
Talevich et al. BMC Bioinformatics 2012, 13:209
http://www.biomedcentral.com/1471-2105/13/209

SOFTWARE Open Access

Bio.Phylo: A unified toolkit for processing,
analyzing and visualizing phylogenetic
trees in Biopython
Eric Talevich1*, Brandon M Invergo2, Peter JA Cock3 and Brad A Chapman4

Abstract

Background: Ongoing innovation in phylogenetics and evolutionary biology has been accompanied by a
proliferation of software tools, data formats, analytical techniques and web servers. This brings with it the challenge of
integrating phylogenetic and other related biological data found in a wide variety of formats, and underlines the need
for reusable software that can read, manipulate and transform this information into the various forms required to
build computational pipelines.

Results: We built a Python software library for working with phylogenetic data that is tightly integrated with
Biopython, a broad-ranging toolkit for computational biology. Our library, Bio.Phylo, is highly interoperable with
existing libraries, tools and standards, and is capable of parsing common file formats for phylogenetic trees,
performing basic transformations and manipulations, attaching rich annotations, and visualizing trees. We unified the
modules for working with the standard file formats Newick, NEXUS and phyloXML behind a consistent and simple API,
providing a common set of functionality independent of the data source.

Conclusions: Bio.Phylo meets a growing need in bioinformatics for working with heterogeneous types of
phylogenetic data. By supporting interoperability with multiple file formats and leveraging existing Biopython
features, this library simplifies the construction of phylogenetic workflows. We also provide examples of the benefits
of building a community around a shared open-source project. Bio.Phylo is included with Biopython, available
through the Biopython website, http://biopython.org.

Background
Comparative methods in biology have been an active
area of scientific software development since the wider
availability of computing resources made such large-scale
quantitative analyses feasible [1]. In recent years, the num-
ber and range of tools for working with phylogenetic
information alone has expanded dramatically, creating
new opportunities as well as challenges in data integration
[2]. At the same time, we have seen new efforts to cre-
ate standards for data exchange and storage [3-6]. There is
thus a growing need formodular software toolkits that can
integrate cleanly into workflows for bioinformatics anal-
yses that include phylogenetic data, as well as facilitate

*Correspondence: etal@uga.edu
1Institute of Bioinformatics, University of Georgia, 120 Green Street, Athens,
GA 30602, USA
Full list of author information is available at the end of the article

tool development by providing a high-level application
programming interface (API) independent of data storage
formats.
Freely available, open-source software libraries now play

a major role in integrating software components for bioin-
formatics analyses. Generalized toolkits for working with
phylogenetic information are already available and in wide
use, including the Ape package for the R statistical pro-
gramming language [7], BioPerl [8] and Bio::Phylo [2] for
Perl, and Mesquite [9] for Java. The Open Bioinformatics
Foundation in particular supports an ecosystem of broadly
aimed bioinformatics libraries, collectively referred to as
the Bio* or “Bio-star” projects. These include BioPerl [8],
Biopython [10], BioJava [11], BioRuby [12], BioLib [13]
and BioSQL [14]. All of these libraries provide common
functionality to each of their target programming lan-
guages or environments: read and write a variety of file
formats used in bioinformatics, communicate with public

© 2012 Talevich et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://biopython.org


Talevich et al. BMC Bioinformatics 2012, 13:209 Page 2 of 9
http://www.biomedcentral.com/1471-2105/13/209

web services such as NCBI Entrez [15], access widely used
stand-alone programs such as BLAST [16,17], and define
fundamental data types for storing biological information,
such as annotated sequence records, protein structures
and phylogenetic trees.
We chose Python as the implementation language for

our library due to its increasing usage in scientific work
[18]. It allows for particularly concise, easy-to-read code,
has extensive library support, and enables the same code
to be run on all major operating systems. In addition to
Biopython, several other high-quality Python libraries are
available for phylogenetics: PyCogent [19], DendroPy [20],
ETE [21] and p4 [22] each serve specific problem domains
well. However, they focus specificially on phylogenetics
and are not intended to be general-purpose frameworks
for processing biological data.
In this article we present a framework for phylogenet-

ics in the Python programming language, fully integrated
with the Biopython toolkit. We supplemented existing
support for the NEXUS [23] and Newick [24] standards
in Biopython with a full-featured phylogenetic module,
Bio.Phylo, incorporating new input/output support for
the phyloXML standard [5]. We then integrated the new
I/O infrastructure with related code in Biopython and
added more features that would be useful for researchers,
with a focus on easy interoperability and rapid script
development.
Our contributions include an I/O framework with

parsers and serializers for the standard Newick, NEXUS
and phyloXML formats for phylogenetic trees, integrated
through a consistent and simple API that is familiar to
users of Biopython and BioPerl, as well as a set of com-
mon functions to perform on trees independently of the
source data format. This framework includes comprehen-
sive class definitions for the rich annotation types which
can be serialized in the standard phyloXML format. We
also provide several options for visualizing trees, and
convenient integration with popular third-party tools.

Implementation
Bio.Phylo is written as a sub-package within the Biopy-
thon code base, and is installed along with the Biopython
distribution. It has been available as part of the Biopython
library since version 1.54, released in May 2010.
The library can be used in Python versions 2.5 through

2.7 and 3.1 or later, without any external libraries required
at the time of installation. Functions that rely on exter-
nal libraries are written within a separate module of the
code base, and import their dependencies at run-time.
This design makes it possible to install Biopython and use
the rest of Bio.Phylo without having installed the depen-
dencies for these specific functions. Because Bio.Phylo
is written entirely in Python, it also runs on alterna-
tive implementations of Python: Jython 2.5 and Pypy 1.6

through 1.9 in particular pass the module’s unit testing
suite.

I/O functions for standard file formats
A unified API for input and output is provided for the
Newick, NEXUS and phyloXML formats with the same
underlying object structures. The simple API style is
shared with Bio.SeqIO, AlignIO, Motif and other modules
within Biopython; the API also resembles that of BioPerl.
The read and write functions accept a filename or
handle, so they also work with Unix pipes, network han-
dles or other file-like objects. As in Biopython’s SeqIO
and AlignIO, a convert function is available to convert
between any two of the supported formats with a single
call.
The I/O code is designed for simple addition of other file

formats without disturbing the existing code for Newick,
NEXUS and phyloXML. Parsing and serialization code
is separated from the internal tree object representation.
All parsers return a common object type, the tree, inde-
pendently of the source data format, and the parsed tree
objects all support a common set of operations.

Common tree representation
A phylogeny is represented by a Tree object which con-
tains global information about the phylogeny, such as
whether it is rooted, and a reference to the root Clade.
Each Clade contains a reference to its child clades, a
simple Python list of further Clade objects, nested recur-
sively. The Clade object also contains information about
the node occuring at the split or tip it represents, such
as the length of the branch leading to it and the name of
the node. There is no additional complex data structure
operating “under the hood”, and trees are not required to
be bifurcating, although the functions in Bio.Phylo cur-
rently assume that each Clade has a single parent, i.e., the
topology of the Tree is indeed a tree and not a network.
This straightforward design is conducive to implementing
algorithms in a form that is easy to read and under-
stand, with minimal need for management of the object’s
internal data representation.
The basic Tree and Clade objects store the intersection

of the information that can be represented in the Newick
and phyloXML formats. To store additional format-
specific attributes, we defined separate Newick and Phy-
loXML sub-classes which inherit from the basic Tree and
Clade classes. Classes for each element type defined in the
phyloXML specification have been implemented in the
Bio.Phylo.PhyloXML module, allowing richer annotation
types to be attached to Tree objects. For convenience in
adding graphical cues, the Clade class also has attributes
for the displayed color and width of a branch. The prop-
erties of the branch color and width attributes follow the
phyloXML specification, and are available on the common



Talevich et al. BMC Bioinformatics 2012, 13:209 Page 3 of 9
http://www.biomedcentral.com/1471-2105/13/209

Clade class due to their usefulness, particularly during
interactive work. In accordance with the phyloXML spec-
ification, these attributes apply in a cascading manner
down the clade: for example, if the root Clade object is
assigned the color blue, the entire tree will be displayed as
blue unless a child clade overrides this attribute.

Methods for tree inspection andmanipulation
The Tree and Clade objects also implement common
methods for tree manipulation and simple analyses that
might be used routinely in bioinformatics workflows.
These include methods for tree search and traversal,
extracting basic information, andmodifying ormanipulat-
ing the tree. A listing of thesemethods and other functions
available in Bio.Phylo is given in Table 1.
Both the Tree and Clade classes inherit from a third

class, TreeMixin, which implements these common tree
methods. Therefore, most of the same methods are avail-
able on both the Tree object and any of the Clade objects
it contains; in practice, one can usually ignore the dis-
tinction between the global Tree object and the root
Clade.

Visualization
We implemented several mechanisms for displaying
trees. The draw function displays a rooted phylogram
(Figure 1), in the style of Phylip’s drawgram program,
while draw graphviz displays an unrooted clado-
gram using the Graphviz programs [25] for layout and
the NetworkX library [26] as an intermediate graph
representation.
The generated plots can be further modified using the

built-in functions of matplotlib or PyLab [28]. In case no
visualization libraries are available on a system, plain-text
representations of a tree are also possible. The func-
tion draw ascii draws an “ASCII-art” tree to standard
output or a given file handle. Using the built-in Python
print statement on a Tree object shows the nested
object hierarchy, including class names and the values of
attributes such as branch length.
Since the complete phyloXML specification is imple-

mented, files can be saved by Bio.Phylo with graphical
annotations and then rendered with popular visualiza-
tion tools such as Archaeopteryx [29]. The cascading
behavior of clade colors and branch widths is shared by
Archaeopteryx and other tree visualization software that
implements phyloXML.

Wrappers for third-party programs
Biopython includes a common framework for building
wrappers for external programs. This framework allows
us to leverage the functionality of widely used third-party
programs from within Biopython, rather than reimple-
ment those functions. For example, Biopython supports

the Phylip suite of programs via EMBOSS [30], with
wrappers implemented in the Bio.Emboss.Applications
module. We follow this rationale in Bio.Phylo.
Within the sub-module Bio.Phylo.Applications, we cur-

rently provide wrappers for the tree inference pro-
grams PhyML [31] and RAxML [32]. The code scaffold-
ing is in place to add more, using the same common
Bio.Application framework.

PAML integration
Bio.Phylo also includes wrappers for the PAML suite of
programs [33], specifically the analysis programs yn00,
baseml, and codeml. Additionally, we created a pure-
Python re-implementation of the program chi2 as a
simple means to perform likelihood ratio tests. Since the
analysis programs are operated through the use of config-
uration files rather than command-line arguments, a dif-
ferent approach was required than what Bio.Application
enables. We therefore provide wrappers for these pro-
grams in a separate sub-module, Bio.Phylo.PAML.
For each of the three analysis programs, the wrapper

defines a corresponding class that the user instantiates
to store the configuration state. The programs’ standard
configuration options are set through the set options
method and are automatically written to a configura-
tion file when the run method is invoked or through
the write ctl file method. Existing configuration
files may be parsed via the method read ctl file.
Finally, each module of Bio.Phylo.PAML provides a read
method, which parses the output files of the respective
programs. The results of an analysis are stored hierarchi-
cally in a set of nested dictionary objects, allowing quick
access by keywords.

Biopython integration
Bio.Phylo integrates cleanly with other parts of the Biopy-
thon toolkit. We reuse existing Biopython API conven-
tions, including classes for exceptions and warnings, as
well as the packaging and installation mechanisms and
the testing framework. As mentioned above, the wrappers
for running external programs use a common Biopython
framework, Bio.Application. NEXUS and Newick support
were obtained through a refactoring of the Bio.Nexus
module, originally written by Frank Kauff and Cymon J.
Cox [34].
Where appropriate, classes in the PhyloXML module

support methods for conversion to and from instances
of the general-purpose Biopython classes for molecu-
lar sequences, annotated sequence regions and multiple
sequence alignments. For example, phyloXML defines a
ProteinDomain element type which represents a func-
tional domain within a protein sequence that appears
in the tree; our implementation of the ProteinDomain
class includes a to seqfeature method to convert a



Talevich et al. BMC Bioinformatics 2012, 13:209 Page 4 of 9
http://www.biomedcentral.com/1471-2105/13/209

Table 1 Built-in functions and treemethods

Source Function Description

Bio.Phylo read Parse a file in the given format and return a single tree.

Bio.Phylo parse Iteratively parse a file and return each of the trees it contains.

Bio.Phylo write Write a sequence of trees to file in the given format.

Bio.Phylo convert Convert between two tree file formats.

Bio.Phylo draw Plot the given tree using matplotlib (or pylab).

Bio.Phylo draw ascii Draw an ascii-art phylogram of the given tree.

Bio.Phylo draw graphviz Display a tree or clade as a graph, using the graphviz engine.

Bio.Phylo to networkx Convert a Tree object to a NetworkX graph object.

Bio.Phylo.BaseTree

TreeMixin find elements Find all tree elements matching the given attributes.

TreeMixin find clades Find each clade containing a matching element.

TreeMixin find any Return the first matching element found by find elements, if any.

TreeMixin get path List the clades directly between the current node and the target.

TreeMixin get nonterminals List of all of the tree or clade’s internal nodes.

TreeMixin get terminals List of all of the tree or clade’s “leaf” nodes.

TreeMixin trace List of all clade object between two targets in the tree/clade.

TreeMixin common ancestor Most recent common ancestor (clade) of all the given targets.

TreeMixin count terminals Count the number of terminal nodes within the tree.

TreeMixin depths Create a mapping of tree clades to depths (by branch length).

TreeMixin distance Calculate the sum of the branch lengths between two targets.

TreeMixin is bifurcating Return True if tree downstream of node is strictly bifurcating.

TreeMixin is monophyletic If the given terminals comprise a complete subclade, return the MRCA.

TreeMixin is parent of True if target is a descendent of the tree.

TreeMixin is preterminal True if all direct descendents are terminal.

TreeMixin total branch length Calculate the sum of all the branch lengths in the tree.

TreeMixin collapse Deletes target from the tree, relinking its children to its parent.

TreeMixin collapse all Collapse all the descendents of the tree, leaving only terminals.

TreeMixin ladderize Sort clades in-place according to the number of terminal nodes.

TreeMixin prune Prunes a terminal clade from the tree.

TreeMixin split Generate n (default 2) new descendants.

Tree, Clade is terminal True if the node has no descendents.

Tree root with outgroup Reroot the tree with the specified outgroup clade.

Tree root at midpoint Reroot the tree at the midpoint between the two most distant terminals.

Tree format Serialize the tree as a string in the specified file format.

Tree as phyloxml Convert the tree to its PhyloXML subclass equivalent.

Tree from clade Create a new Tree object given a clade.

Tree randomized Create a randomized bifurcating tree, given a list of taxa.

Bio.Phylo.PhyloXML

Phylogeny to alignment Construct an alignment from the aligned sequences in this tree.

Bio.Phylo.PAML

chi2 cdf chi2 χ2 cumulative distribution function, for log-likelihood ratio tests.

baseml read Parse a BASEML results file.

codeml read Parse a CODEML results file.



Talevich et al. BMC Bioinformatics 2012, 13:209 Page 5 of 9
http://www.biomedcentral.com/1471-2105/13/209

Table 1 Built-in functions and treemethods Continued

yn00 read Parse a yn00 results file.

paml.Paml write ctl file Dynamically build a program-specific control file.

paml.Paml read ctl file Parse a control file to create a program-specific class instance.

paml.Paml print options Print all of the program options and their current settings.

paml.Paml set options Set the value of a program option.

paml.Paml get option Return the value of a program option.

paml.Paml get all options Return the current values of all the program options.

paml.Paml run Run a PAML program and parse the results.

Public methods and functions provided in the Bio.Phylo module and sub-modules. An up-to-date version of this information is available at http://biopython.org/DIST/
docs/api/.

Figure 1 Tree visualization. An example tree with the code to generate each plot shown below each plot. First, a phyloXML tree of the Apaf-1
protein family [27] is downloaded, read by Bio.Phylo, and plotted with default settings. The tree is then rerooted at the midpoint of its two most
divergent tips and ladderized such that sibling clades with a larger number of descendents are listed first. The clade of genes belonging to
vertebrate species is identified as the common ancestor of the human and zebrafish, after inspection of the original tree. The vertebrate clade is
highlighted with the color fuchsia and an increased branch width, and the rest of the tree is colored gray. Finally, the tree is plotted again.

http://biopython.org/DIST/docs/api/
http://biopython.org/DIST/docs/api/


Talevich et al. BMC Bioinformatics 2012, 13:209 Page 6 of 9
http://www.biomedcentral.com/1471-2105/13/209

ProteinDomain instance to an instance of the Biopython
class SeqFeature, a generalized representation of an anno-
tated sequence region. These SeqFeature objects could
then be used with the Biopython’s GenomeDiagram mod-
ule [35] to create a diagram of the protein domain archi-
tecture of each sequence appearing in the phyloXML tree.
The ProteinDomain class also provides a complementary
method, from seqfeature, which could be used to
add domain architecture annotations to the sequences in
a phyloXML record, given the corresponding GenBank
files.

Validation
A complete suite of unit tests to verify correct func-
tioning of each module is included with the Biopython
distribution. This includes the round-trip parsing and
serialization of example files in each supported file for-
mat; conversion between formats; proper construction,
behavior and serialization of all phyloXML element types;
methods for tree inspection, traversal and manipulation;
and succesful loading of optional third-party libraries, if
available.

Results
Use of Bio.Phylo in published studies
Since the Bio.Phylo module has beenmade available to the
community throughout its development, researchers have
had the opportunity to use it in studies that have since
been published.
A recent study of microbial phylogenomics used

Bio.Phylo for large-scale processing of microbial gene
trees, generating permutations of tree topologies by
rerooting over 100,000 gene trees at each internal and
external node [36]. Additional file 1 shows a simplified
example of how such rerooting could be performed.
In another study of the eukaryotic protein kinase super-

family in the protozoan phylum Apicomplexa, Bio.Phylo
was used to identify putative lineage-specific ortholog
groups by selecting clades with significant bootstrap sup-
port from gene trees [37]. The corresponding sequences
were then automatically extracted from a matching
FASTA file, using Biopython’s SeqIO module, for further
analysis in a computational pipeline.

Performance
Despite the stark simplification of the underlying data
structures, the majority of the built-in tree methods have
a run time that is theoretically linear or constant in pro-
portion to the number of nodes in the tree. The tree
traversal methods find clades and find elements
are Python generator functions which evaluate and emit
values incrementally, as needed by the caller; this “lazy
evaluation” approach uses computer memory more effi-
ciently and avoids performing more computation than

necessary; for example, the method find any uses this
property to stop traversal after finding the first element
matching the user’s query and thus avoid traversing the
remainder of the tree structure or evaluating any further
comparisons.
We timed several benchmark operations on large tree

files to evaluate the speed of Bio.Phylo on several different
tasks (Table 2; Additional file 2). On more modestly sized
trees and input files, these operations typically complete
in a small fraction of a second.

Cookbook and additional documentation
In keeping the Bio.Phylo module general-purpose and
simple to begin using, we have chosen not to include
niche functions, or approaches that are still the topic
of active research, in the Biopython distribution. How-
ever, we nonetheless anticipate that other users of the
Bio.Phylo module will want to use these features, and
there is a benefit to sharing this code. We resolve this by
maintaining an online “cookbook” on the Biopython wiki
(http://biopython.org/wiki/Phylo cookbook). This cook-
book contains working code samples for common usage
patterns, as well as exporting to object types of other
libraries. In particular, we provide functions to convert a
Bio.Phylo tree object to a distance or adjacency matrix
using the NumPy module for Python, and to export a
Bio.Phylo tree to the native tree objects used by the R
package Ape [7], via the Rpy2 module, and the Python
package PyCogent [19].
The main Biopython tutorial, included with the Biopy-

thon distribution and available online at http://biopython.
org/, contains a chapter on the Bio.Phylo module describ-
ing its use in detail.

Discussion
Bio.Phylo organizes phylogenetic trees as a primary data
type, filling a previously underserved area of data han-
dling within Biopython. The module directly implements
tree parsing and serialization in three standard formats, as
well as navigation, visualization and manipulation of phy-
logenetic trees, and conversion of tree data to other data
types. Other important aspects of phylogenetics, includ-
ing phylogenetic tree reconstruction and analysis of rate
variation and ancestral character states, exist as opti-
mized stand-alone programs by other authors; RAxML
and PAML are examples of such programs that are already
well accepted by the phylogenetics community. Rather
than re-implement the functionality of these established
third-party programs ourselves, we have opted to pro-
vide wrappers for these, and focus on providing “glue”
utilities to ease the process of assembling computational
workflows that involve phylogenetic data.
By building our work into an existing, popular library,

we were able to take advantage of both the software

http://biopython.org/wiki/Phylo_cookbook
http://biopython.org/
http://biopython.org/


Talevich et al. BMC Bioinformatics 2012, 13:209 Page 7 of 9
http://www.biomedcentral.com/1471-2105/13/209

Table 2 Performance

Task Input tree Python 2.7 Python 3.2 PyPy 1.9

Read a very large Newick tree Smith 2011 angiosperm supertree

(55473 terminal nodes) [38] 17.45 16.85 1.214

Read the same large tree in phyloXML Smith 2011, converted to phyloXML with

phylo converter (http://phylosoft.org/) 3.805 4.318 3.937

Write the same large tree as Newick Smith 2011 0.5238 0.7704 0.4378

Write the same large tree as phyloXML Smith 2011 10.39 10.85 24.17

Read a medium-sized Newick tree Davies 2004 angiosperm supertree

(440 terminal nodes) [39] 0.1097 0.1087 0.007312

Parse many Newick trees Davies 2004, copies rerooted at

each node (816 trees) 84.91 84.29 6.812

Reroot at each node Davies 2004 1.347 1.167 0.3450

Collapse all splits with bootstrap values less than 50 Davies 2004 2.266 2.312 2.411

Total branch length Davies 2004 0.01322 0.01310 0.01448

Ladderize the tree Davies 2004 0.1274 0.1190 0.1127

Count terminal nodes Davies 2004 0.006838 0.006323 0.005914

Performance of Bio.Phylo functions and tree methods under different Python versions on several benchmark tasks. Reported execution times are the median of 101
replications of each task, in seconds (Additional file 2). Benchmarks were evaluated with Python versions 2.7.3 and 3.2.3 and PyPy version 1.9 on an Intel Xeon E5405
2.00 GHz processor with 8 GB memory, running under 64-bit Ubuntu Linux 12.04 with Biopython 1.60 installed.

infrastructure and the community of developers and users
associated with Biopython. By reusing core objects and
maintaining common API conventions for file parsing, the
resulting software package has a familiar feel to new users
who have prior experience with Biopython or BioPerl. To
ensure code correctness and minimize errors introduced
during additional development, we reuse the existing
test framework and packaging mechanisms in Biopython.
A continuous integration server http://testing.open-bio.
org/biopython/ runs an automated test suite nightly on
all supported Python versions, operating systems and
implementations, including the Jython Java-based port of
Python.
Our work also provides an example of the short- and

long-term benefits of building a community of develop-
ers and users around a shared open-source project. By
integrating with Biopython from the beginning, we gained
access to an existing community of developers and users
who have continually tested the software under a variety
of environments and use cases, reported bugs, requested
new features, and provided new code. A notable exam-
ple of a contribution from the Biopython user commu-
nity is Bio.Phylo.PAML, which began as an independent
project, pypaml. We successfully integrated the pypaml
source code into Biopython, with further enhance-
ments based on feedback from Biopython developers
and users.
The permissive open-source license that governs both

Biopython and Bio.Phylo allows this code to be reused

freely in other software, which could help overcome the
pervasive problem of incompatible software support for
widely used file formats.

Future development
In future releases we intend to provide support for another
recently standardized XML-based format, NeXML, an
XML-based successor to NEXUS [6]. Since the core
classes for phylogenies have already been defined and
implemented in Bio.Phylo, the implementation of NeXML
I/O is expected to be straightforward.
Another area for future growth is the addition

of wrappers for other third-party applications in
Bio.Phylo.Applications. Using the existing Bio.Application
framework, it is straightforward to add other tools that
can be run with a standard command-line interface.
Other widely used programs that require specialized
input, notably MrBayes and PhyloBayes, may be imple-
mented with an approach similar to Bio.Phylo.PAML,
providing a module containing both the functions to gen-
erate the configuration file and to run the program itself
with the generated configuration.
Smaller features may appear first on the Cookbook wiki

page, implemented as stand-alone functions, and may
later be added to the official Biopython distribution.

Conclusions
Bio.Phylo meets a growing need in bioinformatics for
working with heterogeneous types of biological and

http://phylosoft.org/
http://testing.open-bio.org/biopython/
http://testing.open-bio.org/biopython/


Talevich et al. BMC Bioinformatics 2012, 13:209 Page 8 of 9
http://www.biomedcentral.com/1471-2105/13/209

phylogenetic data. By supporting interoperability with
multiple file formats and leveraging existing Biopython
features, this library simplifies the construction of phylo-
genetic workflows and computational pipelines, address-
ing practical issues of data integration and exchange in the
bioinformatics community.

Availability and requirements
Project name: Biopython
Project home page: http://biopython.org/
Operating system: Platform independent
Programming language: Python
Other requirements: Python 2.5 or higher; optional
libraries matplotlib, Graphviz, NetworkX
License: Biopython License
Any restrictions to use by non-academics: None

Additional file

Additional file 1: Tree rerooting. Example code to read a tree from a file
and write copies of the tree rerooted at every internal and external node.
The method find clades produces an iterator over the tree rather than
a new list, in order to make more efficient use of memory in general. In this
case, because the method root with outgroupmodifies the tree
in-place, which could change the ordering of nodes during traversal, list
is used to create an unchanging copy of references to the original nodes in
the tree.

Additional file 2: Performance benchmark script. Python script to time
the execution of the benchmark tasks shown in Table 2.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ET wrote the code for Bio.Phylo. BI wrote the code for Bio.Phylo.PAML. BAC
and PJAC mentored and supervised the development of Bio.Phylo and
contributed enhancements and bug fixes. ET, BI, PJAC and BAC wrote the
manuscript. All authors read and approved the final manuscript.

Acknowledgements
We acknowledge the role of Google Summer of Code 2009 and the National
Evolutionary Synthesis Center (NESCent) Phyloinformatics program in
sponsoring and initiating this project. We also thank the Biopython
community and Open Bioinformatics Foundation for ongoing advice and
support. Several individuals made direct contributions to Bio.Phylo: Aaron
Gallagher, Connor McCoy, Joel Berendzen, Robert Beiko and Tanya Golubchik
provided bug fixes, test cases, feature requests and example code; Frank Kauff
wrote most of the tree parsing code in the Bio.Nexus module, which Bio.Phylo
builds upon, and gave helpful comments on a draft of the manuscript; Cymon
J. Cox gave advice on the port of Bio.Nexus code; and Christian M. Zmasek
co-mentored the original Google Summer of Code project with Brad A.
Chapman, guiding the implementation of phyloXML. We also thank the peer
reviewers for helpful suggestions on this manuscript.
BI is supported by a FI-DGR from AGAUR (Catalonia, Spain). Harvard
Bioinformatics Core provided for publication costs and moral support.

Author details
1Institute of Bioinformatics, University of Georgia, 120 Green Street, Athens, GA
30602, USA. 2Institute of Evolutionary Biology (CSIC-UPF), CEXS-UPF-PRBB, C/
Doctor Aiguader 88, 08003 Barcelona, Spain. 3James Hutton Institute,
Invergowrie, Dundee DD2 5DA, UK. 4Harvard School of Public Health
Bioinformatics Core, 655 Huntington Ave, Boston, MA 02115, USA.

Received: 6 March 2012 Accepted: 8 August 2012
Published: 21 August 2012

References
1. Felsenstein J: Phylogenies and the comparative method. American

Naturalist 1985, 125:1–15.
2. Vos RA, Caravas J, Hartmann K, Jensen MA, Miller C: Bio:Phylo -

phyloinformatic analysis using Perl. BMC Bioinformatics 2011, 12:63.
3. Leebens-Mack J, Vision T, Brenner E, Bowers JE, Cannon S, Clement MJ,

Cunningham CW, DePamphilis C, DeSalle R, Doyle JJ, Eisen Ja, Gu X,
Harshman J, Jansen RK, Kellogg Ea, Koonin EV, Mishler BD, Philippe H,
Pires JC, Qiu YL, Rhee SY, Sjölander K, Soltis DE, Soltis PS, Stevenson DW,
Wall K, Warnow T, Zmasek C: Taking the first steps towards a standard
for reporting on phylogenies: Minimum Information About a
Phylogenetic Analysis (MIAPA). Omics: J Integr Biol 2006,
10(2):231–237.

4. Prosdocimi F, Chisham B, Pontelli E, Thompson JD, Stoltzfus A: Initial
implementation of a comparative data analysis ontology.
Evolutionary Bioinf 2009, 5:47–66.

5. Han MV, Zmasek CM: phyloXML: XML for evolutionary biology and
comparative genomics. BMC Bioinformatics 2009, 10:356.

6. Vos Ra, Balhoff JP, Caravas Ja, Holder MT, Lapp H, Maddison WP, Midford
PE, Priyam A, Sukumaran J, Xia X, Stoltzfus A: NeXML: rich, extensible,
and verifiable representation of comparative data andmetadata.
Syst Biol 2012, 61(4):675–689.

7. Paradis E, Bolker B, Claude J, Cuong HS, Desper R, Dutheil J, Gascuel O,
Heibl C, Lawson D, Lefort V, Lemon J, Noel Y, Nylander J, Opgen-rhein R,
Vienne DD: Package ‘ape’ 2010. [http://ape.mpl.ird.fr/].

8. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz Sa, Dagdigian C, Fuellen
G, Gilbert JGR, Korf I, Lapp H, Lehväslaiho H, Matsalla C, Mungall CJ,
Osborne BI, Pocock MR, Schattner P, Senger M, Stein LD, Stupka E,
Wilkinson MD, Birney E: The Bioperl toolkit: Perl modules for the life
sciences. Genome Res 2002, 12(10):1611–1618.

9. Maddison W, Maddison D:Mesquite: A modular system for
evolutionary analysis. 2011. [http://mesquiteproject.org].

10. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I,
Hamelryck T, Kauff F, Wilczynski B, de Hoon MJL: Biopython: freely
available Python tools for computational molecular biology and
bioinformatics. Bioinformatics 2009, 25(11):1422–1423.

11. Holland RCG, Down TA, Pocock M, Prlić A, Huen D, James K, Foisy S,
Dräger A, Yates A, Heuer M, Schreiber MJ: BioJava: an open-source
framework for bioinformatics. Bioinformatics 2008, 24(18):2096–2097.

12. Goto N, Prins P, Nakao M, Bonnal R, Aerts J, Katayama T: BioRuby:
bioinformatics software for the Ruby programming language.
Bioinformatics 2010, 26(20):2617–2619.

13. Prins P, Contributors: BioLib 2008. [http://biolib.open-bio.org/].
14. Lapp H, Contributors: BioSQL 2003. [http://www.biosql.org].
15. Maglott D, Ostell J, Pruitt KD, Tatusova T: Entrez Gene: gene-centered

information at NCBI. Nucleic Acids Res 2005, 33(Database
issue):D54–D58.

16. Altschul SF, Madden TL, Schäffer aa, Zhang J, Zhang Z, Miller W, Lipman
DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 1997, 25(17):3389–3402.

17. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K,
Madden TL: BLAST+: architecture and applications. BMC Bioinformatics
2009, 10:421.

18. Oliphant TE: Python for Scientific Computing. Comput Sci Eng 2007,
9(3):10–20.

19. Knight R, Maxwell P, Birmingham A, Carnes J, Caporaso JG, Easton BC,
Eaton M, Hamady M, Lindsay H, Liu Z, Lozupone C, McDonald D, Robeson
M, Sammut R, Smit S, Wakefield MJ, Widmann J, Wikman S, Wilson S, Ying
H, Huttley GA: PyCogent: a toolkit for making sense from sequence.
Genome Biol 2007, 8(8):R171.

20. Sukumaran J, Holder MT: DendroPy: a Python library for phylogenetic
computing. Bioinformatics 2010, 26(12):1569–1571.

21. Huerta-Cepas J, Dopazo J, Gabaldón T: ETE: a python Environment for
Tree Exploration. BMC Bioinformatics 2010, 11:24.

22. Foster PG: p4: A Python package for phylogenetics. 2003. [http://code.
google.com/p/p4-phylogenetics/].

23. Maddison DR, Swofford DL, Maddison WP: NEXUS: an extensible file
format for systematic information. Syst Biol 1997, 46(4):590–621.

http://biopython.org/
http://www.biomedcentral.com/content/supplementary/1471-2105-13-209-S1.py
http://www.biomedcentral.com/content/supplementary/1471-2105-13-209-S2.py
http://ape.mpl.ird.fr/
http://mesquiteproject.org
http://biolib.open-bio.org/
http://www.biosql.org
http://code.google.com/p/p4-phylogenetics/
http://code.google.com/p/p4-phylogenetics/


Talevich et al. BMC Bioinformatics 2012, 13:209 Page 9 of 9
http://www.biomedcentral.com/1471-2105/13/209

24. Archie J, Day WH, Maddison W, Meacham C, Rohlf FJ, Swofford D,
Felsenstein J: The Newick tree format. 1986. [http://evolution.genetics.
washington.edu/phylip/newicktree.html].

25. Gansner E: An open graph visualization system and its applications
to software engineering. Software Pract Experience 2000, 00(S1):1–5.

26. Hagberg AA, Schult DA, Swart PJ: Exploring network structure,
dynamics, and function using NetworkX. In Proceedings of the 7th
Python in Science Conference (SciPy2008), SciPy. Edited by Varoquaux G,
Vaught T, Millman J. Pasadena, CA USA–15; 2008:11.

27. Zmasek CM, Zhang Q, Ye Y, Godzik A: Surprising complexity of the
ancestral apoptosis network. Genome Biol 2007, 8(10):R226.

28. Hunter JD:Matplotlib: A 2D Graphics Environment. Comput Sci Eng
2007, 9(3):90–95.

29. Zmasek CM, Eddy SR: ATV: display andmanipulation of annotated
phylogenetic trees. Bioinformatics 2001, 17(4):383–384.

30. Rice P, Longden I, Bleasby A: EMBOSS: The European Molecular
Biology Open Software Suite. Trends Genet 2000, 16(6):276–277.

31. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New
algorithms andmethods to estimate maximum-likelihood
phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010,
59(3):307–321. [http://www.atgc-montpellier.fr/phyml/].

32. Stamatakis A: RAxML-VI-HPC: maximum likelihood-based
phylogenetic analyses with thousands of taxa andmixedmodels.
Bioinformatics 2006, 22(21):2688–2690.

33. Yang Z: PAML 4: phylogenetic analysis by maximum likelihood.Mol
Biol Evol 2007, 24(8):1586–1591.

34. Kauff F, Cox C, Lutzoni F:WASABI: an automated sequence processing
system for multigene phylogenies. Systematic Biol 2007, 56(3):523.

35. Pritchard L, White JA, Birch PR, Toth IK: GenomeDiagram: a python
package for the visualization of large-scale genomic data.
Bioinformatics 2006, 22(5):616–617.

36. Beiko RG: Telling the Whole Story in a 10,000-GenomeWorld. Biol
Direct 2011, 6:34.

37. Talevich E, Mirza A, Kannan N: Structural and evolutionary divergence
of eukaryotic protein kinases in Apicomplexa. BMC Evolutionary Biol
2011, 11:321.

38. Smith SA, Beaulieu JM, Stamatakis A, Donoghue MJ: Understanding
angiosperm diversification using small and large phylogenetic
trees. Am J Bot 2011, 98(3):404–414.

39. Davies TJ, Barraclough TG, Chase MW, Soltis PS, Soltis DE, Savolainen V:
Darwin’s abominable mystery: Insights from a supertree of the
angiosperms. Proc Natl Acad Sci USA 2004, 101(7):1904–1909.

doi:10.1186/1471-2105-13-209
Cite this article as: Talevich et al.: Bio.Phylo: A unified toolkit for pro-
cessing, analyzing and visualizing phylogenetic trees in Biopython. BMC
Bioinformatics 2012 13:209.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newicktree.html
http://www.atgc-montpellier.fr/phyml/

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	I/O functions for standard file formats
	Common tree representation
	Methods for tree inspection and manipulation
	Visualization
	Wrappers for third-party programs
	PAML integration

	Biopython integration
	Validation

	Results
	Use of Bio.Phylo in published studies
	Performance
	Cookbook and additional documentation

	Discussion
	Future development

	Conclusions
	Availability and requirements
	Additional file
	Additional file 1
	Additional file 2

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

