(ui) >M(u) for some i = 1, 2.

Therefore, by switching u1 and u2 if necessary, we can
further assume f(u1) >M(u). Now we need to consider
two cases: f(u2) >M(u) and f(u2) ≤ M(u). If f(u2) >M(u),
then f(u1) and f(u2) are both contained in the path P(f
(u), M(u)), and thus L(f(u1)) ∩ L(f(u2)) ≠ ∅ holds. On
the other hand, f(u2) ≤ M(u) implies f(u2) ≤ f(u1), and
hence also L(f(u1)) ∩ L(f(u2)) ≠ ∅. Since in both cases
we have L(f(u1)) ∩ L(f(u2)) = ∅, by (iii) we obtain δf(u)
≠ 1, as required. Q.E.D
Note that (i) in the above lemma provides an addi-

tional characterization of gene duplication events.
This characterization is easier for calculation while
the original definition is more natural, from an evolu-
tionary point of view. By (v) in the above lemma, if a
speciation event happens at u, i.e., δf(u) = 0, then we
have f(u) = M(u). This agrees with the definition of
reconciliation in [20]. Now we have the following
main result.
Theorem 2 Let f and f′ be two distinct reconciliations

between a gene tree G and a species tree S with f′ ≼ f;
then we have:

gd gd  gl gl   dc dc( ) ( ), ( ) ( ), ( ) ( ).′ ≤ ′ < ′ <f f f f and f f (4)

In addition, δf′(u) ≤ δf(u) for each u Î V(G), where the
equality holds for each u Î V(G) if and only if gd(f′) =
gd(f).
Proof: Let D(f′, f) be the number of vertices v in V(G)

with f(v) ≠ f′(v); then the following observation plays an
important role in our proof of the theorem.
Lemma 3 Let f and f′ be the two reconciliations as

given in the theorem. Then there exists a reconciliation f*
between G and S that satisfies the following three condi-
tions:

′ ′ = ′ − =f f f D f f D f f and D f f      * , ( , *) ( , ) ( *, ) .1 1

Proof: To establish the above lemma, we select a mini-
mal element vmin (with respect to the partial order ≤ on
V(G)) in the set {u Î V(G) : f(u) ≠ f′(u)}, which is neces-
sarily non-empty by the assumption f ≠ f′. In other
words, f(v) = f′(v) holds for any v such that v <vmin.
Now consider the map f* defined as:

f v
f v v v

f v
*( ) :

( ) ,

( )
min min=

′ =⎧
⎨
⎩

if 

otherwise.

Then f* is a reconciliation between G and S. To see
this, note first that f and f′ are reconciliations, and
hence they are leaf-preserving. Therefore we know f* is
also leaf-preserving. Let u and v be a pair of vertices in
G with u ≤ v. If u, v Î V(G) – {vmin}, then f*(u) ≤ f*(v)
because f is order-preserving. On the other hand, if u =
vmin and v ≠ u, then we also have:
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f v f v f v f v f v*( ) ( ) ( ) ( ) *( ),min min= ′ ≤ ′ ≤ =

where we use the fact that f′ is order-preserving and f′
≼ f in the first and second inequality, respectively.
Finally, suppose v = vmin and u ≠ v. By the way that

vmin is chosen, we have f′(u) = f(u), and hence also:

f u f u f u f v f v*( ) ( ) ( ) ( ) *( ).min min= = ′ ≤ ′ =

This shows f* is order-preserving, and hence f* is
indeed a reconciliation between G and S.
It remains to show that f* satisfies the three conditions

required in the claim. Since f′ ≼ f, from the construction
of f* we have f′ ≼ f* ≼ f. Noting that vmin is the only ver-
tex in V(G) that is mapped to different images by f and
f*, we have D(f*, f) = 1. Finally, for any v in G, f′(v) ≠ f*
(v) if and only if v ≠ vmin and f′(v) ≠ f(v). In other
words, we have D(f′, f*) = D(f′, f) – 1, which completes
the proof of Lemma 3. Q.E.D.
Now it suffices to prove the theorem for the special

case D(f, f′) = 1. Indeed, if D(f, f′) = m > 1, then by
Lemma 3, there exist m +1 reconciliations f1 := f′, f2,
..., fm+1 := f so that fi ≼ fi+1 and D(fi, fi+1) = 1 for 1 ≤ i
≤ m. Applying the theorem (in the special case men-
tioned above) for each pair of reconciliations fi and fi
+1, we have gd(fi) ≤ gd(fi+1) for 1 ≤ i ≤ m, and hence
gd(f′) = gd(f1) ≤ gd(fm+1) = gd(f). Similarly, we can
show gl(f′) < gl(f), dc(f′) < dc(f), and δf′(u) ≤ δf(u) for
each u Î V(G), among which the last one implies that
gd(f) = gd(f′) if and only if δf(u) = δf′(u) for each u Î V
(G).
Now let v be the unique vertex in G with f(v) ≠ f′(v).

Clearly, v is an internal vertex. If v is not the root, let v0
:= p(v) be its parent and v3 be its sibling, that is, the
other child of v0. The remainder argument will be
divided into three cases, according to the cost measure
considered.

Duplication cost case
Noting that f(vi) = f′(vi) ≤ f′(v) <f(v) for i = 1, 2, we have:

lca( ( ), ( )) ( ) ( ).f v f v f v f v1 2 ≤ ′ <

By (i) in Lemma 1, this shows δf(v) = 1, and hence δf
(v) ≥ δf′(v). If v is the root of G, then we have gd(f) – gd
(f′) = δf(v) – δf′(v) ≥ 0, as required.
Now we assume v is not the root, and proceed to

show δf(v0) ≥ δf′(v0). To begin with, we can assume δf′
(v0) = 1, because otherwise the inequality trivially holds.
In addition, we can further assume f(v) <f(v0) and f(v3)
<f(v0), because otherwise we have δf(v0) = 1, which also
implies the inequality. It follows that we have:

d ′ = ′ ≤ < = ′ ′ ≤ < =f v f v f v f v f v f v f v f v( ) , ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 3 3 01   and ′′f v( ).0

By (i) in Lemma 1, this leads to lca(f′(v), f′(v3)) <f′(v0)
= f(v0). Let s be the child of f(v0) so that lca(f′(v), f′(v3))
≤ s. Since f′(v) ≤ f(v) <f(v0) and f′(v3) = f(v3), s is also a
common ancestor of f(v) and f (v3). Therefore we have
lca (f′ (v), f′ (v3)) ≤ s <f(v0). Using (i) in Lemma 1 again,
we can conclude δf(v0) = 1, as required.
Since v is the only vertex in G with f(v) ≠ f′(v), for

each internal vertex g Î V(G) – {v, v0} and its two chil-
dren g1 and g2, we have:

f g f g f g f g f g f g( ) ( ), ( ) ( ) ( ) ( ).= ′ = ′ = ′  and 1 1 2 2

By definition, this implies d df fg g( ) ( )’= for all g Î V
(G) – {v, v0}. Combining the above observations, we can
conclude that δf(u) ≥ δf′(u) for each u Î V(G). This
leads to gd(f) ≥ gd(f′), where the equality holds if and
only if δf(u) = δf′(u) for each u Î V(G).

Gene loss case
Since f(vi) ≤ f′(v) <f(v) holds for i = 1,2, we have:

d f v f v d f v f v d f v f v ii i( ( ), ( )) ( ( ), ( )) ( ( ), ( )) , .= ′ + ′ = for 1 2 (5)

Together with the definition of lf, we obtain:

l v l v d f v f v d f v f v v

d f
f f f( ) ( ) ( ( ), ( )) ( ( ), ( )) ( ( ) )

( (

− = + + ⋅ −

− ′
′ 1 2 2 1d

vv f v d f v f v v

d f v f v
f), ( )) ( ( ), ( )) ( ( ) )

( ( ), ( )) (
1 2 2 1

2 2

− ′ − ⋅ −

= ′ + ⋅
′d

d ff fv v( ) ( )).− ′d

Since δf(v) ≥ δf′(v), following the proof of the duplica-
tion cost case, and d(f(v), f′(v)) > 0, we can conclude
that lf(v) – lf′(v) ≥ 0. If v is the root of G, then this leads
to gl(f) > gl(f′), as required.
Now we assume v is not the root of G. Then we have:

l v l v d f v f v d f v f v v

d
f f f( ) ( ) ( ( ), ( )) ( ( ), ( )) ( ( ) )0 0 0 0 3 02 1− = + + ⋅ −

−
′ d

(( ( ), ( )) ( ( ), ( )) ( ( ) )

( ( ), ( ))

f v f v d f v f v v

d f v f v
f0 0 3 02 1′ − − ⋅ −

= − ′
′d

++ ⋅ − ′2 0 0( ( ) ( )),d df fv v

where we use the observation that f′(v) <f(v) ≤ f(v0)
implies:

d f v f v d f v f v d f v f v( ( ), ( )) ( ( ), ( )) ( ( ), ( )).0 0′ = + ′

Combining these results, we have:

gl gl( ) ( ) ( ) ( ) ( ) ( ) ( ( ), ( )) (f f l v l v l v l v d f v f vf f f f− ′ = + − − = ′ + ⋅′ ′0 0 2 ggd gd( ) ( )).f f− ′

Since gd(f) ≥ gd(f′), following the proof of the duplica-
tion cost case, and d(f(v), f′(v)) > 0, we obtain gl(f) > gl(f
′), which completes the proof of this case.

Deep coalescence case
Let Ef(S) be the set of edges e in S such that there exists
an edge (u,u′) in G such that e is contained in the direc-
ted path from f(u) to f(u′). Now by counting extra
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lineages in terms of the edges contained in paths that
have form P(f(u), f(u′)) for some edge (u, u′) in G, we
have:

dc( ) ( ) ( ( ), ( )).
( , ) ( )

f E S d f u f uf

u u E G

= − + ′
′ ∈
∑ (6)

Since Ef(S) = Ef′(S) and f(u) = f′(u) for u ≠ v, the above
formula implies:

dc dc( ) ( ) ( ( ), ( )) ( ( ), ( )) ( ( ), (f f d f v f v d f v f v d f v f vi

i

i− ′ = − ′ = ′
=
∑

0

2

))) ,> 0

if v is not the root of G. Here in the second equality
we use the observation that f(v) is on the directed path
from f(v0) to f′(v), and for i = 1,2, f′(v) is on the directed
path from f(v) to f(vi). If v is the root of G, then a simi-
lar argument leads to:

dc dc( ) ( ) ( ( ), ( )) ,f f d f v f v− ′ = ⋅ ′ >2 0

which completes the proof. Q.E.D.
Since the LCA reconciliation is the minimal element

in the space of reconciliations, the above theorem leads
directly to the following result.
Corollary 4 Among all reconciliations between a gene

tree G and a species tree S, the LCA reconciliation has
(a) the minimum gene duplication cost[9], (b) the unique
one with the optimal gene loss cost[15]and the optimal
deep coalescence cost.
Note that there is a close relationship among the gene

duplication, gene loss and deep coalescence costs [7].
From their relationship, one can easily obtained the fact
that the LCA is the unique one with the optimal gene
loss cost from that it is the unique one with the optimal
deep coalescence, but the reverse is not clear.

Gd-optimal reconciliations
By Corollary 4, the LCA reconciliation is the unique
optimal reconciliation for the gene loss cost, as well as
the deep coalescence cost. However, the LCA reconcilia-
tion may not be the unique optimal one for the gene
duplication cost (see [15]). For example, for the reconci-
liation f in Figure 1 and the LCA reconciliation M
between the gene tree and species tree in Figure 1, we
have gd(f) = gd(M) = 2. Since the reconciliations with
the minimum gene duplication cost, which we shall
refer to as gd-optimal reconciliations, may not be
unique, in this section we will present a characterization
of them, using the theoretical results developed above.
By Theorem 2, a reconciliation f is gd-optimal if and

only if δf(u) = δM(u) holds for each vertex u in G. Based
on it, we will show that there exists a unique maximal
gd-optimal reconciliation M* so that f is gd-optimal if

and only if f ≼ M* holds. The reconciliation M* between
a gene tree G and a species tree S can be constructed as
follows. For all u Î V(G) with δM(u) = 0, M* maps u to
M(u), i.e., M*(u) = M(u). For those u Î V(G) with δM(u)
= 1, we shall define M*(u) recursively. If u = r(G), i.e., it
is the root of G, then M*(u) is defined as r(S), the root
of S. Otherwise, M*(p(u)) has been defined, and M*(u) is
defined as:

M u
M p u p u

s S
M*( )

*( ( )), ( ( )) ,
=

=if 

The largest vertex  in  sat

d 1

iisfying otherwise.M u s M p u( ) *( ( )),≤ <
⎧
⎨
⎩

If u is a vertex in G such that u ≠ r(G), then δM(p(u))
= 0 implies M(u) <M(p(u)) ≤ M*(p(u)), hence the map-
ping M* is well defined. In addition, M* is also a recon-
ciliation between G and S. To see this, note that if u is a
leaf in G, then we have δM(u) = 0, which implies M*(u)
= M(u) and hence M* is leaf-preserving. On the other
hand, by the construction of M*, it is order-preserving.
For example, for the gene tree and species tree in Figure
1, the reconciliation M* is defined as:

M a Y M b M c M r R M i i i*( ) , *( ) *( ) *( ) , *( ) .= = = = = ≤ ≤  and  for 1 5

In this example, it is not difficult to check that gd(f) =
gd(M*) holds for all f ≼ M*, which also follows directly
from the following general result.
Theorem 5 Given a gene tree G and a species tree S, a

reconciliation f is gd-optimal if and only if M ≼ f ≼ M*
holds. In particular, M* is the unique maximal gd-opti-
mal reconciliation between G and S.
Proof: We need only to show that gd(f) = gd(M) for a

reconciliation f if and only if M ≼ f ≼ M* holds, because
this implies M* is indeed the unique maximal gd-opti-
mal reconciliation.
To show that gd(M) = gd(f) holds for every reconcilia-

tion f with M ≼ f ≼ M*, it suffices to prove gd(M*) = gd
(M), because together with Theorem 2, this implies gd(f)
= gd(M) = gd(M*). To this end, we need only to show
δM(u) = δM*(u) for each internal vertex u in G. Now fix
an internal vertex u in G. Since M ≼ M*, we have δM*(u)
≥ δM(u) by Theorem 2. If δM(u) = 1, then we have δM*

(u) = 1 = δM(u). Therefore it remains to consider the
case δM(u) = 0. By (ii) in Lemma 1, δM(u) = 0 implies M
(u1) ≠ M(u) ≠ M(u2). Together with the construction of
M*, we have M*(u1) ≠ M*(u) ≠ M*(u2). Since M(ui) ≤
M*(ui) ≤ M*(u) for i = 1, 2, we have:

lca lca( ( ), ( )) ( *( ), *( )) *( ) ( ).M u M u M u M u M u M u1 2 1 2≤ ≤ =

By the construction of M, we know lca(M(u1), M(u2))
= M(u), and hence:

lca( *( ), *( )) *( ).M u M u M u1 2 =

By (ii) in Lemma 1, this shows δM* (u) = 0, as required.
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To establish the other direction, assume gd(f) = gd(M)
for a reconciliation f, and we shall show f ≼ M*, i.e., f(u)
≤ M*(u) for each internal u in V(G). To this end, fix an
internal vertex u in G, and denote its two children by u1
and u2. If δf(u) = 0, then by (v) in Lemma 1 we have f
(u) = M(u), and hence f(u) = M*(u). Therefore, it
remains to prove f(u) ≤ M*(u) for δf(u) = 1, which will
be established by induction. The base case is u being
the root of G; then M*(u) is the root of S, and f(u) ≤ M*
(u) trivially holds. For the induction step, let u0 := p(u)
be the parent of u; then the induction assumption is f
(u0) ≤ M*(u0). Now if δM(u0) = 1, then by the definition
of M* we have:

f u f u M u M u( ) ( ) *( ) *( ).≤ ≤ =0 0

Otherwise, we have δM(u0) = 0. Together with M ≼ f,
M ≼ M* and gd(M) = gd(f) = gd(M), this leads to δf(u0)
= δM*(u0) = 0 by Theorem 2. In view of (v) in Lemma 1,
we obtain M(u0) = f(u0) = M*(u0). Since δf(u0) = 0, (ii)
in Lemma 1 implies f(u) <f(u0), and hence also:

M u f u f u M u( ) ( ) ( ) ( ).≤ < =0 0

By definition, M*(u) is the largest vertex in the set {s :
M(u) ≤ s <M*(u0)}. Since M*(u0) = M(u0), we can con-
clude f(u) ≤ M*(u), which completes the proof. Q.E.D.

Enumerate nearly-optimal reconciliations
Recall that there are other reconciliations having the
minimum duplication cost than the LCA reconciliation.
Moreover, in a biological study, a nearly-optimal recon-
ciliation could be the correct solution to its problem.
Therefore, it is of interest to study the following pro-
blem [20]: Given a positive number ε, compute the set
of nearly-optimal reconciliations that have the duplica-
tion cost less than or equal to gd(M) + ε, where gd(M)
is the minimum duplication cost a reconciliation
between the gene tree and the species tree can have.
Such a subset of the nearly-optimal reconciliations is
denoted by Γε(G, S, gd), which is also a subset of Γ(G,
S), the set of all reconciliations between G and S.
In this section we will present an algorithm for enu-

merating Γε(G, S, gd). To this end, we need to introduce
some additional definitions. Following [20], for a vertex u
Î V(G), let id(u) be the number of vertices that precede
u according to the prefix traversal of G, where the left
child u1 of a vertex u Î V°(G) is visited before the right
child u2. For a reconciliation f in Γ(G, S), and a vertex u
Î V°(G) with f(u) ≠ r(S), f[u] is a mapping defined as:

f u v
p f u v u

f v
[ ]( ) :

( ( )) ,

( )
=

=⎧
⎨
⎩

if 

otherwise.

For an internal vertex u with u ≠ r(G), f[u] is a recon-
ciliation if and only if f(u) <f(p(u)); for the root r(G) of
G, f[r(G)] is a reconciliation if and only if f(r(G)) <r(S).
In both cases, we will say that the reconciliation f[u] is
obtained from f by applying a Nearest Mapping Change
(NMC) operator on u; this operator is adapted from the
one introduced in [20]. Similarly, we can define f[u1,... ,
uk] for a sequence of (not necessarily distinct) vertices
in G. Note that for a reconciliation f in Γ(G, S) with f ≠
M, there exists a unique sequence u1, ... , uk so that f =
M[u1, ... , uk] and id(ui) ≤ id(ui+1) for i = 1,..., k – 1; now
id(f) is defined as id(uk), where uk is the last vertex in
this sequence. For completeness, we will use the con-
vention id(M) = 0. Finally, for a reconciliation f in Γ(G,
S), we set:

K f u V G f u G S u f( ) : { ( ) : [ ] ( , ) ( ) ( )},= ∈ ° ≥  is in  and id idΓ

where K(f) will be regarded as an ordered list (with the
order induced by id).
The NMC operator induces a tree structure on the set

Γ(G, S): the root is M; f′ is a child of f if and only if f′ = f
[u] for some u Î K(f). This tree, whose vertex set is Γ(G,
S), will be denoted by T(G, S). The idea of considering a
tree structure on the space of reconciliation was intro-
duced in [20]. Clearly, by Theorem 2, the restriction of T
(G, S) on Γε(G, S, gd) is a subtree, which will be referred
to as Tε(G, S, gd). Now we can state our algorithm as fol-
lows, which enumerates Γε(G, S, gd) by a traversal of
Tε(G, S, gd). Here ⊔ stands for disjoint union.

Algorithm for enumerating nearly - optimal reconciliations                            

A gene tree  and a specInput :  G iies tree  with , and .

The set 

S L G L S

G

( ) ( )

(

⊆ ≥e

e

0

Output :   Γ ,, , )

:

S gd  of nearly-optimal reconciliations.

 Construct the1   LCA reconciliation  between  and .

 Set  id

M G S

M M2 : : { }, (Γ = )) , ( ) : , : { }.

: , :

:

= = =
≠ ′ = {

0 0

3 0 0

4

  

 While  set  and 

   

Δ M B M

B B do

FFor each  

For each node , construct the ma

f B

u K f

∈ {
∈

,

: ( )

do

5 pp  and set id id

a Calculate 

′ = ′ =

′ =

f f u f u

f
f

: [ ], ( ) ( ).

: ( ) :
( )

5 Δ
Δ ++ − =

+ + − −
′

′ ′

d d
d d d d
f f

f f f f

u u u r G

f u p u u p

( ) ( ), ( );

( ) ( ) ( ( )) ( ) ( (

if 

Δ uu

f B f B

)),

: ( ) , { } .

otherwise.

b If  set 

⎧
⎨
⎪

⎩⎪
′ ≤ ′ ← ′ ′ }5

6

Δ e    undo

:: . .

: .

   Set  and 

 Output              

Γ Γ
Γ

← ′ ← ′ } B B B   undo

7                                                                                                                            

 

 

 

To see the running time of the above algorithm, note
first that for a reconciliation f, K(f) is a subset of V°(G),
and for each u Î V°(G), whether u Î K(f) or not can be
determined in constant time, when id(u) and id(f) are
known. In addition, if δM is given, then line 5a and 5b
can be computed in constant time; the proof of this
observation will be presented in the full version of this
paper. Therefore, the above algorithm runs in time O(|V
(G)| . |Γε(G, S, gd)|), plus additional preprocessing time
to compute id(u) and δM(u) for each u Î V°(G).
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Two facts prevent us from designing better algorithm
for the enumeration problems. The first one concerns
the boundary set Bε(G, S, gd), which consists of all
reconciliation f in Γ(G, S) – Γε(G, S, gd) such that for
some f* Î Γε(G, S, gd), f is a child of f* in T(G, S). In
order to enumerate Γε(G, S, gd), an algorithm typically
needs to visit not only the reconciliations in Γε(G, S,
gd), but also those in Bε(G, S, gd). However, |Bε(G, S,
gd)| could be as large as O(|V(G)| . |Γε(G, S, gd)|). For
instance, if G and S have the same tree structure on n
+1 leaves, then Γ0(G, S, gd) = {M} but |B0(G, S, gd)|
contains n – 1 reconciliations. Furthermore, we have |Γ1
(G, S, gd)| = n and |B1(G, S, gd)| = Θ(n2).
The other concern is about the set Kε(f) := {u Î V(G) :

f[u] is in Γε(G, S, gd) and id(u) ≥ id(f)}, which is needed
if we want to explore Γε(G, S, gd) without visiting the
boundary set Bε(G, S, gd). However, some properties of
these two sets, K(f) and Kε(f), are different. For instance,
the following property of K(f) is crucial to the optimal
algorithm for exploring Γ(G, S) (see Property 5 and Pro-
position 4 in [20]): If u is the first vertex in K(f) and f′ =
f[u], then we have K(f) – K(f′) ⊆ {u}. However, this does
not hold for Kε. To see it, considering the example men-
tioned in the previous paragraph, and denoting the first
child of r(G) by r1, then we have K1(M) = V°(G) – {r(G)}
while K1(M[r1]) = ∅.
Since Γ0(G, S, gd) contains the gd-optimal reconcilia-

tions, the above algorithm also provides a method for
enumerating all the optimal reconciliations between a
gene tree and a species tree. Since Tε(G, S, gl), as well as
Tε(G, S, dc), is also a subtree of T(G, S), we also remark
that it can be modified to list nearly-optimal reconcilia-
tions with respect to the gene loss or deep coalescence
cost. Due to the limited space, the details of these algo-
rithms are omitted here and one is referred to the full
version of this work appearing in our personal website.
As our on-going work, the algorithms presented here
will be coded in C++ and evaluated by comparing them
with the existing ones on simulation data.

Conclusions
To investigate all reconciliations between a gene tree
and a species tree, we have generalized the LCA recon-
ciliation to define an arbitrary reconciliation as a vertex
mapping from the gene tree to the species tree. This
provides a new framework for investigating various
mathematical issues of the reconciliation space. It allows
us to give a unified approach to study reconciliations
with each of the cost models. As applications, we show
that the LCA reconciliation is the unique one having
the smallest deep coalescence cost, and present a char-
acterization of the reconciliations with the minimum
gene duplication cost; we also develop efficient algo-
rithms to enumerate nearly-optimal reconciliations with

each cost models. In future, we shall incorporate other
evolutionary forces behind the gene tree heterogeneity,
such as horizontal gene transfer and recombination, into
this framework.
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