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Abstract

Background: ChIP-seq has become an important tool for identifying genome-wide protein-DNA interactions,
including transcription factor binding and histone modifications. In ChIP-seq experiments, ChIP samples are usually
coupled with their matching control samples. Proper normalization between the ChIP and control samples is an
essential aspect of ChIP-seq data analysis.

Results: We have developed a novel method for estimating the normalization factor between the ChIP and the
control samples. Our method, named as NCIS (Normalization of ChIP-seq) can accommodate both low and high
sequencing depth datasets. We compare statistical properties of NCIS against existing methods in a set of diverse
simulation settings, where NCIS enjoys the best estimation precision. In addition, we illustrate the impact of the
normalization factor in FDR control and show that NCIS leads to more power among methods that control FDR at
nominal levels.

Conclusion: Our results indicate that the proper normalization between the ChIP and control samples is an
important step in ChIP-seq analysis in terms of power and error rate control. Our proposed method shows excellent
statistical properties and is useful in the full range of ChIP-seq applications, especially with deeply sequenced data.

Background
Genome-wide protein-DNA interactions including tran-
scription factor binding and epigenomic modifications
play a crucial role in the programming of cell specific gene
expression. Therefore, their genome-wide mapping with
the ChIP-seq (Chromatin immunoprecipitation followed
by sequencing) technology can significantly advance our
ability to understand biology and human diseases. As a
result, ChIP-seq is now routinely used in many applica-
tions, e.g., [1-3].
In a ChIP-seq experiment, the DNA fragments from

binding sites of a target protein or from sites of specific
histone modifications are enriched through immunopre-
cipitation. These sites can be sharp point sources in tran-
scription factor binding, or long and diffused regions in
some histone modifications, or combination of both in
RNA polymerase-DNA interactions [4]. Then sequenced
ends (reads) of millions DNA fragments are aligned to a
reference genome to identify enrichment sites with over-
abundance of reads. In ChIP samples, there are large
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number of fragments generated from non-specific “back-
ground” regions throughout the genome. Thus, the reads
in a ChIP sample can be considered as a mixture of
enrichment signal reads and background noise reads [5].
Early studies without the use of control samples have

assumed uniform background read distribution when
assessing the significance of enrichment sites [6,7]. How-
ever, regions with high read counts do not necessarily con-
tain enrichment sites. Many follow-up studies have shown
that the distribution of reads is far from uniform and
is affected by many factors, including GC content [8,9],
mappability [10], chromatin structure and copy number
variation [11], among others. The most effective approach
to account for these known and other unknown biases
is to include a matching control sample that is generated
either from input DNA or by using non-specific antibody.
The ChIP and control samples usually are sequenced at

different depths (total number of reads). A common strat-
egy for making the samples “comparable” is to linearly
scale according to the sequencing depth ratio. Because
of the mixture nature of ChIP sample, it is reasonable to
align/normalize only the background reads of the ChIP
sample with respect to the control sample. Hence, an
appropriate normalization involves the estimation of the
background reads proportion (π0) among ChIP sample
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reads and the corresponding ChIP/control normalization
factor. The proper estimation of the normalization factor
is important for finding weak enrichment sites, especially
for those sites whose enrichment ratio is between the
sequencing depth ratio and the true normalization fac-
tor. The existence of weak enrichment sites has been
experimentally validated and shown to be biologically
meaningful [5].
The normalization factor is a critical parameter of most

ChIP-seq data analysis programs that can utilize control
samples. For example, CisGenome [12] and PeakSeq [10]
explicitly use the normalization factor to estimate p-values
under Binomial distribution. MACS [13], SPP [14], and
USeq [15], among many others, use the normalization
factor to linearly scale the control sample for compari-
son with the ChIP sample. Furthermore, many programs
(MACS, SPP, SISSRs [16] and others) estimate false dis-
covery rate (FDR) using a sample-swapping method as
follows. After computing an enrichment statistic for each
non-overlapping region, the FDR can be estimated as
RI(s)/RC(s), where RI(s) and RC(s) are the numbers of
enriched regions called on the control sample and the
ChIP sample, respectively, using the same threshold s on
the enrichment statistics. To make the statistics in ChIP
and control samples comparable, a normalization factor is
implicitly used in the FDR estimation. Therefore, the nor-
malization factor is a crucial parameter of enrichment site
detection and error rate control in ChIP-seq data analysis.
Last but not least, the estimation of background reads

proportion π0 is of scientific interest itself. π0 can be
viewed as an overall quality indicator which is related
to the specificity of the antibody used in an experiment,
experimental design, and other experimental protocols.
We have observed that π0 can vary from 0.3 to close
to 1 in many ChIP-seq datasets. Unless the number of
truly enriched regions is small, π0 close to 1 indicates
the scarcity of enrichment reads and the need for better
antibody or protocol, or both.
Many ChIP-seq data analysis programs (CisGenome,

SPP, PeakSeq and CCAT [5]) have proposed methods for
estimating the normalization factor; however, their per-
formances under diverse set of settings have not been
studied. Most of the above methods are intuitively appeal-
ing; but many rely on ad-hoc tuning parameters.
In this paper, we develop a novel normalization method

and compare it with existing methods through data-
driven simulations. We further demonstrate that our
method leads to better estimation accuracy, FDR control,
and power than other methods.

Methods
Empirical studies show that the background (non-signal)
parts of the ChIP sample and the control sample exhibit
a (approximately) linear relationship [10]. We further

demonstrate such linear relationship in human, worm
C.elegans and yeast S.cerevisiae ChIP-seq datasets in
[Additional file 1: Section 1]. We begin our exposition by
reviewing existing normalization strategies that are well
documented in the published journal articles and then
present our method.

Existing methods for estimating ChIP to control
normalization factor
Suppose there are N1 and N2 uniquely aligned reads for
the ChIP and the control samples, respectively. According
to the signal-noise model proposed by [5], the reads in the
ChIP sample can be decomposed into π0N1 background
and (1 − π0)N1 enriched signal reads. Then the correct
ChIP/control ratio should be r = π0N1

N2
. We will refer to r

as the normalization factor in the rest of the paper.
To estimate the normalization factor, the commonly

used set-up is to divide reference genome into non-
overlapping bins of width w, numbered from 1 to m. Let
n1i and n2i denote the total number of reads in the ith bin
in the ChIP sample and the control sample, respectively,
and ni = n1i + n2i denote the total number of ChIP and
control reads for bin i. If the knowledge of which bins are
within background regions were given to us by an oracle,
then a natural estimator of the ChIP/control ratio would
be

r̂ =
∑

i∈B n1i∑
i∈B n2i

, (1)

where B represents the index set of the background bins
provided by the oracle. Each existing normalization factor
estimation method employs a different approach for esti-
mating B. Given that enrichment sites tend to have high
read counts, bins with small total counts are more likely to
belong to background. CisGenome sets bin-width w = 100
bp and uses the bins with low total counts as background.
Specifically, Bw(t) = {i : ni ≤ t} and the total threshold t
is set to 1. As implied by this definition, Bw(t) depends on
the choice of w and t. Another idea, similar in spirit but
operating on the opposite direction, is to exclude bins with
high read counts. SPP estimates the background regions
by excluding highly “enriched” regions with a small
p-value either in the ChIP sample or the control sample
under uniformity assumption on the reads. Specifically,
SPP sets w = 1 Kbp and B = {i : min(p1i, p2i) > c}, where
p1i and p2i are the Poisson p-values for testing whether
the ith ChIP and control bin read counts are generated
from an uniform background read distribution, and the
threshold c is set to 10−5.
CCAT estimates B and the normalization factor in an

iterative fashion where B is estimated based on reads from
the positive strand and r is updated using reads from the
negative strand through (1). More specifically, in the jth
iteration, B = {i : n1i+ < r̂(j)n2i+}, where r̂(j) is the current
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estimate of the normalization factor which is initialized at
the sequencing depth ratio and n1i+ and n2i+ are ChIP and
control positive strand read counts in bin i with bin-width
w = 1 Kbp. The algorithm iterates till convergence.
A related method, PeakSeq, first defines enriched

regions by using a certain threshold of FDR on the height
of the ChIP sample read profile. Instead of using (1), Peak-
Seq then excludes a proportion (Pf ) of bins that overlap
with putative enrichment sites defined in the first step and
utilizes the slope of linear regression of ChIP against con-
trol bin counts (with w = 10 Kbp) as the normalization
factor.
All the abovemethods attempt to approximate the back-

ground region in some intuitive way; however they rely
on tuning parameters which are set in an ad-hoc fash-
ion. The suggested bin-width w ranges from 100 bp to
10 Kbp. Utilized definitions of the background regions B
depend on arbitrary thresholds on an array of parameters,
e.g., total count, p-value, and FDR. The same procedure
with different tuning parameters may lead to drastically
different estimates. In an application of PeakSeq [10], the
estimates of the normalization factor changes from 1.24 to
0.96 when the exclusion proportion Pf changes from 0 to
1. Furthermore, there aren’t any established guidelines for
optimally setting the tuning parameters.
Two other methods (MOSAiCS by [9] and ZINBA by

[17]) have adopted similar mixture-regression approaches
by modeling ChIP counts in background and signal
regions as functions of multiple covariates (including but
not limited to, control read count, mappability and GC
content). However, their regression coefficients of the
control read count are unlikely to be suitable for estimat-
ing normalization factor. This is because their regression
functions are usually more complicated than a simple lin-
ear relationship between ChIP and control read counts.
In MOSAiCS, the linear regression is on some power of
the control read count; whereas in ZINBA, there can be
interaction terms involving control read count.

Estimating normalization factor: NCIS
We propose a new method named as NCIS (Normal-
ization of ChIP-seq). Our method extends CisGenome’s
estimator by choosing the optimal value of bin-width w
and the threshold of total read counts t in a data-adaptive
manner. In general, the smaller the total count thresh-
old t, the more likely that bins with small total counts,
i.e., ni ≤ t, are from background regions, and thus,
the normalization factor estimated from (1) by treating
these bins as background tends to have smaller bias (devi-
ation of the normalization factor estimate to the true
value). CisGenome sets t to 1, the smallest possible non-
zero total count, so that bias can be minimized. On the
other hand, using larger t will increase the size of Bw(t)
and reduce variance (spread of the normalization factor

estimates). Statistically, the choice of t represents the
trade-off between bias and variance.
We now motivate our method through a real ChIP-seq

study. Figure 1a shows the marginal ChIP/control ratio
(rm(t) = ∑

i:ni=t n1i/
∑

i:ni=t n2i) against the total count
(t) with w = 500 bp for a C.elegans ChIP-seq dataset of
transcription factor PHA-4 [18]. On the left half of the
figure where t is small, the ratio estimates fall around a
horizontal line, and the variability increases as t becomes
small. This observation illustrates that the reads from the
bins with small total counts are mostly from background
regions and their marginal ChIP/control ratios are similar.
On the right half of Figure 1a, there is a strong ascent of
marginal ratios which indicates the significant infusion of
enrichment signal reads into the ChIP reads.
Our method takes into account the above observations

and operates as follows. First, all reads will be shifted
towards their 3’ end by l/2, where l is the average DNA
fragment length available either through experimental
protocol or computational estimation (e.g., [13,14,16]).
Because it is sufficient to use only nonempty bins, we fil-
ter out bins with zero total count (ni = 0). For any fixed
bin-width w, define r̂w(t) = ∑

i∈Bw(t) n1i/
∑

i∈Bw(t) n2i
as in (1) and Bw(t) = {i : ni ≤ t} as in the previ-
ous subsection. We search for a total threshold t instead
fixing it at a pre-specified constant. In most ChIP exper-
iments, it is reasonable to believe that the vast major-
ity of the genomic landscape are background regions.
Therefore, to avoid large variation in estimating r̂w(t)
when t and size of Bw(t) are small, we start search-
ing for t at the upper quartile of the non-zero total
counts. Specifically, our estimate of the normalization
factor with a fixed bin-width w is r̂w = r̂w(t∗w) where
t∗w = min{t : r̂w(t) ≥ r̂w(t − 1), |Bw(t)| ≥ 0.75mw} andmw
is the total number of bins. That is, r̂w is the first r̂w(t) esti-
mate that is larger than or equal to its previous one and is
based on more than three quarters of the bins. For exam-
ple, the vertical dash line in Figure 1amarks the t∗w selected
by NCIS; it separates the background regions on the left
from the signal regions on the right.
It is reasonable to set the other tuning parameter, bin-

width w, close to the width of the enrichment site so
that there are clear contrasts between the read counts of
the ChIP and the control samples when the bins coincide
with enrichment sites. However, without knowledge of the
exact locations of enrichment sites and also in the set-
tings where the lengths of enrichment sites vary, it is not
possible to put the bin boundaries tightly around enrich-
ment sites. As a result, enriched sites are likely to be split
into two or more bins, and it is advantageous to use small
bin-width to gain resolution if the sequencing depth is
high enough. Hence, we search over a grid of bin-width
{w1,w2, . . . ,wn} such that w1 < w2 < . . . < wn and
stop at the first bin-width that satisfies r̂wi+1 ≥ r̂wi and
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Figure 1 ChIP/control ratio as a function of total count for C.elegans data. (a)Marginal ChIP/control ratio against total count, both in log (10)
scale, from a C.elegans ChIP-seq dataset of transcription factor PHA-4 [18]. Sizes of the plotting circles are proportional to log (10) of numbers of
reads. Vertical dash line marks the total count selected by NCIS to estimate the normalization constant. Horizontal dash line marks the normalization
factor estimate from NCIS. (b) Normalization constant as a function of bin-width. Vertical dash line marks the bin-width selected by NCIS to estimate
the normalization constant. Horizontal dash line marks the normalization factor estimate from NCIS.

use r̂wi as our final estimate r̂. That is, r̂ = r̂wi∗ where
i∗ = min{i : r̂wi+1 ≥ r̂wi}. Note that the values of r̂wi are
bound to increase because the normalization factor equals
to sequencing depth ratio (the upper limit of normaliza-
tion factor) when w equals to the total genome size. As
an example, the normalization constant estimates (r̂w) of
the C.elegans data are plotted in Figure 1b as a function
of bin-width (w), and the vertical dash line indicates the
bin-width that reaches the minimum of the r̂w values. The
default values for bin-width grid values are set at {100, 200,
500, 1k, 2k, 5k, 10k} to cover the range of bin-width used
by existing methods.

Results and discussion
A comparison of statistical properties of normalization
factor estimators
In this section, we used the yeast ChIP-seq study of [19]
to generate data in our data-driven simulations. A parallel

simulation study that is based on a C.elegans dataset
is presented in the [Additional file 1: Section 3]. We
selected the yeast dataset because it is one of the deepest
sequenced publicly available ChIP-seq datasets in terms
of genome coverage. The yeast genome is about 250 times
smaller than that of the human such that high coverage
can be easily achieved on yeast with relatively small num-
ber of reads. The control sample of segregant 1 (SEG1)
has more than 4.2M uniquely aligned reads and is one of
the deepest sequenced control samples in the study. With
an average fragment length of 200 bp, 4.2M fragments
amount to about 70X coverage on the yeast genome. As
a comparison, 20M reads (common output of number of
uniquely aligned reads from one lane on an Illumina Hi-
seq sequencer) for a human sample is equal to about 1X
coverage.We randomly split the SEG1 control sample into
two halves and subsampled 1/d of each, where d is a sub-
sampling divisor parameter. One of the subsamples was
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treated as control, and the other half was mixed in with
simulated reads from p enriched sites and treated as a
ChIP sample. Using a high coverage yeast dataset and a
subsampling strategy, we can investigate the performance
of methods under a spectrum of coverage. For example,
the coverage achieved by 20M reads on a human sample is
roughly equal to the coverage on a simulated yeast control
sample with d = 30. As the cost of sequencing decreases
rapidly, we can look into the “future” of ChIP-seq on large
mammalian genomes by studying the performances of
methods at small values of d.
We simulated reads for enriched regions in three dif-

ferent scenarios. Setting 1 mimics ChIP-seq data of tran-
scription factors where enrichment reads concentrate in
sharp peaks. Our set-up is similar to the simulation set-
ting of [12]. More specifically, reads for enrichment sites
were simulated fromN(μi, σ 2)withμi randomly assigned
along the genome and σ 2 = 900. The number of reads of
each site followed an exponential distribution with mean
c · N2/p so that, on average, we spiked-in c times the total
number of control sample reads (N2). Parameter c, which
represents the proportion of signal reads relative to the
background was set to 0.2, 0.5 and 1 to represent weak
to strong overall binding signal strength. The value of p
was set to 1000, based on the results of [19] which iden-
tified about 1000 binding sites for the transcription factor
Ste12 in various strains of yeast. The subsampling divisor,
d, took values in {1, 2, 5, 10, 20, 50, 100} to represent differ-
ent depths of coverage. The simulation was repeated 100
times for each combination of c and d.
In this simulation study, we compare our estimator

(NCIS) with estimators proposed in CisGenome, SPP,
CCAT, and PeakSeq. The exclusion proportion parameter
Pf in PeakSeq was set at 0 to simplify its computation. Left
panel of Figure 2 displays the log (10) of mean squared
error (MSE) for setting 1 (transcription factor binding)
with c = 1. We chose MSE as our comparison metric
because it considers both the bias and the variance of the
estimators compared to true normalization factor. Over-
all, our NCIS estimator has the smallest MSE among all
the methods. PeakSeq estimator is the worst in estimation
precision, followed by SPP. CisGenome estimator has sec-
ond best MSE when sequencing depth is low; however its
performance deteriorates when sequencing depth is high.
The performances of all the estimators except PeakSeq
and CisGenome improve with the increase of sequencing
depth. The rest of the results (c = 0.2 and 0.5) for setting
1 are similar and are provided in [Additional file 1: Figure
S6 and S7].
In setting 2, we study the impact of artifacts on normal-

ization constant estimation. High-throughput sequencing
experiments, including ChIP-seq experiments, are com-
plex biochemical and computational processes, and it
is common that the sequencing data contain various

artifacts. Some examples of artifact regions where the con-
trol sample has significantly higher read count than the
ChIP sample are displayed and discussed in [Additional
file 1: Section 1]. We first simulated reads as in set-
ting 1, then we generated artifacts according the patterns
observed in the above examples.More specifically, we ran-
domly chose 20 locations along the genome and generated
artifact reads on these locations in the control sample
such that the total number of artifact reads is a small
percentage (0.5%) of the original control sample sequenc-
ing depth. Figure 2 (middle panel) illustrates that most
methods are not affected significantly by the presence of
artifacts. However, the performance of CCAT is much
worse than in setting 1, indicating its lack of robustness
with respect to these artifacts.
In setting 3, we simulated the enrichment reads to

resemble histone modifications and polymerase bind-
ing where enrichment reads are spread out on large
regions. We allocated enriched reads uniformly on p =
50 regions. The length of each region was generated uni-
formly between 5–15 Kbp. The distribution of the number
of reads of each region, signal/background proportion c
and subsampling divisor d were the same as in above tran-
scription factor set-up. Right panel of Figure 2 displays the
results for c = 1 while the results for c = 0.2 and 0.5 are pro-
vided in [Additional file 1: Figure S6 and S7]. Our method
remains the best in terms of MSE.
We also simulated various levels of the true normaliza-

tion factor (e.g., 0.3, 0.5, 0.8, 1.2, 2 and 3) by using different
subsampling divisors on split halves. The results are sim-
ilar to those presented here for the true normalization
factor of 1 and hence are not reported. In term of esti-
mation precision, the order of the methods (from best to
worst) is: NCIS, CCAT, CisGenome, SPP, and PeakSeq.

FDR control and power
We evaluate the impact of using different normalization
factor estimators on FDR control and power with simu-
lated data similar to the previous setting 2 with the same
split-subsampling procedure and the addition of artifacts.
However, we generated the binding site locations and sig-
nal strength differently. We first called peaks using SPP at
FDR level 0.05 and obtained 1572 putative binding loca-
tions from the SEG1 yeast data. Then the signal strength
at each site was estimated as its ChIP count minus its cor-
responding (normalized) control count. At each iteration,
we randomly sample 1000 sites from the total 1572 and let
the number of reads at each site follows a Poisson distri-
bution with mean equal to the estimated signal strength.
Because the binding site locations and signal strengths are
obtained from a real ChIP data, a more realistic power
result can be achieved.
FDR control is achieved through the sample-swapping

method as discussed in the Background Section. To
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Figure 2 Statistical properties of normalization factor estimators.Mean and MSE (log10) for estimating the normalization factor in simulation
setting 1 (left), setting 2 (middle) and setting 3 (right) with c = 1. The true value of the normalization factor is 1.

obtain putative binding site locations (peak-calling), we
employed a simple two-stage search strategy. In the first
stage, we partitioned the yeast genome into 100 bp non-
overlapping bins and retained only bins with Binomial
p-value smaller than or equal to some liberal threshold,
for example, 0.05. Then in the second stage, we merged
nearby retained bins into putative regions and searched
each region to locate the 20 bp bin with the highest ChIP
bin count and used the center of this bin as our predic-
tion of the putative binding site. For each binding site,
we extended 110 bp from the site location to both direc-
tions and formed a binding region. Then we used the
ChIP and control read counts in the binding region to
compute a Binomial p-value as the enrichment statistic
for the binding site. More specifically, for each normal-
ization factor estimator, the Binomial probability p when
comparing the ChIP sample to the control sample is com-
puted as r̂/(1 + r̂), where r̂ is their respective estimate of
normalization factor. Further details for computing Bino-
mial p-value can be found in [10,12]. This peak-calling

procedure was first performed with the ChIP sample ver-
sus the control sample to obtain a list of putative binding
sites and their statistics, and repeated one more time with
the control sample versus the ChIP sample to obtain a list
of control binding sites and their statistics. Then a num-
ber of putative binding sites were declared as true binding
sites such that the empirical FDR (#control sites/#ChIP
sites) did not exceed certain nominal level (0.05) using the
same p-value threshold. A site was classified as false pos-
itive if the predicted location was 100 bp away from its
closest true binding site. Note that there were few declared
binding sites located between 50 bp to 100 bp away from
true binding sites, so any choice between 50 bp and 100
bp would yield similar results.
Simulations for FDR estimation of the sample-swapping

method have been performed in [5], and our simulation
differs from theirs in two major ways. First, simulations
in [5] only evaluated the FDR estimation over a range
of nominal FDR levels with a fixed sequencing depth,
while our simulations evaluate FDR control over varying
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sequencing depths. Second, FDRs computed in [5] are on
the basis of 1 Kbp non-overlapping regions, while we clas-
sified predicted binding sites by their distance to their
closest true binding sites. Our false positive criteria is
more accurate and relevant because a single 1 Kbp region
can hold multiple binding sites and one or more these
sites can be close to the boundary of two adjacent regions
such that both regions would be regarded as true binding
regions.
As a comparison, we also performed peak calling when

the normalization factor is set to its true value of 1 and
refer to this method as the Oracle. FDR is controlled at the
target level of 0.05, and Figure 3a displays the means of
the realized FDR for various methods. The FDR values of
the Oracle are close to the nominal value of 0.05 (the
median of the differences is 0.002 while the median of
the standard errors is 0.0012). For display purpose, the
Oracle FDR values are plotted at the expected value
of 0.05, and other methods are adjusted accordingly.
CisGenome and CCAT fail to control FDR at various
sequencing depths, especially when the sequencing depth
is high. CisGenome’s FDR values can be drastically larger
than nominal level at high sequencing depths because

its normalization estimate becomes unreliable and highly
variable. CCAT’s failure to control FDR is due to the
negative bias resulting from the artifacts. Among all the
methods, the FDR values of NCIS are the closest to
the Oracle. Figure 3b shows the power (number of true
positive) of all methods against different subsampling
divisors/sequencing depths. Among all methods that can
control FDR at the nominal level (NCIS, SPP and Peak-
Seq), NCIS is the most powerful method and is indistin-
guishable from the Oracle. On average, NCIS is about 6%
more powerful than the second best (SPP) across different
sequencing depths.

Application
Yeast Ste12 data
We applied our method on the ChIP-seq data of yeast
strain SEG1 in [19] and estimated π0, the background pro-
portion in ChIP sample, to be 0.763. The original analysis
was performed by MACS, which assumes the sequencing
depth ratio as the normalization factor. To make results
comparable with the original analysis, we modified the
latest stable version of MACS (1.4.1) such that it can
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Figure 3 FDR control and power. FDR control with the sample-swapping method. (a) compares FDR levels with different normalization factor
estimators. (b) Power comparison between between FDR control at 0.05 level with different normalization factor estimators.
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utilize user specified normalization factors through an
additional input parameter. The estimated normalization
factor (r), background proportion (π0) and number of
detected binding sites under two different criterion are
listed in Table 1. The first criteria “#peaks by p-value”
refers to the number of peaks detected by MACS with its
default p-value threshold of 1e-5, and the second criteria
“#peaks by FDR” refers to the number of peaks detected
by MACS with FDR controlled at 0.05 level. The other
parameters of MACS were set to be the same as in the
original analysis. Using different normalization factors has
a dramatic impact on the power to detect binding sites and
the estimation of FDR. This is because it is difficult to call
peaks in ChIP sample but relatively easy to do so in control
sample with a conservative normalization constant such
as the sequencing depth ratio. For example, MACS only
declared 1 significant binding region at FDR level 0.05 in
contrast to 1322 significant binding regions with NCIS
estimate at the same FDR threshold. On the other hand,
MACS estimated the FDR for the most significant 1000
peaks to be 0.23, while the FDR for the top 1000 peaks was
estimated as 0.04 using the NCIS estimate. The roughly 6
fold difference in the estimated FDR was caused by a rel-
ative small change in the normalization factor estimates.
This example illustrates the importance of the normal-
ization factor estimator. A recent paper [3] also pointed
out that MACS overestimated FDR 7.5 fold in their study,
and that it is highly likely that the incorrect normaliza-
tion factor is the major contributing factor. CisGenome’s
estimate of normalization factor is very conservative. This
is because the SEG1 strain was deeply sequenced and as
a result, there are only 240 bins whose ChIP and control
read count total equal to 1. Hence, CisGenome’s estimate
is expected to be highly variable due to the small sam-
ple size to estimate normalization factor when sequencing
depth is high. This is consistent with our observation in
Figure 1 and the simulation results.
To further illustrate the differences between different

normalization factors, we plotted the ChIP versus the con-
trol bin counts with bin-width w = 500 bp in Figure 4.

Table 1 Comparison of normalization factor estimators on
yeast strain SEG1 through theMACS algorithm

r̂ π̂0 #peaks by p-value #peaks by FDR

NCIS 1.265 0.763 1844 1322

CCAT 1.173 0.707 1943 1723

SPP 1.370 0.826 1736 688

CisGenome 1.553 0.937 1547 4

PeakSeq 1.674 1.009 1431 1

MACS 1.658 1 1449 1

The fourth column contains the numbers of detected peaks with p-value ≤ 1e-5.
The fifth column contains the numbers of detected peaks at FDR level 0.05.
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Figure 4 ChIP vs control bin counts for yeast strain SEG1. ChIP
versus control bin counts for yeast strain SEG1 plotted with bin-width
of 500 bp. The upper black line represents the sequencing depth
ratio, and the lower blue line the NCIS normalization factor estimate.

In this plot, different colors indicate different densities of
bins which are annotated at the right-hand side. There
are many bins with relatively high ChIP counts due to the
enrichment signal. The slope of the upper black line is
the sequencing depth ratio, and majority of bins (83.7%)
appear below this line. We should expect less than 50%
of bins to appear below the normalization factor line
because binding regions have smaller than 0.5 probabil-
ity to exhibit a ChIP count/control count ratio below the
normalization factor. The NCIS normalization factor is
represented by the lower blue line, which passes right
through the densest area of bins and has 49.7% of bins
below the line.

HumanNFκB data
We next compared different normalization estimators
on a human NFκB ChIP-seq dataset in [20], where the
genome-wide binding of transcription factor NFκB was
extensively studied on multiple cell lines. As one of the
deepest sequenced cell lines among the data collected, cell
line GM12878 has 48.5 and 24.8 million uniquely mapped
reads in the ChIP and the control samples, respectively.
Table 2 shows estimates of normalization factor from
different methods.
Figure 5 displays the marginal ChIP/control ratio

against total read counts. We observe that the NFκB data
is noisier compared to the yeast data and exhibits viola-
tions of the signal-noise model assumption. That is, some
bins have larger control reads than expected as illustrated
on the right bottom corner of the plot. This phenomenon
can arise due to various artifacts in the ChIP-seq exper-
iments, for example, PCR over-amplification in control
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Table 2 Comparison of normalization factor estimators on
NFκB ChIP-seq data of cell line GM12878

NCIS CCAT SPP CisGenome PeakSeq

r̂ 1.758 1.657 1.834 2.123 1.883

π̂0 0.895 0.844 0.933 1.082 0.958

The sequencing depth ratio is 1.963.

sample. Indeed, we traced most outliers to a 5 Kbp region
in chromosome 8. The read count per nucleotide is dis-
played in [Additional file 1: Figure S5]. This plot indicates
that these are artifacts which are over-amplified in the
control sample. The CCAT estimator is susceptible to
such artifacts and can have downward bias in estimat-
ing the normalization factor. On the other hand, NCIS
and CisGenome only utilize bins with low total counts
and are robust to such artifacts. SPP is also robust to
these artifacts to some degree due to its filtering of bins
with large ChIP and control read counts. In this dataset,
CisGenome’s estimate of normalization factor is larger
than the sequencing depth which is an unreasonable out-
come for the normalization factor.

Software
R package (www.r-project.org) for NCIS is available in
[Additional file 2].

Discussion
As the sequencing technology improves rapidly over time,
deeply sequenced data sets will become more common.
We demonstrated in our simulation and application stud-
ies that CisGenome estimator’s performance deteriorates
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Figure 5 ChIP/control ratio as a function of total count for human
NFκB data. NFκB marginal ChIP/control ratio against total with
bin-width of 100 bp, both in natural log scale. Sizes of the plotting
symbols are proportional to the log (10) of the number of reads.
Horizontal dash line indicates the NCIS estimate of the normalization
factor. Vertical dash line represents the NCIS total count threshold (t∗w ).

when sequencing depth increases. In one unpublished and
deeply sequenced E.coli dataset (Courtesy of Professor
Tricia Kiley, UWMadison), we observed that CisGenome
estimator was not applicable because every mappable bin
had more than one read. Although we studied the FDR
in a balanced (r = 1) simulation setting, our analytical
results also support FDR control for unbalanced data in
the [Additional file 1: Section 4].

Conclusions
In this study, we systematically evaluated the available
ChIP-seq normalization factor estimators through data-
based simulations. All existing estimators rely on some
ad-hoc tuning parameters, which may be crucial to the
final estimate. Our NCIS method is data-adaptive and has
better estimation precision (smaller MSE) than existing
methods over a wide range of sequencing depths, and for
both sharp and diffused ChIP signals. Given the impor-
tance of normalization factor in evaluating protein-DNA
binding efficiency and the power of detecting protein-
DNA binding sites while achieving proper error control,
we expect our method to contribute significantly to the
ChIP-seq research and applications.

Additional files

Additional file 1: Section 1. Illustration of linearity between ChIP and
control samples. Section 2. Simulation results for the normalization factor
estimators at different settings with yeast data. Section 3. Simulation
results for the normalization factor estimators with C.elegans data. Section
4. FDR control for unbalanced data, [21].

Additional file 2: NCIS R Package.
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