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Abstract

Background: We introduce the linguistic annotation of a corpus of 97 full-text biomedical publications, known as
the Colorado Richly Annotated Full Text (CRAFT) corpus. We further assess the performance of existing tools for
performing sentence splitting, tokenization, syntactic parsing, and named entity recognition on
this corpus.

Results: Many biomedical natural language processing systems demonstrated large differences between their
previously published results and their performance on the CRAFT corpus when tested with the publicly available
models or rule sets. Trainable systems differed widely with respect to their ability to build high-performing models
based on this data.

Conclusions: The finding that some systems were able to train high-performing models based on this corpus is
additional evidence, beyond high inter-annotator agreement, that the quality of the CRAFT corpus is high. The overall
poor performance of various systems indicates that considerable work needs to be done to enable natural language
processing systems to work well when the input is full-text journal articles. The CRAFT corpus provides a valuable
resource to the biomedical natural language processing community for evaluation and training of new models for
biomedical full text publications.

Background
Text mining of the biomedical literature has gained
increasing attention in recent years, as biologists are
increasingly faced with a body of literature that is too large
and grows too rapidly to be reviewed by single researchers
[1]. Text mining has been used both to perform targeted
information extraction from the literature, e.g. identify-
ing and normalizing protein-protein interactions [2], and
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to assist in the analysis of high-throughput assays, e.g. to
analyze relationships among genes implicated in a disease
process [3]. Systems performing text mining of biomedical
text generally incorporate processing tools to analyze the
linguistic structure of that text. At a syntactic level, sys-
tems typically include modules that divide the texts into
individual word or punctuation tokens, delimit sentences,
and assign part-of-speech tags to tokens. It is becom-
ing increasingly common to perform syntactic parsing of
the texts as well, either with a full constituent parse or
a dependency parse representation. At a more concep-
tual level, named entity recognition, or identification of
mentions of specific types of entities such as proteins or
genes, is a widely used component of systems that aim
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to perform entity-oriented text mining. Historically, the
majority of research in biomedical natural language pro-
cessing has focused on the abstracts of journal articles.
However, recent years have seen numerous attempts to
move into processing the bodies of journal articles. Cohen
et al. [4] compared abstracts and article bodies and found
that they differed in a number of respects with implica-
tions for natural language processing. They noted that
these differences sometimes demonstrably affected tool
performance. For example, gene mention systems trained
on abstracts suffered severe performance degradations
when applied to full text.
It has been previously noted that there was inadequate

linguistically annotated biological text to make domain-
specific retraining of natural language processing tools
feasible [5]. With the release of CRAFT, we now have a
large resource of appropriately annotated full text articles
in the biomedical domain to enable both evaluation and
retraining.
In this paper, we will introduce the linguistic annota-

tion of a significant new resource, the Colorado Richly
Annotated Full Text (CRAFT) corpus. CRAFT consists
of the full contents of 97 Open Access journal articles,
comprising nearly 800k tokens. CRAFT has been man-
ually annotated with a number of elements of linguistic
structure, corresponding to the functions listed above. It
has also been annotated with semantic content, of biolog-
ical concepts from several semantic classes characterized
by biological ontologies. In prior work, we established
that Open Access journal articles do not differ in terms
of linguistic structure or semantic content from tradi-
tional journal articles [6] and therefore take this corpus
as representative of the biomedical literature more gen-
erally. Along with this paper, we are publicly releasing
67 (70%) of the articles, constituting 70.8% of the tokens
in the full corpus. It is available at http://bionlp-corpora.
sourceforge.net/CRAFT/index.shtml.
The availability of the CRAFT corpus makes it possi-

ble for the first time to evaluate a number of hypotheses
with exciting implications for the near-term development
of biomedical text mining. In this work, we explore several
uses of the CRAFT corpus for evaluating the performance
of natural language processing tools. We specifically con-
sider (a) the generalizability of training algorithms and
existing models to the new corpus, and (b) the impact
of the availability of full text training data for new model
development. A priori, genre differences have plagued
natural language processing for years, and full texts are
clearly a different genre from that which most extant
systems have been developed on — abstracts of journal
articles [4]. Those who have worked with full text have
noted various ways in which full texts differ from abstracts
[7-11], mainly focusing on distributional differences of
certain types of keywords and assertions. Nonetheless,

a few authors have developed systems to process full
text. Friedman and Rzhetsky developed the GENIES sys-
tem, which processes full-text journal articles [10], Rzhet-
sky’s GeneWays system does as well [12], and the recent
BioCreative III evaluation required systems to process full
text [13].
In this work we first introduce the syntactic annota-

tion of the CRAFT corpus. The annotation of genes and
ontological concepts is described in more detail in Bada
et al. (2012) [14].
Next, with this sufficiently large collection of annotated

biomedical full text documents, we report the head-to-
head performance of a number of language processing
tools selected for their difficulty, for their relevance to
any language processing task, and for their amenabil-
ity to evaluation with well-annotated gold standard
data. Specifically, we examined the performance of tools
for:

• Sentence boundary detection
• Tokenization
• Part-of-speech tagging
• Syntactic parsing
• Named entity recognition, specifically of

gene names

Sentence boundary detection was included because it is
an essential first task for any practical text mining appli-
cation. Tokenization was included both because it is an
essential prerequisite for any practical language process-
ing application and because it is notoriously difficult for
biomedical text (see e.g. [1,15]). Part-of-speech tagging
and syntactic parsing were included because the use of
syntactic analyses in biomedical text mining is a bur-
geoning area of interest in the field at present [16,17].
Finally, gene mention recognition was included because
prior work has shown drastic differences in gene mention
performance on full text across a range of gene mention
systems and models [4]. We perform a broad survey of
existing systems and models, and also retrain systems on
the full-text data to explore the impact of the annotated
training data.
Previous investigations of syntactic parser performance

on biomedical text [5,18] have focused on parser per-
formance on biomedical abstracts rather than full text
publications. In particular, [18] evaluates accuracy on only
79 manually reviewed sentences, while [19,20] explore
similarly small corpora of 300 and 100 sentences, respec-
tively. The CRAFT corpus, in contrast, contains over
20,000 manually analyzed parsed sentences in the portion
we are publicly releasing at this time – the full contents
of 67 journal articles, containing over 500k tokens (see
the Methods section for details on the partitioning of
the data).

http://bionlp-corpora.sourceforge.net/CRAFT/index.shtml
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Prior biomedical corpus annotation work
There has been significant prior work on corpus anno-
tation in the biomedical domain. Until the very recent
past, this has focused on the biological, rather than the
medical, domain. The biological corpora are most rele-
vant to the work discussed here, so we focus on them. The
biomedical corpora site at http://compbio.ucdenver.edu/
ccp/corpora/obtaining.shtml currently lists 26 biomedical
corpora and document collections. Of this large selec-
tion, we review here only some of the most influential or
recent ones.
The flagship biomedical corpus has long been the

GENIA corpus [21,22]. Studies of biomedical corpus
usage and design in [23,24] reviewed several biomedical
corpora extant as of 2005 with respect to their design fea-
tures and their usage rates outside of the labs that built
them. Usage rates outside of the lab that built a cor-
pus was taken as an indicator of the general usefulness
of that corpus. These studies concluded that the most
influential corpus to date was the GENIA corpus. This
was attributed to two factors: the fact that this was the
only corpus containing linguistic and structural anno-
tation, and the fact that the corpus was distributed in
standard, easy-to-process formats that the natural lan-
guage processing community was familiar with. In con-
trast, the other corpora lacked linguistic and structural
annotation, and were distributed in one-off, non-standard
formats.
The GENETAG corpus [25] has been very useful in

the gene mention recognition problem. It achieved wide
currency due to its use in two BioCreative shared tasks.
The BioInfer corpus [26] is a collection of 1100 sen-
tences from abstracts of journal articles, annotated with
entities according to a self-defined ontology and show-
ing relationships between them by means of a syntac-
tic dependency analysis. The BioScope corpus [27] is
a set of 20,000 sentences that have been annotated for
uncertainty, negation, and their scope. Most recently,
the various data sets associated with the Association
for Computational Linguistics BioNLP workshop [17,28]
have been widely used for their annotations of multi-
ple biological event types, as well as uncertainty and
negation.

Results and Discussion
Annotation of document structure, sentence boundaries,
tokens, and syntax
Syntactic annotation: introduction
Although CRAFT is not the first corpus of syntactically
annotated biomedical text, it provides the first constituent
annotation of full-text biomedical journal articles. Penn
Treebank’s BioIE project provided much of the basic
skeleton for the workflow of this type of annotation.
However, we did have to make several new policies or

expand existing PTB policies for syntactic annotation in
the biomedical domain (discussed below).
The markup process of the CRAFT corpus consisted of

phases of automatic parsing and manual annotation and
correction of all 97 articles in the corpus. Automatic seg-
mentation and tokenization were performed, then part of
speech tags were automatically applied to every token in
the data according to each token’s function in a given con-
text (for details see below).We employed Penn Treebank’s
full Part of Speech tagset (which consists of 47 tags; 35
POS tags and 12 punctuation, symbol, or currency tags)
without any alterations (see Additional file 1 for the full
tagset). This output was then hand corrected by human
annotators.
After hand correction, the data was then automatically

parsed into syntactic phrase structure trees with Penn
Treebank’s phrasal tagset. Syntactic nodes indicate the
type of phrase of which a token or a group of tokens is
a part. They form constituents that are related to one
another in a tree structure where the root of the tree
encompasses the largest construction and the branches
supply the relationship between the main components
of the tree (subject, verb/predicate, verb arguments and
modifiers) and each of these main components may con-
tain internal phrase structure. CRAFT added 4 nodes
representing article structure, CIT, TITLE, HEADING
and CAPTION (discussed below), to the original tagset.
The automatically processed trees were then hand cor-
rected. Automatic parsing did not provide function tags or
empty categories, which were also adapted from the Penn
Treebank syntactic tagset, so those were added by hand
during bracketing correction. Function tags are appended
to node labels to provide additional information about the
internal structure of a constituent or its role within the
parent node. CRAFT added one new function tag, -FRM
(discussed below). Empty categories provide a placeholder
for material that has been moved from its expected posi-
tion in the tree, arguments that have been dropped, such
as an empty subject, or material that has been elided.
The data was finalizedwith two iterations of quality con-

trol verification to ensure that all the data was consistently
annotated and that all policy changes that were adapted at
different stages of the project were properly implemented
across all data. A rough estimate of the total time required
to syntactically annotate the full corpus is approximately
80 hours a week for 2.5 years (including 6 months for
training).
Given the input text, “Little is known about genetic fac-

tors affecting intraocular pressure (IOP) in mice and other
mammals” (PMCID 11532192), the final segmented, tok-
enized, part-of-speech tagged, syntactically parsed and
annotated output is as follows, with each phrase in paren-
theses and part of speech tags to the left of their respec-
tive tokens.

http://compbio.ucdenver.edu/ccp/corpora/obtaining.shtml
http://compbio.ucdenver.edu/ccp/corpora/obtaining.shtml
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(S (NP-SBJ-1 (JJ Little))
(VP (VBZ is)

(VP (VBN known)
(NP-1 (-NONE- ∗))

(PP (IN about)
(NP (NP (JJ genetic)

(NNS factors))
(VP (VBG affecting)

(NP (NP (NP (JJ intraocular)
(NN pressure))

(NP (-LRB- -LRB-)
(NN IOP)))
(-RRB- -RRB-)

(PP-LOC (IN in)
(NP (NP (NNS mice))

(CC and)
(NP (JJ other)

(NNS mammals))))))))))
.)

We describe below the major implementations and
policy adaptations that yield the above tree.

Selectionand amendment of annotation guidelines
For the POS annotation, we chose to follow the 3rd revi-
sion of the POS-tagging guidelines of the Penn Treebank
project [29].
For the treebanking, we have followed the guidelines for

Treebank II [30-32] and Treebank 2a [33] along with those
for the BioIE project [34], which is an addendum to the
Treebank II guidelines based on annotation of biomedical
abstracts. Employing these guidelines of the Penn Tree-
bank project enables us to contribute our collection of
richly annotated biomedical texts to a larger collection of
treebanked data that represents a multitude of genres and
that already includes biomedical journal abstracts. Finally,
we modified or extended these guidelines to account for
biomedical phenomena not adequately addressed in them
(see Additional file 2 for the CRAFT addenda to the PTB2
and BioIE guidelines). A set of these changes was made
at the beginning of the project resulting from exami-
nation of the corpus articles, and further changes were
made throughout the course of the project as issues arose;
descriptions and examples of these changes can be seen
below.

Training of annotators and creation ofmarkup
The lead syntactic annotator (CW), who had five years
of syntactic annotation experience, first trained the senior
syntactic annotators (AL, AH), the former of whom
trained a third senior syntactic annotator (TO). These
lead and senior annotators were responsible for policy
changes, documentation, quality control, and training of

additional annotators, who were required to have some
knowledge of syntax and semantics (with at least one
year of completed Master’s-level linguistics coursework)
and some previous experience in syntactic annotation.
These additional annotators were first trained to perform
POS tagging for approximately one month with Penn’s
newswire training files and then on a chapter of an intro-
ductory biology book [35], followed by treebanking train-
ing for several weeks to one month on short training files
obtained through the Penn Treebank project. Treebanking
training continued on the aforementioned book chapter
and finally on the first article of the corpus. Altogether,
training for syntactic annotation lasted approximately six
months. All training was performed on flat text (i.e., text
that had not been automatically annotated).
For the syntactic annotation of the corpus, sentence

segmentation, tokenization, and POS markup was first
automatically generated using the GENIA parser. Each
article’s automatically generated markup was manually
corrected by one annotator in the lex mode of Emacs.
This was followed by the automatically generated tree-
banking of these articles (with the corrected segmenta-
tion, tokenization, and POS markup) using the parser of
the OpenNLP project. Each article’s automatically gen-
erated treebanking markup was then manually corrected
by one annotator using TreeEditor. Since they are not
generated by this parser, the annotators used TreeEditor
to add empty categories, which are syntactic place hold-
ers in the tree construction that indicate arguments that
have been moved from their expected positions in the
trees, and functions tags, which specify additional infor-
mation about phrases not represented in the treebank-
ing markup, e.g., the location of an action. Additionally,
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sentence-segmentation errors not previously found were
corrected manually outside of TreeEditor, as it does not
have the capability of merging sentences. The corrected
output of this annotator was checked by the syntactic lead
annotator.
The output of the syntactic lead then underwent the

final phase of syntactic annotation, referred to as the
quality-control phase. This phase consisted of automatic
validation of POS tags (e.g., checking that a phrase anno-
tated as a prepositional phrase actually begins with a word
annotated as a preposition) and of sentences (e.g., check-
ing that each S node had a subject and a verb at the
appropriate level of attachment) using CorpusSearch fol-
lowed by manual correction of indicated errors. This step
allowed us to confirm tree uniformity, to verify that errors
had not been introduced during the manual correction
of previous passes, and to ensure that changes in anno-
tation guidelines or policy made during the project were
consistently reflected in the final output. For example,
during the course of annotation, the treatment of prepo-
sitional phrases beginning with “due to” changed from
being annotated as recursive prepositions, i.e., (PP due (PP
to)), to being annotated as flat multiword prepositions,
i.e., (PP due to). A validation script was written to detect
recursively annotated occurrences of such prepositional
phrases, an example of which is provided below.

These results explain why defective
PDGF signal transduction results in a
reduction of the v / p cell lineage
and ultimately in perinatal lethality
due to vessel instability (Hellström
et al. 2001).

68 PP-PRP: 68 PP-PRP, 69 IN, 70 due,
71 PP

(62 NP (63 NP (64 JJ perinatal) (66 NN
lethality))
(68 PP-PRP (69 IN due)

(71 PP (72 IN to)
(74 NP (75 NN vessel)
(77 NN
instability)))))))

This error message indicates that there is a recursive PP
error and provides the full sentence, the reference num-
ber(s) of the element(s) involved in the error, and the
current parse of the tree. Given this output, the annota-
tor manually corrected this error in the file by deleting the
extra PP node for “to”.

Guidelines
Full-text journal articles present issues that can be
uniquely distinguished from the style of the abstracts that

the Penn BioIE project annotated. We found that Penn’s
guidelines for biomedical abstract annotation did not
cover the increased technical complexity of a full-length
article, such as the parenthetical information, definitions,
and figure and table captions found throughout a full-text
article, necessitating regular policy review and addendum
construction. Major changes to Penn’s guidelines include
addition of node labels TITLE, HEADING and CAPTION
to replace the -HLN function tag (see below), and CIT for
citations. We have added one new function tag, -FRM, to
the top-level constituent (S) of formulas, where a mathe-
matical symbol (<, >, =) is treated as a verb. The use of
the PRN node label has been expanded from theTB2a pol-
icy [33], which only allows for a clausal PRN (reference,
appositive-like adjectives). Because of the large number of
nominals and other parentheticals in the CRAFT data we
have allowed any node label inside of PRN. The use of the
-TTL function tag has been slightly modified from ETTB
as well. Each of these node and function label additions
and expansions have been made in order to provide label-
ing that accurately represents the more complex structure
of biomedical articles.
We have also changed how shared adjuncts are brack-

eted, which are now adjoined to coordinated VP or S,
added more structure to single token coordinated NMLs,
and refined Penn’s POS and tokenization policy to account
for additional symbols, such as ◦ (degree) (as in 35°C).
Another significant change we have made is the elimina-
tion of PP-CLR. PTB2 allows for PP-CLR on verbal argu-
ments. However, we felt that this policy was not clearly
defined and it was difficult to consistently apply. We have
retained the -CLR in S-CLR for resultatives and secondary
predicates.
The last change we implemented was the complete

elimination of the empty category *P* (placeholder for dis-
tributed material) introduced in the Penn BioIE guideline
addendum. With the increased complexity of full-length
articles, we felt that these policies were difficult to apply
consistently and greatly increased the complexity of the
annotation and resulting trees. We maintain that existing
policy on NML and NP coordination preserves much of
the same information represented by *P*.
In PTB2, the -HLN function tag indicates a headline

or a dateline, as found in newswire texts. However, the
section headings in journal articles have a slightly dif-
ferent function and convey different information than a
news headline. Since the treebanked data are journal arti-
cles, we are using more informative labels for nodes that
would have been tagged with -HLN (see example below)
based on newswire bracketing guidelines (Guidelines [31]
Section Ongoing and future work).

(FRAG-HLN (NP-SBJ-1 Clinton)
(S-PRD (NP-SBJ ∗PRO∗-1)
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(VP to leave)))
‘‘Clinton to leave’’ (BioIE addendum)

(FRAG-HLN (NP-SBJ-1 3 soldiers)
(VP killed (NP ∗ − 1)

(PP by
(NP-LGS
bomb))))

‘‘soldiers killed by bomb’’ (BioIE
addendum)

CRAFT addenda
Labels were created for information that is unique to
the structuring of a journal article. The CRAFT annota-
tion guidelines add TITLE, HEADING, and CAPTION
node labels to denote these sections of journal arti-
cles. Below are several examples of usage. (From CRAFT
addendum to PTB2 and BioIE guidelines, see Additional
file 2)

Journal title: TITLE

(TITLE (NP PLoS
Genetics))

Section headings: HEADING

(HEADING (NP Abstract))

(HEADING (NP Introduction))

(HEADING (NP Results))

Figure, Table, and Picture Captions: CAPTION

(HEADING (NP Figures and Tables))
(HEADING (NP Figure 1))

(CAPTION (NP (NP An
(QP almost two-fold)
range)

(PP of
(NP IOP))

(PP between
(NP (ADJP genetically
distinct)

mouse strains))
.))

‘‘An almost two-fold range of IOP
between genetically distinct mouse
strains.’’ (PMCID 1152192)

(TITLE (FRAG (NP (NP Intraocular
pressure)

(PP in

(NP (ADJP
genetically
distinct)
mice)))

:
(NP an

(NML (NML update)
(CC and)
(NML strain
survey)))))

‘‘Intraocular pressure in genetically
distinct mice : an update and strain
survey’’ (PMCID 11532192)

These nodes require internal structure the same as other
main text nodes. However, TITLE, HEADING, and CAP-
TION nodes have only one daughter. In cases where titles,
headings or captions are not complete sentences, FRAG
may be used to make a single constituent of the daughter
nodes.

(TITLE (FRAG (NP Complex Trait Analysis
of the Mouse Striatum)

:
(S Independent QTLs
Modulate Volume and
Number)))

While TITLE, HEADING, and CAPTION are new
nodes that have been added to PTB2’s original tag set, we
have also changed the scope of some existing node labels,
such as PRN (fromCRAFT addendum to PTB II and BioIE
guidelines).

PRNand CIT
We have expanded the use of PRN to include citations
that consist of other referential material such as page
or footnote numbers, figure and table information, or
extra-sentential details. The PRN node is put inside of
whichever node it seems to be modifying. Sentence-final
parentheticals modifying the entire sentence are placed
inside the VP containing the matrix verb, mirroring the
placement of sentence-level adjuncts.

Adding primary label CIT for inline citations
In Penn BioIE Addendum ([34] Section 7.2), citations are
annotated as follows:

(PRN -LRB-
(FRAG Shelton et al., 1983)
-RRB- ))

Since citations are pervasive in journal articles and
books, we have added a CIT node for inline citations.



Verspoor et al. BMC Bioinformatics 2012, 13:207 Page 7 of 26
http://www.biomedcentral.com/1471-2105/13/207

The internal structures for citations are flat. CIT
applies only to author references that occur inside of
parentheses.

(CIT -LRB- Shelton et al., 1983 -RRB-)

(CIT -LRB- A. - K.H. and V.E.
Papaioannou , unpublished observations
-RRB-)
‘‘(A. - K.H. and V.E. Papaioannou,
unpublished observations)’’ (PMCID
12079497)

All other, non-parenthetical references are bracketed as
normal text.
Citations that are part of the argument structure of a

larger sentence are annotated fully as ordinary text:

(NP (NP The second paper)
,
(PP by

(NP (NP Davies)
(ADVP-ETC et al))))

‘‘The second paper, by Davies et al’’
(PMCID 11597317)

(VP reviewed
(NP-1 ∗)
(PP in (NP (NP (NP Furumura)

(ADVP-ETC et al.))
(NP-TMP 1996))))

‘‘reviewed in Furumura et al. 1996’’
(PMCID 14737183)

Expansion of PRN
We have expanded its use to include citations that con-
sist of other referential material such as page or footnote
numbers, figure and table information, or extra-sentential
details. If the sentence contains only one parenthetical at
the end of the sentence, then this is a daughter of the
VP; otherwise, it is within whichever node it seems to be
modifying.

(S (NP-SBJ These mutations
(VP shift

(NP (NP the spectral profiles
(PP of

(NP the translation
products))))

(PRN [
(NP 4 , 11)
]))) .)

‘‘These mutations shift the spectral
profiles of the translation products
[4,11].’’ (PMCID 12079497)

(S (NP-SBJ-1 R1 ES cells
(PRN [

(NP 20)
]))

(VP were
(VP maintained

(NP-1 ∗)
(PP under

(NP standard culture
conditions ))

(PP in
(NP (NP the
presence)

(PP of
(NP LIF))))))
.)

‘‘ES cells [ 20 ] were maintained under
standard culture conditions in the
presence of LIF...’’ (PMCID 12079497)

Addition of -FRM function tag
We have added one new function tag, -FRM, to the top-
level constituent (S) of formulas in which a mathematical
symbol (<, >, =) is treated as a verb.

(S-FRM (NP-SBJ (NN p))
(VP <

(NP 0.05))

‘‘p < 0.05’’

The above is interpreted as “p is less than 0.05.” Ortho-
graphically, the copula is not realized—thus we have
created the -FRM tag to denote the difference between
formulas and canonical sentence structure.

Shared VP and S adjuncts
In the PTB, shared adjuncts for coordinated VPs are left at
the conjunction level:

(S (NP-SBJ-1 the company)
(VP expects

(S (NP-SBJ-1 ∗PRO∗)
(VP to

(VP (VP obtain
(NP regulatory
approval))

and
(VP complete

(NP
transaction))

(PP by
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(NP
year-end)))))))

‘‘The company expects to obtain
regulatory approval and complete
transaction by year-end.’’ (Penn BioIE
guidelines)

“by year-end” is shared by both VPs “obtain regulatory
approval” and “complete transaction”, but is attached at
the same level as those two VPs to form a flat structure.
CRAFT adds a layer of VP so that the PP modifier and
the coordinated VP are at different levels of attachment to
make more explicit the shared distribution of the PP.

(S (NP-SBJ-1 the company)
(VP expects

(S (NP-SBJ-1 PRO∗)
(VP to

(VP (VP (VP obtain
(NP regulatory
approval))

and
(VP complete

(NP
transaction))

(PP by
(NP
year-end)))))))

Sharedmodifiers can also occur at the S level.When two
clauses share a modifier, the modifier is adjoined to the
coordinated S’s.

(S (PP-TMP After
(NP (NP puncture)

(PP of
(NP (NP coagulated
blood)

(PP from
(NP the
corpora
cavernosa))))
))

(S (S (NP-SBJ urine retention)
(VP developed))

and
(S (NP-SBJ-1 a suprapubic
catheter)

(VP had
(S (NP-SBJ-1 ∗)

(VP to
(VP be

(VP introduced
(NP-1 ∗)

(ADVP
temporarily)
(PP-PRP for

(NP urine
drainage)
))))))))

.)

‘‘After puncture of coagulated blood
from the corpora cavernosa urine
retention developed and a suprapubic
catheter had to be introduced
temporarily for urine drainage.’’
(BioIE addendum section 11.10).

Tokenization and Part of Speech tagging of hyphens
and symbols
We adopted Penn’s tokenization policy regarding
hyphens, slashes, dashes and symbols, in which expres-
sions containing hyphens and symbols are split into
multiple tokens, with the exception of a list of bound
affixes that don’t provide meaning in isolation (see Penn’s
single token hyphenated words list in the Additional files).

Hyphens, slashes, and dashes
Dashes are split and are interpreted as prepositional
phrases when they are used to denote a range, as in pages
in a parenthetical reference:

(PRN (-LRB- [)
(NP (NP (CD 13))

(PP (SYM -)
(NP (CD 19))))

(-RRB- ]))

‘‘We have focused on developing the
mouse system for IOP and glaucoma
studies [13-19].’’ (PMCID 11532192)

In the above citation the dash is read as “to.” When a
dash is pronounced (‘to’, ‘negative,’ or ‘minus’) it is tagged
SYM to distinguish hyphens and dashes that perform
syntactic functions from those that simply link words
together.
The negative symbol is also annotated as a pronounced

symbol and receives the SYM POS tag:

(NP (NP (NN average))
(PP (IN of)

(NP (QP (SYM -) (CD 0.3))
(NN mmHg))))

‘‘average of -0.3 mmHg’’
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We also split off all slashes in the text into separate
tokens.When a slash is pronounced (typically ‘of ’ or ‘per’)
it received the SYM POS tag:

(NP (CD 100) (NNS mg))
(PP (SYM /)

(NP (NN kg))))

‘‘100 mg/kg’’

Compare the above with use of HYPH for hyphens and
slashes that are not pronounced:

(NP (NML (NN neuron) (HYPH -) (VBG
packing))

(NN density))

‘‘neuron-packing density’’

(NP (NML (NN BALB) (HYPH /) (NN cJ))
(NN strain))

‘‘BALB / cJ strain’’

In keeping with Penn’s tokenization policy we decided
to treat numbers in temperatures as multi-token expres-
sions. Temperatures containing a ‘°’ (degree) symbol are
split into two tokens; the number is POS tagged as a car-
dinal number, CD, and ‘°C’ forms a constituent that is
POS tagged as a singular noun as in “37°C,” (NP(CD 37)
(NN°C)).
The percent symbol is also split. However, it receives the

POS tag NN for singular noun, rather than SYM.

(NP (NML (QP (JJR greater) (IN than)
(CD 90))

(NN %))
(NN inhibition))

‘‘greater than 90% inhibition’’ (PMCID
11532192)

(NP (NML (CD 4) (NN%))
(NN fat))

‘‘4% fat’’ (PMCID 11532192)

Symbols in mathematical formulas are split and POS
tagged as SYM.

(S-FRM (NP-SBJ (NN n))
(VP (SYM =)

(NP (CD 4))))

‘‘n = 4’’

(S-FRM (NP-SBJ (NN P))

(VP (SYM <)
(NP (CD 0.0001))

‘‘P < 0.0001’’

We did not split certain symbols from their names,
since they are part of the name as a whole and do not
serve a specific function such as joining terms together
(hyphen) or providing other syntactic or semantic infor-
mation (such as ’<’ interpreted as a verb or ’/’ interpreted
as a preposition).

(NP (JJ homozygous) (JJ lethal)
(PRN (-LRB- -LRB-)

(NP (NN †XPCS))
(-RRB- -RRB-)))

‘‘homozygous lethal (†XPCS)’’ (PMCID
17020410)

(NP The (NML p53δPGFP exchange)
(NN construct))

‘‘The p53δPGFP exchange construct’’
(PMCID 16870721)

Elimination of -CLR
In PTB2 one use of the function tag -CLR is to label prepo-
sitional phrases that have a closer relationship with a verb
than simply that of an adjunct. Whether a PP is an argu-
ment or not to a large extent depends on the specific verb
and it is hard to make a general characterization about
the nature of this category without referring to this verb.
Therefore the Penn BioIE Addendum has a long list of
verbs that take a PP that can be labeled -CLR. Below is an
example of PP tagged -CLR:

(VP account
(PP-CLR for

(NP her disappearance)))

We believe such argument structure information is bet-
ter handled in a separate layer of Propbank-style anno-
tation that focuses on the argument structure of each
verb. In the treebank annotation, we avoid using this func-
tional tag. Following CRAFT’s policy, the above example
is annotated as follows:

(VP account
(PP for

(NP her disappearance)))

Note that we have retained the use of S-CLR to mark
resultatives and secondary predicates, as defined in the
Treebank 2a guidelines:

(S (NP-SBJ uncertainty)
(VP drives
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(NP-3 people)
(S-CLR (NP-SBJ ∗PRO∗-3)

(ADJP-PRD wild))))

Modification of -TTL
The -TTL function tag was originally used only to mark
the titles of created works. However, it also marks a form
of nominalization, as titles whose internal structure is not
nominal can behave nominally. For example, “In the Heat
of the Night” or “One Flew Over the Cuckoo’s Nest” can
function as the subject of a sentence or the object of a
preposition.
The following is an example of -TTL in its more tradi-

tional usage:

(NP (NP (NP the EU project)
(NP EUMORPHIA)))
,
‘‘
(S-NOM-TTL (NP-SBJ (-NONE-
∗PRO∗))

(VP (VBG
Understanding)
(NP (JJ human) (JJ
molecular)

(NML physiology
and pathology))

(PP-MNR through
(NP (NP
integrated
functional
genomics)

(PP-LOC in
(NP the
mouse
model)))
)))

’’))

‘‘the EU project EUMORPHIA,
‘‘Understanding human molecular
physiology and pathology through
integrated functional genomics in the
mouse model’’ ’’ (PMCID 15345036)

As in ETTB, CRAFT allows the extension of -TTL to
other instances of this referential nominalization that can
occur outside of titles. For example:

(S (S (NP-SBJ-1 Significance)
(VP was

(VP set (NP-1 ∗)
(PP at

(S-TTL-FRM (NP-SBJ
p)

(VP <
(NP 0.05))
)))))

and
(S (ADJP-TTL-SBJ suggestive)

(VP refers
(PP to

(S-TTL-FRM (NP-SBJ p)
(VP <

(NP 0.63))
))))

.)

‘‘Significance was set at p < 0.05
and suggestive refers to p < 0.63.’’
(PMCID 15938754)

This sentence has two nominalizations. Suggestive refers
to theword suggestive itself rather than the quality of being
suggestive. Similarly, the formula (analyzed internally as S
because it is read aloud as “P is less than 0.63”) is function-
ing nominally within the larger context of the sentence, in
its position as object of a preposition.

Elimination of *P*
*P* is used in the Penn BioIE project as a place-holder for a
distributed premodifier or head, and it is used exclusively
in coordinated nominal constructions. Here is an example
where *P* is used in the Penn BioIE project:

(NP (NP K-
(NML-1 ∗P∗))

and
(NP N-

NML-1 ras)))

CRAFT annotates the tree as:

(NP (NML K- and N-) ras)

This structure would represent the fact that K- and
N- are both modifiers of ras. Please refer to the CRAFT
addendum to PTB2 and Penn BioIE guidelines for a more
detailed discussion of *P*.

NMLModification
In general, we have maintained the current policies of
PTB2a regarding annotation within NP: *P* is not used
and the NML node label is used for sub-NP nominal sub-
strings (see section 12.2.1 of [34] Penn BioIE addendum
for detailed information about NML). However, in con-
junction with other policy changes that explicitly annotate
the scope of coordinated structures (see section Shared
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VP and S adjuncts, above), we have slightly expanded the
use of NML in certain single-token coordinated struc-
tures. By current TB2a policy, single-token coordinated
nominal heads with shared premodifiers are left flat:

(NP the cats and dogs)

In CRAFT, we explicitly show the scope of the, which
is modifying both cats and dogs, by putting a NML node
around cats and dogs:

(NP the
(NML cats and dogs))

More examples of this expanded use of NLM from
PMCID 11532192:

(PP at
(NP each

(NML dose and time)))

(NP the
(NML species, strain and
environment))

(PP in
(NP (NML early onset)

(NML obesity and diabetes)))

In this way, wemore closely align the annotation of these
single-token coordinated heads with existing PTB2a pol-
icy regarding the use of NML in multi-token coordinated
phrases with shared premodifiers:

(NP the
(NML (NML grey cats)

and
(NML brown dogs)))

(NP the
(NML (NML pupil)
and
(NML optic nerve)))

‘‘the pupil and optic nerve’’ (PMCID
11532192)

As in PTB2a, we also use NML in multi-token nominal
premodifiers of nouns, as in:

(NP (NML red blood cell)
destruction)

‘‘red blood cell destruction’’ (PMCID
12925238)

. . . where red and blood modify cell, forming the sub-NP
constituent red blood cell, which modifies destruction.
Some other examples of NML in CRAFT marking this

type of complex nominal modifier:

(NP the overall
(NML gene expression)
profiles)

‘‘the overall gene expression
profiles’’ (PMCID 16504174)

(NP (NML (NML C57BL / 6J)
and
(NML 129x1 / SvJ))

inbred strains)

‘‘C57BL/6J and 129x1/SvJ inbred
strains’’ (PMCID 17590087)

(NP a
(NML (QP greater than 90)

%)
inhibition)

‘‘a greater than 90% inhibition’’
(PMCID 11532192)

Annotation products and quality assessment
The syntactic annotation of the CRAFT corpus consisted
of manual annotation, including manual correction of
automatic parsing, of 97 full-text biomedical journal arti-
cles. The 97 fully syntactically annotated articles yielded
30,800 sentences and 793,627 tokens, and include 619,567
syntactic nodes, 101,022 function tags, and 37,178 empty
categories. The initial release of 67 articles yielded 21,710
sentences and 561,020 tokens and include 437,250 syntac-
tic nodes, 71,522 function tags, and 25,978 empty cate-
gories. See Additional file 3 for counts of each node, tag,
and empty category.
When the OpenNLP syntactic parser output was com-

pared to the gold standard it achieved 67.46 recall and
33.68 precision, whereas the average accuracy of annota-
tors when compared to the gold standard is 94.67 recall
and 94.94 precision (see Methods, Inter-annotator agree-
ment section for a description of IAA calculations). This
indicates a large human annotation effort to correct auto-
matic output. Automatic parsing of biomedical litera-
ture is not consistent enough to rely only on automatic
methods to provide precise data. Average inter-annotator
agreement is 90.91 recall and 90.30 precision. Full details
of IAA are available in Table 1.
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Table 1 Inter-annotator agreement of syntactic annotation of the CRAFT corpus

Annotator-Annotator IAA Gold-Annotator IAA Gold-Parser IAA

A1-A2 A1-A3 A2-A3 A1 A2 A3

Recall 91.02 92.31 89.39 95.92 94.98 93.16 67.46

Precision 90.58 90.18 90.13 94.98 94.58 94.39 33.68

Evaluation of named entity recognition systems and
syntactic parsers
We consider the performance of existing systems on sev-
eral tasks important for biomedical natural language pro-
cessing: gene/protein mention recognition and syntactic
analysis of text, including the syntactic pre-processing
steps of sentence boundary detection, tokenization, and
part of speech tagging.
For each tool assessed, we produced results over the

CRAFT text using the models with which they are dis-
tributed and compared the produced annotations to the
CRAFT gold standard annotations using standard mea-
sures.We also retrained several of the tools on theCRAFT
data to assess the impact of retraining, performing five-
fold cross-validation of a training set sub-selected from
CRAFT. We report the performance on a held-out devel-
opment set in both cases (see Methods Section Data
partitioning).

Genemention recognition
The CRAFT corpus semantic annotations include anno-
tation of gene mentions. The Sequence Ontology [37] was
used as the target ontology for mentions of sequences,
including genes and gene products. Entrez Gene [38,39]
identifiers are used to associate gene mentions with a
specific gene. We utilized these annotations to evaluate
several popular named entity recognition (NER) systems
that focus on recognition of protein or gene names. NER
of gene/protein mentions has been the subject of several
shared tasks [40] and is a common step in other BioNLP
applications, such as protein-protein interaction extrac-
tion or gene-disease relation extraction. NER systems aim
to identify relevant names in text, and delimit the bound-
aries of those names. They do not typically attempt to
map those names to a specific database identifier (this is a
separate task referred to as Gene Normalization [41]) and
therefore our evaluation focuses only on the detection of
relevant strings in the text.
Bada et al. describes the semantic annotation of CRAFT

[14]. The annotation identifies mentions of genes and
their products, including a determination of type (e.g. the
Sequence Ontology concepts of “gene” or “polypeptide”).
We compared these annotations with mentions found by
the NER systems. The sequence type annotations, how-
ever, are very detailed and the set of annotations for a sin-
gle type do not in every case correspond to a cohesive set

of annotation categories from a given NER system/model,
such as the “protein” category of the BioCreative datasets
[40,42], or NLPBA’s “DNA” and “RNA” categories [43].
The problem of inconsistency among annotation category
sets has also been investigated by [44], who introduced an
aggregate tag, gene-or-gene-product (GGP).
To achieve better coverage, we also aggregated several

semantic classes utilized in CRAFT based on domain
knowledge, for the purpose of evaluation. The mappings
are listed in Table 2. The names reflect a combination
of the main focus of the class and the Kleene star (‘*’)
character used in regular expressions. In the final form,
the aggregations are explicitly defined in terms of spe-
cific classes and do not make use of regular expressions
(see Additional file 4 for the complete set of aggregations).
We tested various combinations of NER system categories
to CRAFT semantic classes for each system, depend-
ing on the categories used by the system. In the tables
below, we use a lowercase descriptor for the source NER

Table 2 Semantic class groupings for CRAFT

Mapping strategy Source Semantic class

STAR (any class)

GENE gene

POLY polypeptide

QTL

cDNA

gene

GENESTAR gene or polypeptide

gene or polypeptide or macromolecular complex

gene or transcript or polypeptide

gene or transcript or macromolecular complex

macromolecular complex

polypeptide

polypeptide or macromolecular complex

POLYSTAR promoter

transcript

transcript or polypeptide

transcript or polypeptide or macromolecular

complex



Verspoor et al. BMC Bioinformatics 2012, 13:207 Page 13 of 26
http://www.biomedcentral.com/1471-2105/13/207

Table 3 Precision/Recall/F1-score results for genemention detection over CRAFT development set: ABNER with
distributedmodel trained on BioCreative I using different evaluationmapping strategies

ABNER BioCreative ABNER BioCreative ABNER BioCreative

protein-STAR protein-GENE protein-POLYSTAR

Prec Recall F1 Prec Recall F1 Prec Recall F1

strict 0.35 0.46 0.40 0.12 0.31 0.18 0.20 0.62 0.30

overlap 0.50 0.69 0.58 0.23 0.64 0.34 0.23 0.74 0.35

shared 0.49 0.65 0.56 0.22 0.57 0.32 0.23 0.73 0.35

subspan 0.50 0.69 0.58 0.23 0.64 0.34 0.23 0.74 0.35

system categories and an all caps descriptor for the tar-
get CRAFT semantic classes. For instance, Table 3 refers
to “protein-POLYSTAR”. This means that the ABNER
category of “protein” was allowed to match any of the
CRAFT classes listed for POLYSTAR in Table 2, including
“polypeptide”, “macromolecular complex”, or “transcript”.
That is, if ABNER produced an annotation with the cate-
gory “protein” where the CRAFT gold standard has e.g. an
annotation with the class “transcript”, this was counted as
a true positive in the evaluation.
Tables 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 show the results

for the genemention systems with the distributedmodels.
Distributed models are trained on one of several avail-
able gene mention corpora: the NLPBA corpus [43], the
GENIA corpus [22], the BioCreative I gene mention cor-
pus [42], or the BioCreative II gene mention corpus [40].

Two sets of results are provided, based on a comparison
of the system output on (a) the development portion of
the CRAFT public release data set and (b) the complete
initial public release of CRAFT of 67 files (see Methods
section Data partitioning). We performed experiments
with several variables:

• System: The system used to produce the results.
• Model: The specific model used by the system to

produce the results.
• Annotation comparison strategy: The specific

strategy used in assessing precision and recall of gold
standard annotations (see Table 13).

• Annotation class mapping strategy: The defined
mappings from annotation classes in the source
system model to the CRAFT model (see Table 2).

Table 4 Precision/Recall/F1-score results for genemention detection over CRAFT initial release: ABNER with distributed
model trained on BioCreative I using different evaluationmapping strategies

ABNER BioCreative ABNER BioCreative ABNER BioCreative

protein-STAR protein-GENE protein-POLYSTAR

Prec Recall F1 Prec Recall F1 Prec Recall F1

strict 0.32 0.36 0.34 0.11 0.29 0.16 0.16 0.41 0.23

overlap 0.48 0.55 0.51 0.19 0.52 0.28 0.21 0.57 0.31

shared 0.46 0.53 0.50 0.18 0.50 0.27 0.21 0.55 0.30

subspan 0.47 0.55 0.51 0.19 0.52 0.28 0.21 0.57 0.31

Table 5 Precision/Recall/F1-score results for genemention over CRAFT development set: ABNER with distributedmodel
trained on NLPBA using indicated evaluationmapping strategies

ABNER NLPBA ABNER NLPBA ABNER NLPBA

protein-STAR star-POLYSTAR protein-GENESTAR

Prec Recall F1 Prec Recall F1 Prec Recall F1

strict 0.38 0.44 0.41 0.15 0.58 0.24 0.15 0.33 0.21

overlap 0.47 0.55 0.51 0.17 0.69 0.28 0.21 0.46 0.29

shared 0.46 0.54 0.50 0.17 0.67 0.27 0.21 0.45 0.29

subspan 0.47 0.55 0.51 0.17 0.69 0.28 0.21 0.46 0.29
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Table 6 Precision/Recall/F1-score results for genemention over CRAFT initial release set: ABNER with distributedmodel
trained on NLPBA using indicated evaluationmapping strategies

ABNER NLPBA ABNER NLPBA ABNER NLPBA

protein-STAR star-POLYSTAR protein-GENESTAR

Prec Recall F1 Prec Recall F1 Prec Recall F1

strict 0.30 0.34 0.32 0.11 0.41 0.17 0.13 0.29 0.18

overlap 0.39 0.44 0.41 0.14 0.57 0.23 0.15 0.36 0.22

shared 0.38 0.42 0.40 0.14 0.54 0.22 0.15 0.36 0.21

subspan 0.38 0.43 0.41 0.14 0.57 0.23 0.15 0.36 0.22

Table 7 Precision/Recall/F1-score results for genemention over CRAFT development set: BANNER with distributedmodel
trained on BioCreative II using indicated evaluationmapping strategies

BANNER BioCreative BANNER BioCreative BANNER BioCreative

protein-STAR protein-GENESTAR protein-POLYSTAR

Prec Recall F1 Prec Recall F1 Prec Recall F1

strict 0.38 0.61 0.47 0.16 0.49 0.25 0.20 0.78 0.32

overlap 0.49 0.80 0.61 0.25 0.77 0.38 0.22 0.85 0.35

shared 0.49 0.79 0.60 0.25 0.75 0.37 0.22 0.85 0.35

subspan 0.49 0.80 0.61 0.25 0.76 0.38 0.22 0.85 0.35

In performing annotation comparison, gene mentions
were scored with respect to four progressively less strict
types of mention boundaries due to differences in what
the different automatic taggers considered proper men-
tion boundaries. The various strategies are summarized in
Table 13.
The specific results shown in Tables 3, 4, 5, 6, 7, 8, 9, 10,

11 and 12 represent only a few of the possible semantic
class mappings. While full results are available as addi-
tional material (see Additional files 5 and 6), here we
have selected the 3 top-performingmappings for each sys-
tem/model combination. Examination of the tables shows
significant variability in performance, depending on the
different variable settings. Some variability can likely be
attributed to differences in size or quality of the underly-
ing training corpora (we note that the reported results for
the ABNER system trained on NLPBA is worse than for

the same system trained on the BioCreative data), while
some likely has to do with differences in the learning
algorithms. With regard to overall system performance,
the BANNER system produced consistently higher results
than other systems with various semantic class mappings,
though it was only tested with one distributed model.
A comparison with the ABNER system, also using a

BioCreative-derived model, shows that BANNER outper-
forms the ABNER BioCreative model. ABNER with the
BioCreative model outperforms the same system with the
NLPBA model; this indicates that the BioCreative gene
mention data is more similar to CRAFT gene annotations
than the NLPBA data. In general, increasing the scope of
the semantic classes considered to be a gene mention in
CRAFT increases precision. This indicates that most gene
NER systems employ a generous definition of a “gene”,
while the CRAFT annotations are more fine-grained and

Table 8 Precision/Recall/F1-score results for genemention over CRAFT initial release: BANNER with distributedmodel
trained on BioCreative II using indicated evaluationmapping strategies

BANNER BioCreative BANNER BioCreative BANNER BioCreative

protein-STAR protein-GENESTAR protein-POLYSTAR

Prec Recall F1 Prec Recall F1 Prec Recall F1

strict 0.35 0.51 0.41 0.14 0.42 0.21 0.18 0.60 0.28

overlap 0.46 0.69 0.56 0.20 0.63 0.30 0.22 0.76 0.34

shared 0.46 0.68 0.55 0.20 0.61 0.30 0.22 0.74 0.34

subspan 0.46 0.69 0.56 0.20 0.63 0.30 0.22 0.75 0.34
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Table 9 Precision/Recall/F1-score results for genemention over CRAFT development set: LingPipewith distributed
model trained on Genia using indicated evaluationmapping strategies

LingPipe Genia LingPipe Genia LingPipe Genia

proteinstar-STAR proteinstar-GENESTAR protein-STAR

Prec Recall F1 Prec Recall F1 Prec Recall F1

strict 0.29 0.38 0.33 0.10 0.25 0.14 0.30 0.37 0.33

shared 0.35 0.47 0.40 0.14 0.34 0.20 0.36 0.45 0.40

subspan 0.36 0.48 0.41 0.14 0.36 0.20 0.37 0.47 0.41

overlap 0.36 0.48 0.41 0.14 0.36 0.20 0.37 0.47 0.41

Table 10 Precision/Recall/F1-score results for genemention over CRAFT initial release set: LingPipewith distributed
model trained on Genia using indicated evaluationmapping strategies

LingPipe Genia LingPipe Genia LingPipe Genia

proteinstar-STAR proteinstar-GENESTAR protein-STAR

Prec Recall F1 Prec Recall F1 Prec Recall F1

strict 0.21 0.31 0.25 0.07 0.22 0.11 0.22 0.31 0.26

shared 0.27 0.41 0.33 0.09 0.28 0.14 0.22 0.31 0.26

subspan 0.28 0.42 0.33 0.09 0.29 0.14 0.29 0.41 0.34

overlap 0.28 0.42 0.33 0.09 0.29 0.14 0.29 0.41 0.34

semantically precise. Finally, we note that the results of
all systems and models are consistently worse on the full
CRAFT initial release set than the smaller development
set. This suggests that despite our best efforts to partition
the CRAFT data into unbiased subsets, there may still be
some important variation.
For those NER systems that were straightforwardly

trainable, we retrained them on the CRAFT data (see
Methods, Section NER Tools for details). Tables 14 and 15
show the performance of the retrained GM systems on the
development portion of the CRAFT corpus. The retrained
systems are trained with the aggregations of the seman-
tic classes derived from the Sequence Ontology, shown
in column 2 of Table 2. The systems were trained only
with annotations in the relevant aggregation, and eval-
uated on the corresponding annotations (see Additional
file 6 for the complete data set). For ABNER in particular

(Table 14), we see that some combinations of categories
seem to perform particularly badly, indicating that those
categories may be particularly difficult to recognize. Ling-
Pipe (Table 15) has somewhat more consistent results
across the various category groupings, through there is
still significant variability. A possible explanation for lower
performance with the polystar mappings may be that
there is insufficient training data in those aggregations
to derive a good model. All system performances were
statistically different than the others, (p< 0.01); seeMeth-
ods Section Statistics used for NLP tools performance
differentiation for the details of the test performed.
For both systems, the best results are obtained when

all of the various semantic classes are grouped together
both for training and for evaluation, suggesting that the
systems have done a reasonable job of generalizing over
the different types of sequence mentions.When compared

Table 11 Precision/Recall/F1-score results for genemention over CRAFT development set: LingPipe with distributed
model trained on GeneTag using indicated evaluationmapping strategies

LingPipe GeneTag LingPipe GeneTag LingPipe GeneTag

gene-STAR gene-GENE gene-GENESTAR

Prec Recall F1 Prec Recall F1 Prec Recall F1

strict 0.26 0.69 0.38 0.12 0.60 0.20 0.12 0.61 0.20

shared 0.31 0.83 0.45 0.15 0.80 0.26 0.16 0.79 0.26

subspan 0.32 0.86 0.46 0.16 0.85 0.27 0.16 0.85 0.27

overlap 0.32 0.86 0.46 0.16 0.85 0.27 0.16 0.85 0.27



Verspoor et al. BMC Bioinformatics 2012, 13:207 Page 16 of 26
http://www.biomedcentral.com/1471-2105/13/207

Table 12 Precision/Recall/F1-score results for genemention over CRAFT initial release set: LingPipewith distributed
model trained on GeneTag using indicated evaluationmapping strategies

LingPipe GeneTag LingPipe GeneTag LingPipe GeneTag

gene-STAR gene-GENE gene-GENESTAR

Prec Recall F1 Prec Recall F1 Prec Recall F1

strict 0.22 0.63 0.33 0.08 0.56 0.15 0.10 0.58 0.17

shared 0.30 0.85 0.44 0.12 0.84 0.22 0.14 0.84 0.24

subspan 0.30 0.86 0.45 0.13 0.86 0.22 0.14 0.86 0.24

overlap 0.30 0.86 0.45 0.13 0.87 0.22 0.14 0.87 0.25

with the performance with distributed models, the Ling-
Pipe system performed better upon re-training, achieving
a highest F-score of 0.64 as compared to 0.46 on the devel-
opment set with the distributed models (Table 11). In
contrast, the ABNER system had an overall drop in per-
formance on retraining; it was able to achievemuch better
Precision at a substantial cost to Recall.
The LingPipe results after retraining are encourag-

ing, and do slightly outperform the best out-of-the-box
results we achieved with BANNER. We believe the mod-
est improvements upon retraining may be due to how we
structured the learning problem: due to overlaps among
the different aggregation sets, we removed any existing
annotations not in a given aggregation set before train-
ing. This means that the system cannot take advantage of
constraints among different annotation types to improve
the model for the target category. It is well-established
in the machine learning community that learning multi-
ple categories simultaneously generally results in better
overall performance of the model. We look forward to
more experimentation with learning NERmodels over the
CRAFT data to better understand this behavior.

Syntactic pre-processing: Sentence boundary detection,
tokenization, and part of speech tagging
A number of steps in any text mining pipeline or machine
learning algorithm are dependent on the accuracy of
lower-level task performance. For this reason, we evalu-
ated the performance of systems for sentence boundary
detection, tokenization, and part of speech (POS) tagging.
The input to the sentence detectors was the original

plain text (UTF-8 encoded) articles with no markup. The
sentence-detected output was the input to the tokenizers.
Each tokenizer was paired with its own sentence detection
tool (i.e. the OpenNLP tokenizer uses OpenNLP sen-
tence annotation, the LingPipe tokenizer uses LingPipe
sentence annotation, etc.). Similarly, the input to the POS-
taggers was sentence and token annotated data from the
corresponding tools. All token, sentence, and POS anno-
tations from the various tools were evaluated using the
strict span matching criteria (see Table 13).

Sentence boundary detection was evaluated on the basis
of precision/recall of character-based sentence boundary
placement. Post-processing was performed that removed
whitespace from character span counts at the end of
sentence annotations and that removed empty-span sen-
tence annotations. Table 16 shows the results for sentence
boundary detection. The permutation test (see Methods
Section Statistics used for NLP tools performance dif-
ferentiation) showed that the difference in performance
between LingPipe and the other two tools was signifi-
cant (p < 0.01); the difference between OpenNLP and
UIMA was not. The major difference between the high
performance of LingPipe and the lower performances of
OpenNLP and UIMA is that the former is able distinguish
section headings from the surrounding text.
Tokenization and POS tagging were evaluated likewise.

Table 17 shows the results for tokenization. The permu-
tation test showed the performance of each tool to be
significantly different than the others (p < 0.01). Here,
we see that the default UIMA tokenizer actually outper-
forms the more specifically biomedical tokenizer of the
PennBio framework; this likely stems from the treatment
of punctuation in our annotation guidelines.
The results for POS tagging are in Table 18. The per-

mutation tests showed that all system performances were
significantly different (p < 0.01), except for LingPipe with

Table 13 Annotation comparison strategies

Strict Requiring matches at both the left and right edges of the

name span

Overlap Allowing any degree of overlap between the

system-identified name span and the gold standard name

span

Shared Requiring a match only at one of the left or right edge of

the name span

Subspan Subsumption, where the boundaries of the

system-identified name are within the span of the gold

standard annotation, or vice versa
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Table 14 Precision/Recall/F1-score results for genemention over CRAFT development set: ABNER withmodel retrained
from the CRAFT public release data set

ABNER CRAFT ABNER CRAFT ABNER CRAFT ABNER CRAFT ABNER CRAFT

star-STAR gene-GENE genestar-GENESTAR poly-POLY polystar-POLYSTAR

Prec Recall F1 Prec Recall F1 Prec Recall F1 Prec Recall F1 Prec Recall F1

overlap 0.72 0.40 0.51 0.86 0.33 0.48 0.78 0.40 0.53 0.56 0.04 0.07 0.64 0.06 0.11

shared 0.72 0.40 0.51 0.86 0.33 0.48 0.78 0.40 0.53 0.56 0.04 0.07 0.64 0.06 0.11

subspan 0.72 0.40 0.51 0.86 0.33 0.48 0.78 0.40 0.53 0.56 0.04 0.07 0.64 0.06 0.11

strict 0.63 0.35 0.45 0.83 0.31 0.46 0.73 0.38 0.50 0.50 0.03 0.06 0.63 0.06 0.11

the Genia model against OpenNLP. Here we see surpris-
ingly poor performance, with none of the systems reach-
ing even 0.8 F-score on the CRAFT data, well below state
of the art for general English POS tagging. The highest-
performing system (LingPipe with the Genia model) is
a model specifically trained on biomedical text, indicat-
ing the importance of domain-relevant training material.
The lowest performing models, LingPipe with the Brown
model and with the MedPost model, have different tag
sets, which greatly impairs their apparent performance
when compared against the Penn Tagset used in CRAFT.
To adjust for the different tagsets and provide an upper-
bound notion of POS tagger performance, those tags that
did not align with the gold standard set were removed
from the evaluation for all four tools. These adjusted val-
ues are presented in parentheses in Table 18. Note that
even OpenNLP and LingPipe with the Genia model have
a higher upper-bound than their actual performance; this
is because each have a small set of tags that do not align
to the gold-standard tagset. The overall low performance
even with those tools using the Penn Tagset, (i.e. UIMA
and LingPipe Genia Model), is of concern for BioNLP sys-
tems, since much downstream processing makes use of
POS-tagged data (note that in our parsing experiments
below, we provide gold standard POS tags as input to the
parsers whenever possible to avoid cascading errors).

Parsing
We compared parsers under a variety of conditions
related to (a) type of model and (b) type of output.

We differentiated between parsers distributed with mod-
els built on non-biomedical text and parsers with mod-
els built on biomedical text. We differentiated between
dependency parsers and constituency parsers. For parsers
that could be trained, we retrained them on the CRAFT
data (see Methods Section Data partitioning).

Constituency Parsing
Constituency parsers vary in their required input for-
mats and allowable configuration. The required input
format for each parser, which varied from one token/POS-
tag pair per line to one sentence per line with specific
delimiters between tokens and POS-tags, was extracted
from the gold-standard treebanked parses from the pub-
lic release CRAFT set. Parsers that could be configured
to accept sentence-split, pre-tokenized, POS-tagged input
were provided this pre-processed input derived from the
gold standard. Parsers that could not were provided just
the gold standard sentence-split input (Charniak-Lease
and Charniak-Johnson parsers). The Charniak-Lease and
Charniak-Johnson parsers are very similar. We show
results from the older Charniak-Lease version of the
parser because it was distributed with a model that was
trained on biomedical text. The Stanford Parser accom-
modated a character encoding configuration and that was
set to handle the input as UTF-8.
To evaluate full syntactic parses, we used the version

of evalb provided with the Stanford Parser Java 1.6.6
package [45]. The evalb scoring categories are labeled
bracket precision, (LB-P, number of correctly labeled and

Table 15 Precision/Recall/F1-score results for genemention over CRAFT development set: LingPipe withmodel retrained
from the CRAFT public release data set

LingPipe LingPipe LingPipe LingPipe LingPipe

CRAFT star-STAR CRAFT gene-GENE genestar-GENESTAR CRAFT poly-POLY polystar-POLYSTAR

Prec Recall F1 Prec Recall F1 Prec Recall F1 Prec Recall F1 Prec Recall F1

strict 0.60 0.64 0.62 0.50 0.73 0.59 0.49 0.75 0.59 0.21 0.34 0.26 0.23 0.34 0.27

subspan 0.62 0.67 0.64 0.52 0.77 0.62 0.52 0.79 0.62 0.21 0.34 0.26 0.23 0.35 0.28

shared 0.62 0.67 0.64 0.52 0.77 0.62 0.52 0.79 0.62 0.21 0.34 0.26 0.23 0.35 0.28

overlap 0.62 0.67 0.64 0.52 0.77 0.62 0.52 0.79 0.62 0.21 0.34 0.26 0.23 0.35 0.28
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Table 16 Sentence boundary detection results on the
CRAFT public release data (70% set)

Sentence boundary detector Precision Recall F-measure

LingPipe 0.98 0.98 0.98

OpenNLP 0.87 0.74 0.80

UIMA-native 0.85 0.75 0.80

spanned constituents divided by number of constituents
in parsed input), labeled bracket recall (LB-R, number
of correctly labeled and spanned constituents divided by
number of constituents in gold standard input), and F-
score (LB-F), applied to each sentence as a whole. The
values presented here are the sentence scores averaged
over the section of corpus being tested. Except where
noted, all comparisons of tools on the same dataset were
statistically different (p < 0.01) using the permutation
test (see Methods Section Statistics used for NLP tools
performance differentiation).
Each parser struggled with a different small set of sen-

tences that it could not parse, and the parse output of
these sentences varied per parser. In some cases the parser
output had to be manipulated manually to conform to
a format that evalb could handle. Evalb skips any
sentence for which the token count between the gold-
standard sentence and the automatically parsed sentence
does not match, and sentences that could not be parsed
fall into this category. Additionally, some parsers retok-
enized input containing punctuation despite being given
gold-standard tokenization and POS information; in some
cases these alterations changed the token count, leading
to higher counts of sentences that were not evaluated by
evalb; this figure is shown in the ‘unevaluated count’
column of the tables.
Parsing results for parsers distributed with general

English (non-biomedical) parsing models appear in
Tables 19 and 20. The Mogura, Charniak-Lease and
Charniak-Johnson parsers are distributed with models
trained on biomedical annotated text (the biomedical
model with the Charniak-Johnson parser was created by
David McClosky [46]). Also, the Stanford 1.6.6 parser
is released with a default model that includes training
from sections of the GENIA corpus in addition to general

Table 17 Tokenization results on the CRAFT public release
data (70% set)

Tokenizer Precision Recall F-measure

UCompare OpenNLP 0.95 0.86 0.90

UIMA-native 0.96 0.93 0.95

PennBio 0.92 0.91 0.91

Offset Tokenizer 0.97 0.80 0.88

Table 18 Part of speech tagging results on the CRAFT
public release data (70% set)

POS Tagger Precision Recall F-measure

LingPipe (Brown model) 0.59 (0.90) 0.58 (0.84) 0.59 (0.87)

LingPipe (MedPost model) 0.47 (0.88) 0.46 (0.83) 0.46 (0.85)

LingPipe (Genia model) 0.79 (0.88) 0.76 (0.85) 0.77 (0.87)

OpenNLP 0.82 (0.86) 0.74 (0.77) 0.78 (0.81)

Numbers in parentheses indicate the upper-bound performance potential of the
tools, calculated by removing occurrences of tags that did not align to the
gold-standard tagset.

English text [22]. The results from evaluation of the devel-
opment set using these biomedical models are presented
in Table 21. Comparing Tables 20 and 21, we see that,
perhaps counter-intuitively, on the CRAFT development
set the general English models outperform the biomedical
models, even when the same underlying system is used.
The exception is the Mogura parser, which had nearly
identical performance in both cases. The results of the
parsers using the biomedical models on the release set
appear in Table 22. Note that we were unable to obtain
successful parses on CRAFT with the Enju parser using
the distributed biomedicalmodel and so no results for that
parser/model combination are included here.
For parsers that allowed retraining, we performed 5-

fold cross-validation on the training set and report the
performance on the development set; see Table 23. Not
surprisingly, the parser performance using the CRAFT-
retrained models showed a large improvement over those
using the distributedmodels. The Berkeley parser showed
greater improvement than the Stanford or Bikel parsers,
with the best results of about 83% LB-F.

Dependency parsing
While the CRAFT corpus has been syntactically anno-
tated with constituent trees, the use of dependency
parses rather than constituent parses is becoming increas-
ingly common in biomedical natural language processing.
Clegg and Shepherd [5] have argued thatmeasuring parser

Table 19 Results of constituent parsers using their
distributednon-biomedicalmodels on the CRAFT release
set; labeled bracket precision (LB-P), recall (LB-R) and
F-score (LB-F)

Parser LB-P LB-R LB-F unevaluated count

Berkeley 58.35 61.05 59.67 24

Bikel 63.34 65.27 64.29 5

Charniak-Johnson 56.97 49.92 53.21 166

Enju 57.76 59.87 58.80 612

Mogura 47.45 55.65 51.22 105

Stanford 1.6 57.70 62.31 59.92 4
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Table 20 Results of constituent parsers using their
distributednon-biomedical models on the CRAFT
development set; labeledbracket precision (LB-P), recall
(LB-R) and F-score (LB-F)

Parser LB-P LB-R LB-F unevaluated count

Berkeley 61.60 64.50 63.02 4

Bikel 63.97 65.82 64.89 2

Charniak-Johnson 62.51 65.55 64.00 59

Enju 71.93 43.56 54.26 8

Mogura 54.74 43.25 48.32 8

Stanford 1.6 60.76 64.70 62.67 3

performance through constituent-based accuracy fails to
adequately distinguish between real differences in mean-
ing derived from incorrect syntactic analysis and minor
differences of convention that do not truly affect the out-
put of text mining systems. Hence, we perform an analysis
of constituency parses that have been translated to depen-
dency structures. This also enables comparison of the
CRAFT trees with the output of the dependency parsers.
To do this comparison, the gold standard constituency
parse was translated to a dependency representation.
Two kinds of dependency parses are evaluated here:

parses that originated from a dependency parser and
parses that originated from a constituency parser and
were converted to dependency representations. Perform-
ing constituent-based parsing followed by conversion of
the outputs to dependency trees has been shown to
give higher accuracy than performing parsing directly
to dependency trees for Stanford dependencies [47].
This is mostly because the dependency structures we
are evaluating against are themselves converted from
constituent-based trees. On the other hand, performing
constituent-based parsing and doing the conversion is
literally 100 times slower than performing dependency
parsing directly (the Berkeley constituent-based parser
takes 0.3 seconds per sentence; the ClearParser takes 2.5
milliseconds per sentence).
Like the constituent parsing, dependency parsers

were provided gold standard tokenization and POS-tags
extracted from the gold standard public release set of
CRAFT. The output was evaluated using the standard
measurements typically used at CoNLL for dependency
parse evaluation. The labeled attachment score (LAS) cor-
responds to a complete comparison of the dependency
structures in the system to the structures in the goal,
for each sentence, requiring that individual tokens are
assigned to the correct head, with the correct dependency
relation. The unlabeled attachment score (UAS) relaxes
the requirement that the dependency relation matches,
only requiring association with the correct head. The
labeled accuracy score (LS) requires that the dependency

Table 21 Results of constituent parsers using their
distributedbiomedicalmodels on the CRAFT development
set; labeled bracket precision (LB-P), recall (LB-R) and
F-score (LB-F)

Parser LB-P LB-R LB-F unevaluated count

Charniak-Johnson 56.08 61.10 58.48 0

Charniak-Lease 55.53 59.77 57.57 2

Mogura 54.21 44.09 48.63 8

Stanford 1.6.6 61.10 62.65 61.87 2

relations match, but relaxes the requirement of being
assigned to the correct head.
Micro accuracy of a fold is calculated as in Equation 1,

i.e. the accuracy across all individual gold standard depen-
dencies in the fold. Macro accuracy is calculated as the
average of accuracies across all trees in the relevant fold.
We have not calculated accuracy averaged across individ-
ual documents, due to the differences in the number of
sentences in the documents.

microaccuracy = (# of correctly classified dependencies)
÷ (total # of dependencies)

(1)

For the dependency parser output, we report the indi-
vidual score on each training fold, the average across the
training folds, the score on the development set data for a
model trained on the complete CRAFT training set, and
the score on the development set data for the standard
model for each parser trained on the Penn Treebank Wall
Street Journal corpus (sections 2-21). Tables 24 and 25
show the results for the dependency parsers we tested.
Table 26 shows the results on the development set for

the constituency parsers mapped to a dependency repre-
sentation, evaluated with the same method as the strict
dependency parsers, for comparison. These results were
not as good as the strict dependency parse results, which
we did not expect, based on [47]. However, since the con-
stituent parsers we tested did not produce the function
tags (e.g. -TMP, -LOC) that our system used for reli-
able constituent-to-dependency conversion of the CRAFT

Table 22 Results of constituent parsers using their
distributedbiomedicalmodels on the CRAFT release set;
labeled bracket precision (LB-P), recall (LB-R) and F-score
(LB-F)

Parser LB-P LB-R LB-F unevaluated count

Charniak-Johnson 51.23 55.99 53.50 0

Charniak-Lease 53.28 57.43 55.28 8

Mogura 47.55 56.27 51.54 105

Stanford 1.6.6 59.49 61.81 60.63 10
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Table 23 Results of constituent parsers using retrained CRAFTmodels for each CRAFT fold and the development set
compared to untrained results on the development set; labeled bracket precision (LB-P), recall (LB-R) and F-score (LB-F)

Parser Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Training Average Dev Set Dev Set Untrained

Berkeley

LB-P 82.75 92.02 84.63 83.70 83.85 85.39 83.98 61.60

LB-R 82.64 90.82 84.01 83.29 82.88 84.73 83.20 64.50

LB-F 82.70 91.41 84.32 83.49 83.36 85.06 83.59 63.02

Bikel

LB-P 80.49 81.10 81.18 80.77 91.43 82.99 80.86 63.97

LB-R 79.68 79.77 80.10 80.46 91.06 82.21 80.44 65.82

LB-F 80.08 80.43 80.64 80.62 91.24 82.60 80.65 64.89

Stanford 1.6.6

LB-P 75.65 75.86 77.71 76.21 77.86 76.65 76.17 60.76

LB-R 76.81 76.84 78.65 77.24 77.85 77.48 75.92 64.70

LB-F 76.23 76.34 78.18 76.72 77.86 77.07 76.04 62.67

trees, they lost accuracy in the conversion step, particu-
larly in getting the dependency labels correct. Thus, the
labeled attachment scores of these two approaches are not
directly comparable. We can more meaningfully compare
unlabeled attachment scores, meaning we evaluate only
on edges regardless of labels. We see that the Berkeley
Parser results for UAS in Table 26 nearly approach the
UAS results of the strict dependency parsers.

Conclusions
We began this work by introducing two use cases for the
CRAFT corpus, (a) evaluation of existing tools and (b)
retraining of those tools. Our investigations have led to
several conclusions.

Algorithms andmodels differ in their generalizability
It is not controversial to state that different algorithms dif-
fer in their ability to train models that generalize to novel
corpora. However, as the work of Banko and Brill [48] has
shown, these differences may become apparent only as
increasing amounts of data become available. We suspect
that it is also the case that these differences may become
apparent only as increasing numbers of genres become
available. Prior work has looked at differences in perfor-
mance based on training on the WSJ versus biomedical
abstracts; thework reported here adds a new dimension to
genre variability by introducing the full text of biomedical
articles, which differ with respect to structure and content
from bothWSJ articles and biomedical abstracts [4].

Table 24 Micro-averaged results for dependency parsers on the CRAFT folds and dev set compared to untrained results
on dev set; labeled attachment score (LAS), unlabeled attachment score (UAS), labeled accuracy score (LS)

Parser Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Training Average Dev Set Dev – WSJmodel

MaltParser

LAS 85.81 86.29 87.08 86.13 86.26 86.34 86.04 69.78

UAS 87.94 88.43 89.16 88.18 88.16 88.39 87.91 73.42

LS 92.19 92.74 93.12 92.78 92.80 92.75 92.75 82.01

MSTParser

LAS 85.65 86.37 86.89 86.08 86.29 86.28 86.70 71.51

UAS 87.96 88.57 89.04 88.21 88.43 88.46 88.86 75.08

LS 92.09 92.95 93.24 92.91 92.92 92.86 93.37 83.26

ClearParser

LAS 86.46 86.99 87.94 87.12 87.23 87.18 87.56 70.43

UAS 88.23 88.81 89.62 88.82 88.86 88.89 89.11 73.62

LS 92.71 93.33 93.93 93.47 93.66 93.45 93.99 83.09
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Table 25 Macro-averaged results for dependency parsers on the CRAFT folds and dev set compared to untrained results
on dev set; labeled attachment score (LAS), unlabeled attachment score (UAS), labeled accuracy score (LS)

Parser Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Training Average Dev Set Dev –WSJ model

MaltParser

LAS 88.45 88.70 89.62 89.12 88.85 88.97 88.93 72.40

UAS 90.33 90.63 91.50 90.94 90.51 90.80 90.72 75.90

LS 93.43 93.78 94.23 94.16 93.93 93.92 94.03 82.73

MSTParser

LAS 88.30 88.85 89.58 89.12 88.90 88.98 89.36 75.99

UAS 90.37 90.83 91.50 91.04 90.82 90.93 91.31 79.42

LS 93.32 94.06 94.37 94.25 93.98 94.03 94.52 85.73

ClearParser

LAS 89.09 89.43 90.33 89.86 89.59 89.68 90.09 74.56

UAS 90.66 91.09 91.81 91.42 91.08 91.23 91.63 77.78

LS 93.89 94.37 94.88 94.65 94.57 94.50 94.99 85.17

Tool performance is increased
As was shown in the sections on parsing, tool perfor-
mance is increased when applications are re-trained on
the data in the CRAFT corpus. This means that the bottle-
neck in performance that the field previously faced when
trying to move from processing abstracts to processing
full text can be overcome.
Our current results for retraining the gene mention

recognition systems unfortunately did not show much
improvement. We anticipate that these will improve
significantly after some reconfiguration of the learning

Table 26 Parsing accuracy of constituency parsers,
evaluatedon their generated dependency
correspondences

Parser Dev Set Dev –WSJ model

Berkeley Parser

(Micro) LAS 76.97 60.21

(Micro) UAS 88.11 70.66

(Micro) LS 83.13 72.68

(Macro) LAS 80.34 65.19

(Macro) UAS 91.04 75.57

(Macro) LS 84.98 75.63

Stanford Parser

(Micro) LAS 72.13 58.42

(Micro) UAS 83.22 68.83

(Micro) LS 80.12 72.12

(Macro) LAS 75.87 62.10

(Macro) UAS 86.57 71.98

(Macro) LS 82.40 73.85

problem posed to the gene mention recognition sys-
tems, as described at the end of Section Gene mention
recognition.

CRAFT is a high quality resource
The work reported here has demonstrated that the
data in the CRAFT corpus can be used to train high-
performing models for a variety of language processing
tasks. In addition, we have shown that there is high inter-
annotator agreement for the syntactic annotation of the
corpus (Table 1). Taken together, these results support
the conclusion that the CRAFT corpus is itself of high
quality.

Building a state-of-the-art BioNLP system
Based on the experiments described here, there are sev-
eral tools that stand out for consideration for inclusion
within a BioNLP system targeted at full text biomedi-
cal publications. For sentence boundary detection, the
LingPipe sentence boundary detector out-performed
others by a significant margin. For tokenization, the
default tokenizer within UIMA does a good job. None
of the part-of-speech taggers did a great job without
retraining, though the OpenNLP tagger had the highest
precision. Given that gold standard POS tags were pro-
vided to the parsers in most cases, it could be expected
that use of a low-performing tagger would result in
lower than reported parsing accuracy in a natural setting.
However, the ClearParser dependency parser with
CRAFT-trained model would be an excellent choice; the
Berkeley parser with CRAFT-trained model should work
well for constituency parsing of full text. Finally, for gene
mention recognition BANNER appears to provide good
out-of-the box performance, while LingPipe responded
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well to re-training. We hope to retrain BANNER on
CRAFT in the near future to see additional performance
gains.

The effect of differing annotation guidelines
A possible reason for the differing performance of vari-
ous tools on this full-text corpus is differences in anno-
tation guidelines. However, this can be ruled out as
the explanation for all differences. In previous work,
we showed that performance differences, and sometimes
quite drastic ones, manifest themselves when tools are
evaluated separately on paper abstracts and paper bod-
ies [4]. Since the annotation guidelines were identical
for all parts of the articles, these differences cannot be
due to differences in annotation guidelines—the only
variable in this study was abstracts versus article bod-
ies. We also note that although differences in tag sets
could explain some of the differences in performance
of part of speech taggers when applied to our full-text
corpus, it clearly cannot explain all of it, since perfor-
mance differences were noted even when the tag sets were
the same.

The future of BioNLP with the availability of CRAFT
We retrained a relatively small set of tools for this
study (even if a larger set than in previous studies);
it is exciting to think what advances could be made
if additional tools are retrained on this corpus, and
if different strategies are explored for taking advan-
tage of the annotations. Furthermore, we look forward
to still more annotation of this material by us and
by other groups to support richer models integrating
different aspects of language, including discourse and
pragmatics.

Ongoing and future work
We are currently producing a number of additional sets of
annotations for the CRAFT corpus:

• Relations: Assertions of relationships between
semantic types already annotated in the corpus are in
progress.

• Coreference: All coreference in the corpus is being
annotated. The process and guidelines are discussed
in [49].

• Discourse: Discourse functions have been marked at
the sentence level.

• Parentheses: All parenthesized text is being classified
according to an ontology of parenthesis contents in
scientific journal articles. The ontology and
preliminary scores for a classifier for the ontology
concepts are described in [50].

• Evidence sentences: All sentences used as evidence
for GO annotations at MGI are being marked.

These new sets of annotations will be released as they
are completed.

Methods
Data
We used a pre-0.9 release of the CRAFT data set. CRAFT
is comprised of 97 full-text journal articles selected from
the PubMed Central Open Access subset [51] for their rel-
evance to the Mouse Genome Informatics database. The
articles were selected by retrieving all articles that (1) were
used as evidence for at least one Gene Ontology anno-
tation by MGI, and (2) were available Open Access. This
intersection yielded 98 full-text journal articles. One of
the articles was only available as a scanned PDF, leav-
ing 97 articles that could be subjected to natural lan-
guage processing. For details about the concept (semantic)
annotation of the CRAFT corpus, please see [14]. We
have previously argued [6] that the open access literature,
and specifically the CRAFT corpus, is representative of
the general biomedical literature, hence the experiments
reported here should generalize to comparable biomedical
corpora.

Data partitioning
We divided the CRAFT corpus into three partitions, one
containing 70% of the data and two each containing 15%
of the data.We used the 70% partition for the experiments
reported here. We refer to this set as the “public release”
CRAFT set. The two partitions containing 15% of the data
have been held back for use in shared tasks. The data sets
were randomly generated, but we confirmed that they are
balanced such that similar ratios of semantic classes of
named entities occurred in each split. One-way ANOVA
statistics were calculated for each ontology annotated in
CRAFT. Based on these tests, annotation counts in the
three random subsets were not statistically different from
the complete set.

To support retraining, we further subdivided the exper-
iment partition into 6 folds: 5 folds of 12 files each
comprising a training set, and a development set of the
remaining 7 files. The folds were selected in simple ID
order. Table 27 shows the distribution of the data across
the folds. Additional file 7 provides lists of the document
IDs corresponding to each fold and the development set.
Five-fold cross validation was performed using these

folds for all tools that support retraining. To avoid sys-
tems having to learn all of the fine-grained distinctions
of the Sequence Ontology captured in CRAFT, we per-
formed aggregation of the semantic classes prior to the
re-training. In other words, the “star-STAR” results reflect
a model in which all semantic categories in CRAFT are
aggregated into a single class that is learned by the sys-
tem. We then compare to the corresponding aggregation



Verspoor et al. BMC Bioinformatics 2012, 13:207 Page 23 of 26
http://www.biomedcentral.com/1471-2105/13/207

Table 27 Distribution of data across the folds

Fold Number of Sentences IDs of files in fold

Fold 0 3,066 11532192 - 15005800

Fold 1 3,990 15040800 - 15630473

Fold 2 3,951 15676071 - 16110338

Fold 3 3,723 16121255 - 16507151

Fold 4 4,200 16539743 - 17083276

Training 18,930 11532192 - 17083276

Development 2,780 17194222 - 17696610

set in the evaluation. After consistency of the results from
five-fold training was confirmed, a final model was trained
on all five folds. Evaluation was then performed on the
development set.

Inter-annotator agreement
All inter-annotator agreement (IAA) statistics for syn-
tactic annotation were calculated with the original ver-
sion of the evalb bracket scoring program using a mod-
ified version of the Collins parameter file [52], which
matches constituent (bracket) placement and node labels,
disregarding function tags, punctuation, symbols, empty
categories and indexation. IAA statistics reported are
defined as precision(A1) = |{A1} ∩ {A2}| / |{A1}| and
recall(A1) = |{A1} ∩ {A2}| / |{A2}|, where {A1} and {A2}
are annotation sets; these were calculated for the anno-
tation sets of six fully treebanked files marked up by
the three senior annotators (two files per pairing) in
the configurations {A1} − {A2}, {A1} − {A3} and {A2} −
{A3}. Additionally, IAA was calculated between annota-
tors and the gold standard (which was maintained by
the lead syntactic annotator) and also between auto-
matically created OpenNLP annotations and the gold
standard.

NER Tools
The NER tools tested here were run in a UIMA
2.2.2 environment using locally developed adapting soft-
ware: BioNLP-UIMA 1.4 (not yet released publicly)
(http://bionlp.sourceforge.net). Pre-syntactic annotations
of tokens and sentences were provided as input from
the CRAFT Treebank gold standard files. The UIMA
pipelines were defined in Java using uimaFIT 1.0 [53].
This allowed us to more easily run all the variations and
collate the output. The Java version used was 1.6.0. The
gold standard data was readwith libraries fromKnowtator
1.7.4 [54], and Protege 3.3.1 [55]. We used ABNER ver-
sion 1.5 [56], the version of BANNER [57] available in the
repository as of October 25, 2011, and LingPipe 3.9.3 [58].
ABNER and LingPipe training was accomplished using
software developed in-house to produce the input files to

training code provided with the respectiveNER tools. The
systems were trained on the 60 files in the training set,
and tested on the development set, as described in Section
Data partitioning.

Syntactic pre-processing tools
These lower-level task experiments were run within the
UIMA environment, and all annotations were brought
into alignment with a commonUIMA type systemdefined
in-house [59]. The tools used in this work are the
OpenNLP sentence-detector, tokenizer and POS-tagger v
1.3.0 [60], the LingPipe sentence-detector and POS-tagger
v 3.9.3 [58], the default versions of the UIMA-native
sentence-detector and tokenizer shipped with UIMA v
2.2.2 [61], the PennBio tokenizer v 0.5 [62], and the Off-
set tokenizer that is distributed with ConceptMapper v
August 2008 [63].

Parsers
The constituent parsers tested in this work are the Berke-
ley Parser v 1.1 [64], the Bikel Parser v 1.0 [65], the
Charniak-Lease Parser release date July, 2005 [66], the
Enju and Mogura Parsers v 2.4.1 [67], the McClosky-
Charniak Parser v a8fca3a4d59b [68], and the Stanford
Parser v 1.6 and 1.6.6 [45]. They are evaluated using the
version of evalb provided with the Stanford Parser Java
1.6.6 package [45].
The dependency parsers tested in this work are

the MaltParser v 1.5.2 [69], the MSTParser v 0.4.3c
[70], and the ClearParser v 0.3 [71]. They are eval-
uated using the evaluation script available as part
of the ClearParser package, (http://code.google.com/p/
clearparser/,classDepEvaluate) [72].
The tool used to translate constituent parses

to dependency parses was the Clear Constituent-
to-Dependency Converter (http://code.google.com/p/
clearparser/,classPennToDep) [72]. The conversion tool
was provided with some conversion rules specific to the
CRAFT treebank representation where it varies from the
original Penn Treebank representation. For instance, the
CRAFT representation of formulas, e.g.:

(S-FRM
(NP-SBJ (NN n))
(VP (SYM =)

(NP (CD 7))))

was converted to a dependency relation of the form:

‘‘=’’ -SBJ-> ‘‘n’’
-OBJ-> ‘‘7’’

The headrules required to achieve the appropriate con-
version are also included with the CRAFT release. The

http://bionlp.sourceforge.net
http://code.google.com/p/clearparser/, class DepEvaluate
http://code.google.com/p/clearparser/, class DepEvaluate
http://code.google.com/p/clearparser/, class PennToDep
http://code.google.com/p/clearparser/, class PennToDep
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conversion scheme is inherited from the LTH tool used
for the CoNLL 2007-9 [73].

Statistics used for NLP tools performance differentiation
Differences in system performances for the NER tools, the
pre-syntactic processing tools, and the parsing tools were
statistically verified using a permutation test to test the
difference in F-scores between two tools. For NER and
pre-syntactic processing tools, the number of permuta-
tions was 10,000. Due to excessive processing time, the
parser performances were based on 1000 permutations
instead. All significance claims are based on p < 0.01.

Availability
The corpus has been made available at http://bionlp-
corpora.sourceforge.net/CRAFT/index.shtml.

Additional material

Additional file 1: Full tagset used in the CRAFT corpus.

Additional file 2: CRAFT addendum to syntactic annotation
guidelines. CRAFT addendum to PTB2 and PennBioIE syntactic annotation
guidelines.

Additional file 3: Morphosyntactic data type counts. Counts of each
node, tag, and empty category in the CRAFT corpus.

Additional file 4: Semantic class aggregations. The specific definitions
of labeled aggregations of semantic categories used in evaluation.

Additional file 5: Full genemention results for distributedmodels.
Full results for gene mention systems with their distributed models, for all
semantic class mappings and system/model combinations.

Additional file 6: Full genemention results for retrained systems. Full
results for gene mention systems with models retrained on the CRAFT
data, with all semantic class mappings and system/model combinations.

Additional file 7: Folds and development set. Lists of the document
identifiers corresponding to each fold and to the development set.
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