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Abstract

Background: Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature.
The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model
with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing
phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing
phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not
been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling
of qPCR are presented.

Results: Two models are presented in which the efficiency of amplification is based on equilibrium solutions for
the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and
annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all
annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer
concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and
double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise
method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are
identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such
solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to
all curves and each curve having a unique value for initial target concentration. The models were fit to two data
sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data
than other kinetic models present in the literature. They also give better estimates of initial target concentration.
Model 1 was found to be slightly more robust than model 2 giving better estimates of initial target concentration
when estimation of parameters was done for qPCR curves with very different initial target concentration. Both
models may be used to estimate the initial absolute concentration of target sequence when a standard curve is
not available.

Conclusions: It is argued that the kinetic approach to modeling and interpreting quantitative PCR data has the
potential to give more precise estimates of the true initial target concentrations than other methods currently used
for analysis of qPCR data. The two models presented here give a unified model of the qPCR process in that they
explain the shape of the qPCR curve for a wide variety of initial target concentrations.
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Background
Quantitative Polymerase Chain Reaction, qPCR, has
become a common tool of molecular biology to deter-
mine the absolute or relative concentrations of particu-
lar DNA sequences in samples. The method gives
fluorescent values for each of a number of consecutive
cycles beginning with cycle 1. Before cycle 1 the initial
concentration of double-stranded DNA target sequence
is T0 and its concentration is amplified in successive
cycles to produce a high concentration of the target
sequence. At each cycle, the efficiency of amplification
(E) is the ratio of the amount of newly synthesized tar-
get at the end of the cycle to the amount present at
the beginning, thus the amount of target at the end of
the cycle is (1 + E) times the amount at the beginning.
If every single-stranded target molecule re-associates
with exactly one primer molecule and all these struc-
tures are extended by polymerase to completely
synthesize the complementary target strand, the value
of E is 1, which is its theoretical upper limit. The in-
crease in DNA concentration is monitored by a detec-
tion system which generates fluorescence in proportion
to the concentration of target DNA sequence. Several
different types of detection systems are in common
usage that generate fluorescence through different
types of reactions. I present here two models of qPCR
for use when the detection systems uses DNA binding
dyes such as SYBR green or SYTO-13. During early
cycles of the amplification, the concentration of target
is too small to produce measurable fluorescence and is
called the lag phase (Figure 1). During lag phase the
concentration of target sequence increases by (1 + E)
fold in every cycle, but the initial concentration of the
double-stranded target sequence (T0) is so small that
even with repeated increases of (1 + E) fold in every
Figure 1 A typical amplification curve resulting from a qPCR
experiment.
cycle the target concentration is not high enough to
be measurable. Thus, no information on E can be
obtained from the amplification curve during lag
phase. When target is present in quantities sufficient
to be measured, the increase in fluorescence is ap-
proximately exponential over a number of successive
cycles and the reaction is said to be in the exponential
phase (Figure 1). Fluorescence values during the expo-
nential phase may be used to estimate E and most
models of qPCR use only this part of the curve to es-
timate E and then assume the estimated value applies
throughout the lag phase as well. After exponential
phase, the efficiency progressively declines due to
changes in the concentrations of reactants. Eventually
the reaction enters stationary phase, during which E
approaches zero and increases in fluorescence are min-
imal (Figure 1).
Models of qPCR assume total fluorescence, F, is due to

two sources: Baseline fluorescence, bF, and Target fluor-
escence, TF, thus total fluorescence is F= bF+ TF. Base-
line fluorescence is due to all sources other than target
and is assumed to be constant throughout the qPCR ex-
periment. Target fluorescence is generated by reaction of
the detection system with target sequences and is gener-
ated in proportion to target concentration. Thus, TF=
KfT where T is the concentration of the double-stranded
target and Kf is a constant that converts the target con-
centration to fluorescence. Total fluorescence at the end
of the nth cycle is:

Fn¼bF þ Kf Tn ð1Þ

where Tn is target concentration at the end of the reas-
sociation/extension step of cycle n. At the beginning of
the nth cycle, target DNA is present at concentration
Tn-1 and is replicated with amplification efficiency En.
Target concentration at the end of cycle n is then:
Tn ¼ Tn�1 1þ Enð Þ
which has the solution:

Tn ¼ T0

Yn
i¼1

1þ Eið Þ n ¼ 1; 2; 3; . . . ð2Þ

Since TFn ¼ Kf Tn then TFn¼TF0
Yn
i¼1

1þ Eið Þ and

Fn¼bFþTF0
Yn
i¼1

1þ Eið Þ n ¼ 1; 2; 3; . . . ð3Þ

where TF0 is the amount of fluorescence that could be
produced by the target sequence before cycle 1. Values
of En are defined as En ¼ Tn

Tn�1
� 1 for n= 1, 2, . . . and if



Table 1 Summary of initial and equilibrium values for
state variables of Model 1 and Model 2

At end of: A1 A2 a1 a2 A1 -a1 A2 -a2 A1 -A2

dissociation step Sn,0 Sn,0 Pn,0 Pn,0 0 0 0

re-association step Sn,e Sn,e Pn,e Pn,e Qn,e Qn,e Dn,e
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equation 1 holds then En may be estimated from the
observed fluorescence values as:

En ¼ Fn�bF
Fn�1�bF

� 1 for n ¼ 1; 2; 3; :::: ð4Þ

Equation 4 is useful when Fn can be reliably distin-
guished from bF, which is possible only during exponen-
tial phase and later. Models of qPCR describe how En
changes with n and use equation 2 to determine the tar-
get concentration or equation 3 to determine target
fluorescence at each step of the process. Some models of
qPCR model TFn instead of Tn and thus use the estimate
of TF0 instead of T0 [1]. The estimated TF0 values can be
converted to T0 by dividing by Kf when a value for Kf is
available. The primary goal in analysis of qPCR data is
to estimate T0 or TF0 from the qPCR curve as accurately
as possible. Frequently, two or more qPCR curves are
analyzed with a goal of determining the value of the
ratio of two T0 values when Kf is not known. The ratio
of two T0 values is estimated by the ratio of two TF0
values provided Kf values are the same in the two qPCR
experiments. This principle is often used in qPCR ana-
lyses to compare two or more samples by estimating the
ratio of two T0 values by the ratio of two estimated TF0
values [2-4].
Numerous approaches to modeling the qPCR process

are present in recent literature and involve three differ-
ent general approaches. First the Ct and Linear Regres-
sion approaches assume constant efficiency and estimate
it by linear regression of ln(Fn-bF) on cycle number
using only values from the exponential phase of the
curve (sometimes called the ‘Window-of-Linearity’) [3,5-
9] . Second, the sigmoidal function approach has used to
fit a variety of sigmoidal functions to approximate the
qPCR curve (Figure 1) and estimate TF0 as the intercept
of a sigmoidal function [1,10,11]. The sigmoidal func-
tions used are described in the literature and none are
based on a mechanistic model of the reactions in qPCR.
Thirdly, kinetic models are a mechanistic approach to
modeling the process and several such models have been
proposed [8,12-14]. The work I present here extends the
kinetic approach to modeling qPCR by including primer
concentration in the model and providing analytical
equilibrium solutions for the re-association phase. I also
introduce the use of simultaneous analysis of qPCR
curves which have common values for rate constants in
the kinetic models.

Current models
The models presented here may be regarded as an ex-
tension of the models presented by Smith et. al. (2007)
[13] and Boggy and Woolf (2010) [14]. Though the mod-
els presented here are similar to those of Smith et. al.
(2007) [13] for hydrolysis probe detection systems, they
differ in that they are designed for intercalating dye de-
tection systems such as SYBR green. They also use ana-
lytical solutions for equilibrium concentrations in the
annealing step. One of the models is the same as that of
Boggy and Woolf (2010) [14], however, a more general
solution for equilibrium values for the annealing step is
presented here that includes primer concentration and
gives improved fit to data. Two stepwise kinetic equilib-
rium models are presented in which efficiency of ampli-
fication at each cycle depends on the concentrations of
target and primers at that cycle. Events in a single cycle
are modeled and then used in iterations to model the
entire process. In each cycle, the re-association and the
primer extension steps are modeled separately and con-
secutively. Double-stranded target DNA is denoted
A1-A2 where A1 and A2 are complementary single
strands. Primer that hybridizes with A1 is denoted a1
and primer for A2 is denoted a2. Primer-template hybrid
molecules are denoted A1-a1 and A2 -a2, respectively.
Re-association step
At the end of the dissociation step of cycle n, the concen-
tration of all double-stranded structures is zero and con-
centrations of single-stranded molecules A1, A2, a1, a2 are
S1n,0, S2n,0, P1n,0 and P2n,0, respectively, with units of con-
centration being moles/liter. At the end of the re-
association step, the concentrations of A1, A2, a1, a2,
A1-a1 A2-a2 and A1-A2 are assumed to be at their
equilibrium values S1n,e, S2n,e, P1n,e, P2n,e, Q1n,e, Q2n,e,
and Dn,e, respectively. Two different kinetic models are
each used to obtain these equilibrium concentrations as
a function of the initial concentrations S1n,0, S2n,0, P1n,0
and P2n,0. The initial target is entirely double-stranded
at the beginning of cycle 1, so the two complementary
target strands, A1 and A2, are initially present in equal
concentrations. Primers, a1 and a2 are assumed to be
present in equal concentrations at the beginning of
cycle 1, equally effective in forming double-stranded
structure with the target sequences, and equally effect-
ive in initiating synthesis with the polymerase. Under
these assumptions, S1n,e= S2n,e= Sn,e, P1n,e=P2n,e=Pn,e,
and Q1n,e=Q2n,e=Qn,e for all n (Table 1).
Model 1 reversible re-association
Reversible dissociation/re-association reactions and rate
constants are shown in Figure 2A. Formation of A1-a1



A

B

Figure 2 Panel A: Dissociation/re-association reactions and rate
constants for Model 1. Panel B: Differential equations for model 1.

A  

B

Figure 3 Panel A: Dissociation/re-association reactions and rate
constants for Model 2. Panel B: Differential equations for model 2.
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A2-a2 and A1-A2 from A1, A2, a1, a2 during the re-
association step is assumed to follow the law of mass ac-
tion and described by the rate equations given in
Figure 2B. At equilibrium, all net rates are zero and
equilibrium values of the state variables Sn,e, Pn,e, Qn,e

and Dn,e and are found as the simultaneous solution of
equations in Figure 2B when each equation is set equal
to zero. Through a series of substitutions and rearrange-
ments of these equations (see Additional file 1), a cubic
polynomial in Sn,e is obtained with coefficients contain-
ing only rate constants and initial concentrations Sn,0
and Pn,0 and is given as equation A1.6 in Additional file
1. The relevant root of the cubic equation is found using
the cubic formula given in equation A1.7 of Additional
file 1 and equilibrium values for the remaining state
variables may be found by substituting the value of Sn,e
into equations also given in Additional file 1. Thus Sn,e,
Pn,e, Qn,e and Dn,e are expressed as a known function of
the rate constants ka12, kd12, ka, and kd and the initial
concentrations Sn,0 and Pn,0.

Model 2 non-reversible re-association
Non-reversible re-association reactions and rate con-
stants are shown in Figure 3A. Reactions are again
assumed to follow the law of mass action and rate
equations are given in Figure 3B. At equilibrium, all
net rates are zero; however, equilibrium values of the
state variables Sn,e, Pn,e cannot be found as the simul-
taneous solution of equations in Figure 3B when set
equal to zero. Since ka > 0, ka12 > 0, Pn ≥0 and Sn ≥0
then Sn,e= 0 is the only possible equilibrium solution
and with Sn,e= 0, any value of Pn will satisfy the equi-
librium equations. This result is also expected on
purely scientific grounds as annealing without dissoci-
ation will always eventually reduce the single strand
template concentration to a concentration of zero. The
equilibrium value, Pn,e, is found by expressing the rate
of change in Pn as a function of Sn and then integrat-
ing over Sn as it goes from Sn,0 to zero. The solutions
for Pn,e, Qn,e and Dn,e are given as equations A2.4,
A2.5 and A2.6, respectively, in Additional file 2 which
are all known functions of ka, ka12, Sn,0 and Pn,0 (see
Additional file 2).

Extension step
The proportion of target/primer duplexes A1-a1 and
A2-a2 that produce full length products in the primer
extension step depends on the concentration of the
polymerase and the concentration of dNTP’s. If both
are in sufficiently high concentration the proportions
will be near 1, however, if either or both are suffi-
ciently low the probabilities will be less than 1. Here it
will be assumed there is always sufficient polymerase
and dNTP concentration to ensure complete extension
of all primers in target/primer duplexes. With this as-
sumption, at the beginning of the next cycle the con-
centrations of A1 and A2 are each given by
equation 5.1 and the concentrations of a1 and a2 are
each given by equation 5.2.

Snþ1;0 ¼ Sn;0 þ Qn;e n ¼ 1; 2; :::: ð5:1Þ

Pnþ1;0 ¼ Pn;0 � Qn;e n ¼ 1; 2; :::: ð5:2Þ
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The whole process
The whole qPCR process is modeled by iteration of
equations 5.1 and 5.2 with Qn,e determined by equation
A1.9 for model 1 or equation A2.5 for model 2 (see
Additional files 1 and 2). Before cycle 1, the concentra-
tions of single-stranded target and primer are S0,0 and
P0,0, respectively. The Efficiency of amplification for sin-
gle stranded template at cycle n is (Sn+1,0 /Sn,0)-1 which
may be obtained from equation 5.1 as

En ¼ Qn;e

Sn;0

� �
n ¼ 1; 2; 3; . . . ð6Þ

and fluorescence at cycle n is found using equation 1 as

Fn ¼ bF þ Kf 2Qn;e þ Dn;e
� �

n ¼ 1; 2; 3; . . . ð7Þ

Since equation 7 is defined only for n = 1,2,3. . . it can-
not be used directly to obtain a value of TF0, however,
fitting equation 7 to an actual qPCR curve provides an
estimate of S0,0 which is the initial concentration of each
of A1 and A2. If the initial target sample is all double-
stranded then S0,0 is also the concentration of the
double-stranded molecules, so T0 = S0,0. Defining TF0 as
KfS0,0 provides a measure of total initial target concen-
tration in fluorescence units. This is the amount of
fluorescence that would be due to the target if it is all
double-stranded. If TF0 could actually be measured it
would be Kf Do,e where Do,e is the concentration of
double-stranded target DNA before cycle 1. Most likely
nearly all of the target is double-stranded before cycle 1
but, since the total amount of target is what is desired
using KfS0,0 as the estimate of TF0 is preferred.

Relating Model 2 to Boggy & Woolf (2010)
Model 2 annealing kinetics have been analyzed by Boggy
& Woolf [14] who give an approximate equilibrium so-
lution for the re-association step and use it to obtain a
recurrence formula for double stranded target concen-
tration over successive cycles. Their approximation is
obtained by removing primer concentration from the
model to obtain a simpler set of differential equations
which they solve to get an approximate solution. I
show in Additional file 3 that my solution for model 2
becomes equivalent to theirs if ka

ka12�ka
is small and their

parameter k is set to ka
ka12�ka

� �
Pn;e . This result indicates

the rate constant, k, for the approximate solution
found by Boggy & Woolf [14] depends on primer con-
centration and ignoring primer concentration in the
analysis will cause at least some error in parameter
estimates. Boggy and Woolf (2010) [14] note that their
parameter k varied from one analysis to another, a re-
sult they did not expect, and this is likely due to varia-
tions in the amount of primer available. This finding
suggest the analysis for model 2 presented here is a
more accurate solution for model 2 kinetics than that
of Boggy and Woolf (2010) [14] process since it
includes variation in primer concentration.

Restricting model fit to only part of the qPCR curve
Since models 1 & 2 both include the effect of declining
primer concentration during PCR they predict a differ-
ent shape of the qPCR curve between lag and stationary
phase for solutions that differ in primer concentration.
Consider two solutions, one with low S0,0 and one with
high S0,0 and with identical primer concentrations. Allow
the one with low S0,0 to undergo enough cycles so its
current target concentration is equal to the initial target
concentration for the solution with higher S0,0 . If primer
concentration is not limiting in any way then the two
solutions would have identical qPCR curves from that
point on. If primer concentration is limiting in some
way then the qPCR curve for the solution with lower
S0,0 will at that point rise more slowly than that for the
solution with higher S0,0 due to lowered primer concen-
tration. When fitting models 1 and 2 to data it is thus
desirable to include as much of the exponential phase as
possible to allow changing primer concentrations to
affect the analysis. Including most of the exponential
phase is desired, however, in late exponential phase
effects not included in the model also begin to occur
and may cause the model to have poor fit. Effects in late
exponential phase not modeled include reduced amount
of dNTPs, reduced amount of polymerase due to decay
and possibly partially replicated templates. In order to
restrict analyses to only part of the exponential phase,
models were fit to qPCR curves for cycles in the lag and
exponential phase for which (Fn - bF)/(Fmax - bF)≤ L,
where bF, and Fmax are baseline fluorescence and max-
imum fluorescence achieved in stationary phase. The
value, L, is the proportion of increase of Fn above bF and
is a cut off value used to restrict the analysis to the first
parts of the qPCR curve up to a point in the exponential
phase where the model is thought to be valid. When
choosing L, a compromise between these opposing
effects is necessary and is done here by choosing the
highest value for L that allows good fit to qPCR curves.
To accomplish this, the models were fit to qPCR curves
using a range of L values from 0.1 to 0.98 and the good-
ness of fit and estimated initial concentration deter-
mined for each L value. Both model 1 and 2 generally
gave poor fits for L ≥ 0.95. The value of 0.8 was chosen
for presentation here because the MSresidual values for
most qPCR curves increased for values of L higher than
0.8 and also because the accuracy of estimates of initial
target concentration was better for L values near 0.8.
The question of how much of the qPCR curve to use in
analysis is a problem inherent to most methods used for
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interpretation of qPCR curves. Boggy and Woolf (2010)
[14] choose the point of maximal increase in fluores-
cence as their cut-off point for all curves which corre-
sponds roughly to a value of 0.5 for L. Their rational for
using only about half the exponential phase is that the
effects of declining primer concentration are not likely
to affect the shape of this part of the curve. The Ct

method uses a different cut-off for every curve which is
invoked when the ‘window-of-linearity’ is chosen.

Methods for incorporating experimental design into the
data analysis
Kinetic models of qPCR allow more sophisticated and
powerful analyses than are possible with other models. If
a group of solutions have exactly the same chemical
components except for possibly differing in initial target
concentration, then all the kinetic parameters should be
the same for all the solutions. The rate constants may
then be estimated by fitting several or many qPCR
curves simultaneously to get better estimates of rate
constants and initial target concentrations. In such fits
the kinetic parameters are common to all the different
qPCR curves in the analysis but each curve may have a
unique value for initial target concentration. Also kinetic
models such those presented here allow an analyst to ad-
just the model to accommodate different experimental
designs. I present four different estimation methods (A,
B, C, and D) which are used here to fit models to qPCR
data which have different experimental designs.

Standard curve method (Method A)
This method may be used only when the true initial tar-
get concentrations are known for each curve in the ana-
lysis (a standard curve). All initial conditions of the
qPCR, other than initial target concentration are
assumed to be the same for all curves. All curves are
analyzed simultaneously in a non-linear fit in which the
estimated rate constants apply to all curves and the ini-
tial target concentration is held constant at its known
value for each curve. The fitting process minimizes the
cost function over all cycles in all curves. The advantage
of this method is that it pools the information of all the
curves to give a single best estimate for each model par-
ameter. The predicted fluorescence values provided by
the analysis may be compared to the observed fluores-
cence values to assess how well each qPCR curve is fit
by the model. The value of this method is that it may be
used for estimation of initial target concentration for
samples with unknown initial target concentration pro-
vided all other conditions of the PCR are the same as
those used in the standard curve. This is done by doing
a non-linear fit to the qPCR curve of the unknown sam-
ple in which only the initial target concentration, S0,0 , is
estimated while using the estimated parameters from the
standard curve analysis as constants. To assess how well
the models presented here estimate S0,0 , each qPCR
curve in the known samples was treated as an unknown
sample and the estimated S0,0 value compared to the
known value for S0,0.

Dilution curve method (Method B)
This method may be used when a standard curve is not
available but a dilution series of the unknown sample is
available. Here the absolute target concentration in the
undiluted sample is unknown and denoted S0,0,max. The
absolute target concentration of the ith diluted sample is
diS0,0,max where di is the dilution ratio for the ith sample.
The qPCR curves from the diluted samples are analyzed
simultaneously using non-linear curve fitting. Rate con-
stants apply to all curves in the analysis and a single
concentration parameter S0,0,max is estimated with the
initial concentration for each sample set at diS0,0,max. In
general usage of this method the estimated S0,0,max

would be the end result. To assess the accuracy of this
method in this study the known absolute target concen-
trations for the data sets used here are ignored but their
ratios are used to obtain values for di. Simultaneous fit-
ting of all the curves was done as described above to es-
timate S0,0,max and all the rate constants. Next the
estimated rate constants are treated as constants in a
second non-linear fit of each qPCR curve separately in
which an S0,0 value is estimated for qPCR curve. These
estimated S0,0 values are compared to the known values
to assess the accuracy of method B.

Simultaneous curves method (Method C)
This method may be used when two or more samples
are to be analyzed that may have different initial concen-
trations and a standard curve is not available nor are any
dilutions of either sample available. The samples are
assumed to be subject to qPCR with identical conditions
except for the fact they may have different initial target
concentrations. In this method all samples are analyzed
simultaneously with estimated rate constants applying to
all samples, but each sample has a unique S0,0 value to
be estimated. To assess the accuracy of this method with
the data sets analyzed here all information on initial tar-
get concentration is ignored and the estimated S0,0
values for each sample is then compared to the known
values.

Separate curves method (Method D)
This method does not assume any similarity of rate con-
stants among any of the samples and does not analyze
samples simultaneously as methods A, B, and C do. Each
sample is analyzed separately with all parameters esti-
mated independently for each qPCR curve. Here the ac-
curacy of method C is assessed by comparing the actual
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S0,0 values to the estimated ones. This is the type of ana-
lysis that is conventionally done when analyzing qPCR
curves.

Methods
Data sets
Both models 1 and 2 were fit to two different data sets for
which the actual initial concentrations of target are known.
The model of Boggy and Woolf (2010) [14] was also fit to
the same data sets and is called Model 0. The data sets
used are: 1) Data of Boggy and Woolf (2010) [14], 2) Data
of Rutledge (2004) [15] and are referred to as data set 1
and 2, respectively. The data of Boggy and Woolf (2010)
[14] are for a 129 base pair synthetic target sequence with
the following conditions for PCR: reaction vol = 25 μl, pri-
mer concentration=400 nM each, detection system is
SYTO-13 dye with concentration=2 μM, dNTP
concentration=0.2 mM each. Six different absolute target
concentrations range from 5×103 to 5× 108 molecules
per reaction volume at 10 fold increments. The data of
Rutledge (2004) [15] is for the 102 base pair K1/K2 tar-
get sequence with the following conditions for PCR: reac-
tion vol = 35 μl, primer concentration=0.25 μM each,
detection system is Syber Green dye. Six different absolute
target concentrations ranged from 4.17×102 to 4.17×107

molecules per reaction volume at 10 fold increments. Data
set 1 has 2 replicate qPCR curves for each target concen-
tration and data set 2 has 5 replicates for each target
concentration.

Determining baseline fluorescence
Before fitting a model the baseline fluorescence was
determined for each qPCR curve by fitting the sigmoidal
function given in equation 8 below.

Fn ¼ bF þ Fmax�bF

1þ exp � n�c1=2
ks

n o ð8Þ

The first term on the right side of equation 8 is the
baseline fluorescence, bF . The second term is a modified
sigmoidal function describing the increase in fluores-
cence due to polymerase chain reaction where Fmax is
the maximum fluorescence, c1/2 is the cycle number at
which Fn is midway between bF and Fmax, and ks is a
scale parameter. Parameters in equation 8 and bounds
used in the non-linear estimation program are bF ≥ 0,
Fmax > bF , c1/2 > 1, and ks > 0. Equation 8 is fit to each en-
tire qPCR curve by nonlinear estimation of the para-
meters using least squares as the criterion for fit with
the PROC NLIN procedure of the SAS program version
9.3 [16]. Each observation was weighted by the recipro-
cal of the observed fluorescence. The value of bF is esti-
mated separately for each qPCR curve and then treated
as a constant for that curve when estimating parameters
of models 0, 1, and 2. In preliminary analyses for this
study the baseline fluorescence was estimated as a par-
ameter in the model with each qPCR curve having its
own unique value. In the resulting fits some qPCR
curves were found to have baseline values that were not
consistent with the observed values in the lag phase.
This is due to the estimation procedure selecting a base-
line value that gives the best overall fit to the curve ra-
ther than just in the lag phase. Ruijter et. al. (2009) [9]
have shown that baseline estimates can affect the quality
of fit in the exponential phase for the Ct method and
this same effect is likely occurring in fits of the models
here. They also point out inherent problems with esti-
mating baseline fluorescence from a fixed number of
points in early cycles. Rutledge and Stewart (2008) [1]
showed sigmoidal functions similar to equation 8 give
very good fit to the observed values of qPCR curves.
The use of the sigmoidal function given in equation 8 is
found to always give values that fit well to data in the
lag phase and is not affected much by peculiar changes
in fluorescence often seen during the first few cycles.

Estimation of model parameters
Methods described here are used to determine how well
each model explains the shape of each qPCR curve and
also to determine how accurately each model estimates
initial target concentration for each of the two data sets.
Each model, 0, 1 or 2, was fit to qPCR data by nonlinear
curve fitting with PROC NLIN of SAS version 9.3 [16]
using the Marquardt optimization method and the mean
sum of squared differences between the observed and
predicted fluorescence values (MSresidual) as the meas-
ure of goodness-of-fit. Mean Square Residual (MSresi-
dual) is a measure of how well a model explains the
qPCR curve. A MSresidual value near zero indicates a
very good fit in which the model predicted values are all
very close to the observed values and higher values indi-
cate a poorer fit. Up to 10,000 iterations were used for
each fit. The parameters estimated and bounds imposed
during estimation are: S0,0 > 0, k > 0 for model 0, S0,0 > 0 ,
Kf >0, Ks >KD12 >0 for model 1, and S0,0 >0 , Kf >0 , and
K >0 for model 2. The initial concentrations of primers
were set to the values reported by the authors providing
the two data sets and expressed as nmoles/L. Additional
file 4 contains SAS code that fits model 1 and 2 to a
sample data set.

Effect of varying L
To determine the effect of the choice of the value of L
on the results of the analysis, the entire analysis was
done separately for each of a range of values for L. Spe-
cifically, each of the three models (0, 1, 2) was fit using
each of the estimation methods (A, B, C, D) to each of
the two data sets (1, 2) for each of the L values of 0.1,



Figure 5 Goodness of fit to qPCR curves for data set 2 with
L = 0.8. Plots are MSresidual vs known initial log10 target
concentration, T0, in nM/L. Panels A,B,C and D contain plots for the
Standard curve, Dilution curve, Simultaneous curves, and Separate
curves estimation methods, respectively. Plot symbols are: blue
circle =model 0, red plus =model 1, green X=model 2.
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0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98. The MSresi-
dual and Fold Error for each fit were averaged over
replicates 1 and 2 for each data set and the resulting
means plotted versus L for each dilution separately.

Effect of errors in estimation of baseline fluorescence
Analyses were done to assess the effect of errors in the
estimation of baseline fluorescence, bF, on the goodness
of fit of the model and the estimated initial target concen-
tration. The estimation procedure used to estimate bF
provides the standard error of the estimated value. Fits of
the models and estimation of initial target concentration
was done using bF values 1 and 2 standard deviation units
above and below the estimated value. Plots of the mean
MSresidual and Fold Error in estimation of initial target
concentration versus the bF value used were used to as-
sess the effect of errors in estimation of bF.

Results
For each of the three models (0,1,2), each of four
methods for parameter estimation were used for each
data set. Here every model and estimation method was
used to fit the same data and MSresidual is used to
compare models and methods in their goodness of fit
to the data. A value of MSresidual was computed for
every qPCR curve for each model and for each estima-
tion method. Plots of MSresidual versus log10(T0) are
given in Figure 4 for data set 1 and Figure 5 for data
set 2. Data set 1 has two replicate MSresidual values
for each target concentration and data set 2 has 5.
These figures show that for both data sets and for all
4 methods of estimation, models 1 and 2 are very
similar in fit to qPCR curves and both give better fit
Figure 4 Goodness of fit to qPCR curves for data set 1 with
L = 0.8. Plots are MSresidual vs known initial log10 target
concentration, T0, in nM/L. Panels A,B,C and D contain plots for the
Standard curve, Dilution curve, Simultaneous curves, and Separate
curves estimation methods, respectively. Plot symbols are: blue
circle =model 0, red plus =model 1, green X=model 2.
than model 0. The poorer fit for model 0 is always
due to the predicted fluorescence being too high for
low cycle numbers and too low for high cycle num-
bers. This pattern of lack of fit for model 0 is shown
in Figure 6 which shows the fits for each model and
estimation method for the first replicate of the sample
with 5*106 molecules in data set 1 and is representa-
tive of the fit found for all samples in both data sets.
Note that in Figure 6, Models 1 and 2 fit the data well
for all estimation methods (A,B,C,D) while Model 0
gives poor fit with methods A and B, moderately good
fit with method C, and good fit only with method D.
Figure 6 Fit of models to qPCR curves for each model and each
estimation method for data set 1, rep = 1, dilution= 1E-2, and
L= 0.8. Plot symbols for predicted fluorescence are:blue
circle =model 0, red plus =model 1, green X=model 2. The plot
symbol for observed fluorescence is delta (δ).



Figure 8 Relation between log10(S0) and log10(T0) for analysis
of data set 2 with L = 0.8. log10S0_Mean denotes base 10 log of
mean of S0 for the 5 replicates and the solid line denotes log10
(S0_Mean) = log10(T0) which indicates perfect estimation. Panels A,B,C
and D contain plots for the Standard curve, Dilution curve,
Simultaneous curves, and Separate curves estimation methods,
respectively. Plot symbols are: blue circle =model 0, red
plus =model 1, green X=model 2.
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Estimation of absolute target concentration
The estimates of initial target concentrations and the
known initial target concentrations are denoted S0,0
and T0, respectively. Plots of log10(mean S0,0) vs log10
(T0) for each model and estimation method are given
in Figure 7 for data set 1 and Figure 8 for data set 2.
Here means are over replicates for each sample.
Figures 7 and 8 indicate all three models give S0,0
values that have a good linear relation to the true
values, T0, for estimation methods A and B with both
data sets. For estimation methods C and D the linear
relation between S0,0 and T0 holds well for all three
models when applied to data set 1 ,however, for data
set 2 model 1 and 2 are very linear, but model 0 gives
non-linear results. The high linearity of these log-log
plots is not a good indication of the accuracy of the es-
timation because the estimates can be linear but at the
same time be biased. A measure of the accuracy of the
estimation is the Fold Error, which is the ratio of the
estimated value to the true value (S0/T0). Fold error is
computed for each model and estimation method and
given in Figure 9 for data set 1 and Figure 10 for data
set 2. Figures 9 and 10 show that for both data sets es-
timation methods A and B give similar results and
model 1 gives more accurate estimation of T0 than the
other two models. Estimation method C generally gave
less accurate estimates than methods A and B and
model 2 performed best. When using estimation
method D, again model 2 gave the most accurate esti-
mates over both data sets and model 0 was the least
accurate for both data sets.
Figure 7 Relation between log10(S0_Mean) and log10(T0) for
analysis of data set 1 with L = 0.8. log10S0_Mean denotes base 10
log of mean of S0 for the two replicates and the solid line denotes
log10(S0_Mean) = log10(T0) which indicates perfect estimation. Panels
A,B,C and D contain plots for the Standard curve, Dilution curve,
Simultaneous curves, and Separate curves estimation methods,
respectively. Plot symbols are: blue circle =model 0, red
plus =model 1, green X=model 2.
Effect of varying L
The plots of the Mean MS residual vs L and Mean log
(Fold Error) vs L for the samples with dilution factor 0.1
in data set 2 are given in Figures 11 and 12, respectively.
This plot as well as plots for all dilutions in both data
set 1 and 2 are given in Additional file 5. The plots given
in Figures 11 and 12 were chosen because they show
patterns which are representative of most of the plots
given in Additional file 5.
Figure 9 Relation between Fold Error and log10(T0) for analysis
of data set 1 with L = 0.8. Fold Error is the ratio S0/T0 and a value
of one indicates perfect estimation. Panels A,B,C and D contain plots
for the Standard curve, Dilution curve, Simultaneous curves, and
Separate curves estimation methods, respectively. Plot symbols are:
blue circle =model 0, red plus =model 1, green X =model 2.



Figure 10 Relation between Fold Error and log10(T0) for
analysis of data set 2 with L = 0.8. Fold Error is the ratio S0/T0 and
a value of one indicates perfect estimation. Panels A,B,C and D
contain plots for the Standard curve, Dilution curve, Simultaneous
curves, and Separate curves estimation methods, respectively. Plot
symbols are: blue circle =model 0, red plus =model 1, green
X=model 2.

Figure 12 Relation between log10(Fold Error) and L for analysis
of data set 2 with a range of L values. log10S0_Mean denotes
base 10 log of mean of S0 for the replicates. A value of 0 for log10
(Fold Error) indicates perfect estimation. Panels A,B,C and D contain
plots for the Standard curve, Dilution curve, Simultaneous curves,
and Separate curves estimation methods, respectively. Plot symbols
are: blue circle =model 0, red plus =model 1, green X =model 2.
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Effect of errors in estimation of baseline fluorescence
Plots of mean MSresidual and fold error in estimated
initial target concentration versus baseline fluorescence
for estimation methods A, B, and D are affected very lit-
tle by variation in the value of bF used (plots not
reported here). When using estimation method C, the
MSresidual values were not affected much by variations
in the bF but the initial target concentrations were over-
estimated when using low values of bF. Increases in Fold
Error by a factor of up to 10 was found in some plots
when a bF value two standard error units below the esti-
mated value was used.
Figure 11 Goodness of fit to qPCR curves for analysis of data
set 2 with a range of L values. Plots are mean MSresidual vs the
value of L used in the analysis. Panels A,B,C and D contain plots for
the Standard curve, Dilution curve, Simultaneous curves, and
Separate curves estimation methods, respectively. Plot symbols are:
blue circle =model 0, red plus =model 1, green X =model 2.
Discussion
Fit to qPCR curves
The two models presented here have both been shown
to give good fit to the lag and exponential phase of
qPCR curves over a wide range of initial target concen-
trations while using a single set of rate constants. The
lack of fit of model 0 to qPCR curves seen in Figures 4,
5 and 6 is likely to be due to the same cause as the vari-
ation in k values pointed out by Boggy and Woolf (2010)
[14] . The derivation of the Boggy and Woolf [14] for-
mula assumes their parameter k = ka/ka12 where ka and
ka12 are the rate constants of model 2 (Figure 3). Thus
the same value of k should apply to all qPCR curves that
are identical except for initial target concentration. I
have shown that the parameter k of the Boggy and
Woolf (2010) [14] model is not constant but depends on
the primer concentration during the PCR process. Esti-
mation methods A, B, and C force model 0 to use the
same k value for all curves and thus each curve gives a
poorer fit than it would if allowed to have a unique k
value for each curve. These results suggest the Boggy
and Woolf (2010) [14] assumption that primer concen-
tration is sufficiently large that it can be ignored is not
met in these data sets.

Estimation of T0
The results here indicate the best methods for estima-
tion of target concentration in an unknown sample is to
use a standard curve that has a range of values for initial
target concentration or to use a dilution curve com-
posed of a series of dilutions of the original sample and
analyze the qPCR curve with estimation methods A and
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B, respectively. Figures 4, 5, 7, 8, 9, and 10 indicate these
two methods (A and B) are essentially equivalent in their
accuracy of estimation. Note that with the dilution curve
method, B, the absolute initial concentrations of target
are estimated independently of the known values. Only
the dilution ratios are used in the simultaneous fit to the
data. The best way to estimate target concentration of
an unknown sample when a standard curve is not avail-
able is to make a series of dilutions of the sample and
then apply qPCR to each dilution and use the dilution
curve method described here to estimate the target con-
centration of the undiluted sample. The separate curves
method, D, worked well for data set 1 for both models 1
and 2, and worked moderately well only for model 1 for
data set 2. Lastly, estimation method C gave good esti-
mates for data set 2 but poorer estimates for data set 1.
More sources of data need to be studied to determine
the suitability of estimation methods C and D with these
models.
The poor fit of the Boggy and Woolf (2010) [14]

model to qPCR curves with estimation methods A, B,
and C suggest it will give poorer estimates of initial tar-
get concentration than models giving good fit. Estima-
tion method D allows each curve to have unique
parameter values and gives much better fit to qPCR
curves when using model 0, however, the accuracy of
estimates is not as good as those for models 1 and 2.
The non-linearity of initial target concentration esti-
mates for Model 0 with method D using data set 2 as
seen in Figure 8 panels C and D data is different than
the result reported by Boggy and Woolf (2010) [14] who
obtained a very linear relationship using method D. The
reason for this difference is not clear but may be due to
the fact that model fitting is done differently. Boggy and
Woolf (2010) [14] estimated baseline fluorescence as a
parameter in the model. I estimate baseline fluorescence
before fitting the model and treat it as a constant during
model fitting. Other minor differences in the programs
used for fitting and the searching routine may have also
caused some difference in the result.

Effect of varying L
Figures 11 and 12 as well as those given in Additional
file 5 indicate the effects of variation of L depend on the
estimation method used and to a lesser extent on the
concentration of initial target sequence. Examination of
the plots in Additional file 5 indicate the effects of L can
be variable but some general patterns are present which
are shown in Figures 11 and 12. First, for all models, all
methods and all dilutions, MSresidual increases with in-
creasing L. All the plots involve a log scale and show an
approximate linear increase of MSresidual with L indi-
cating an underlying exponential increase of MSresidual
with L. Thus when L has values of 0.9 and higher the fits
to qPCR curves are much worse than with lower values
of L. Secondly, the effect of L on the accuracy of the
estimated initial target concentration depends strongly
on the estimation method used. Estimated target con-
centrations obtained with estimation methods A and B
show remarkably little dependence on the value of L
used for either of the data sets analyzed. There is a con-
sistent trend for a slight over-estimation of target con-
centration for L values above 0.8 with the amount of
over-estimation increasing with increasing L. The de-
pendency of the accuracy of estimation by methods C
and D on L was more variable, however, both methods
showed a patterns similar to that present in methods A
and B, but more extreme over-estimation of initial target
concentration when L values above 0.8 are used. For
these reasons the value of 0.8 was used for L in the ana-
lyses presented here. Though the use of L = 0.8 gave
good fits to qPCR curves and accurate estimates of ini-
tial target concentration, investigation of other methods
for restricting analysis to only parts of the qPCR curve
may be worthwhile.

Effect of errors in estimation of baseline fluorescence
Estimation methods A, B and D are robust to errors in
baseline fluorescence. Estimation method C is less
robust to such errors.

General comments
The models presented here assume the annealing of
single-stranded DNA to double-stranded molecules
reaches equilibrium at each cycle. This assumption may
not be true, however, the ability of the present models to
fit qPCR curves as well as they do suggests it may be ap-
proximately true. Model 1 gave slightly better fits to
qPCR curves and slightly better estimates of initial con-
centration than Model 2 when estimation methods A
and B were used. This result suggests the reversible
reactions assumed in model 1 (Figure 2) may be a better
model than the non-reversible reactions assumed in
model 2 (Figure 3). It is thought the dissociation con-
stant for double-stranded templates is so small that the
annealing of templates is effectively non-reversible [8].
However, the annealing of primer and template may pro-
duce a much less stable double-stranded structure such
that the reversible reaction model is more reasonable. A
model in which template-template molecules are com-
pletely stable and primer-template molecules are not is
not useful when considering equilibrium solutions, as
equilibrium then occurs only when the concentration of
primer-template molecule is zero. To use such a model,
a non-equilibrium solution would need to be found. It is
also possible that there is not enough time allowed dur-
ing the experiments for the re-association reactions to
reach equilibrium. Whether or not DNA re-association
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achieves equilibrium or not during PCR is not clear.
Smith et. al. (2007) [13] offer some analysis suggesting
that equilibrium does occur.
An advantage of the mechanistic approach to model-

ing qPCR curves is that models describe actual events of
the process and thus may be expanded to include other
effects that may improve accuracy. Kinetic models natur-
ally allow simultaneous estimates of common para-
meters which will increase accuracy. This is extremely
difficult or impossible with other methods used for mod-
eling qPCR. Because the kinetic models account for vari-
able efficiency by kinetic theory they may give better
estimates of initial target concentration than other
approaches. Another advantage of kinetic models is that
parameters of the model may be estimated by dedicated
experiments distinct from the qPCR curve experiment.
For example, the parameter Kf present in both models 1
and 2 converts double-stranded DNA concentration into
amount of fluorescence for a particular experimental
system. The value of Kf could be determined in experi-
ments separate from qPCR and then used as a constant
in the analysis of a qPCR curve, thus increasing the ac-
curacy of estimation of the kinetic parameters and target
concentrations. Lastly, kinetic models uniquely allow es-
timation of absolute initial concentrations of target se-
quence without use of a standard curve of any type. The
accuracy of estimation with kinetic models is enhanced
greatly by the use of a standard curve, but it is not
required. In fact the dilution curve method gave fits es-
sentially as good as the standard curve method. The
mechanistic models developed here offer a more
complete description of the amplification occurring in
qPCR, fit observed data very well, and allow more accur-
ate estimation of initial target concentration than other
methods.

Conclusions
Two stepwise kinetic equilibrium models of qPCR are
presented and analytical solutions are given for equilib-
rium values during annealing of single stranded to
double stranded molecules. The models are amenable to
different types of non-linear fitting which include fitting
several curves simultaneously when they have common
parameter values. Both models are shown to give very
good fit to qPCR data with a wide range of initial target
concentrations with a single set of values for rate con-
stants. The two models also give accurate estimates of
initial absolute target concentration using several differ-
ent methods for estimation. Using the models with data
from a standard curve gives accurate estimates of initial
absolute target concentration. In the absence of a stand-
ard curve, a dilution curve method also provided accur-
ate estimates of the initial absolute target concentration.
In the absence of either a standard or dilution curve the
models provide estimates, though less accurate, of abso-
lute initial target concentration. These models presently
give the best unified theory for the interpretation of
qPCR data in that they explain well the shape of the
qPCR curve and how it is affected by variation in the ini-
tial target concentration.
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