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Abstract

Background: Next-generation sequencing technologies have become important tools for genome-wide studies.
However, the quality scores that are assigned to each base have been shown to be inaccurate. If the quality scores
are used in downstream analyses, these inaccuracies can have a significant impact on the results.

Results: Here we present ReQON, a tool that recalibrates the base quality scores from an input BAM file of aligned
sequencing data using logistic regression. ReQON also generates diagnostic plots showing the effectiveness of the
recalibration. We show that ReQON produces quality scores that are both more accurate, in the sense that they
more closely correspond to the probability of a sequencing error, and do a better job of discriminating between
sequencing errors and non-errors than the original quality scores. We also compare ReQON to other available
recalibration tools and show that ReQON is less biased and performs favorably in terms of quality score accuracy.

Conclusion: ReQON is an open source software package, written in R and available through Bioconductor, for
recalibrating base quality scores for next-generation sequencing data. ReQON produces a new BAM file with more
accurate quality scores, which can improve the results of downstream analysis, and produces several diagnostic
plots showing the effectiveness of the recalibration.
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Background
Next-generation sequencing (NGS) technologies are im-
portant tools for studying genome-wide DNA and RNA
expression, Single Nucleotide Polymorphisms (SNPs),
mutations and alternative splicing [1]. When a sequencer
calls a specific base, there is a small chance that it will
make an error and call an incorrect base. This sequen-
cing error rate is machine, run and sample specific, but
it occurs at a rate of approximately 1/1000 [2], resulting
in tens of millions of errors in a single experiment. A
quality score is also provided for each base, correspond-
ing to the probability of a sequencing error. Unfortu-
nately, it has been shown that the reported quality
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scores are inaccurate ([3,4] and our Figure 1C). Thus, it
is essential to recalibrate base quality scores so that they
more accurately reflect the probability of a sequencing
error. Incorporating these recalibrated quality scores
into downstream analyses, such as variant calling, can
produce more accurate and confident results [5].
Ewing and Green [6] propose a method, Phred, which cali-

brates quality scores using fluorescence intensity data. How-
ever, many labs do not have the resources to store
fluorescence intensity data and are unable to use such calibra-
tion tools. Therefore, there is a need to recalibrate the quality
scores that are produced by the sequencer machine. There
exist recalibration tools that only require aligned sequence
data, with two of the most popular being GATK [3] and the
BAQ option in SAMtools [7], which both run on Unix.
Here we present a novel R package, ReQON (Recali-

brating Quality Of Nucleotides), that recalibrates the
quality scores from a BAM file of aligned sequencing
al Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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Figure 1 Recalibration of U87 cell line replicate 1 with ReQON. Plot A shows the distribution of sequencing errors by read position. Plot B
shows frequency distributions of quality scores before (solid blue) and after (dashed red) recalibration. Reported quality scores versus empirical
quality scores are shown before (plot C) and after (plot D) recalibration. The points are shaded according to the frequency of bases assigned that
quality score, corresponding to the values shown in plot B. Plots C and D also report the Frequency-Weighted Squared Error (FWSE), a measure
of quality score accuracy. The large decrease in FWSE confirms that the recalibrated quality scores more accurately represent the probability of a
sequencing error than the original quality scores.
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data. ReQON also produces diagnostic plots (Figure 1)
that identify read positions with a significant number of
errors, visualize the distribution of quality scores before
and after recalibration, and show the improvement in
accuracy of the recalibrated quality scores. ReQON uses
a different model than other available recalibration tools
and proposes an improved statistic for comparing recali-
bration performance. To our knowledge, ReQON is the
first recalibration tool written in R.

Implementation
ReQON is open source software, written in R and avail-
able through the Bioconductor project [8]. This section
describes the ReQON algorithm developed to recalibrate
base quality scores.

Input
The input to ReQON is an indexed and sorted BAM file
[9] with quality scores reported in the QUAL field. The
reads can be aligned to any genome using any alignment
algorithm. The recalibration results will be dependent
on the accuracy of these alignments.

Algorithm
ReQON uses logistic regression to recalibrate the quality
scores. The following parameters must be specified:

� Region: Genomic coordinates of the region that the
regression model is trained on. This training region
must be large enough to obtain accurate coefficients
for the regression model. On the other hand,
specifying a larger than necessary region will
increase run time and may overfit the model to the
training set. We recommend training on one of the
smaller chromosomes, or specifying MaxTrain,
described next.

� MaxTrain (optional): This allows the user to train
on a fixed number of bases from a large training
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region. For example, training on the first 10 million
bases of the genomic region given in Region is
achieved by setting MaxTrain = 10,000,000.
Typically, results are consistent when training on at
least 10 million bases and do not improve when the
training size is larger than 25 million bases.

� RefSeq: File containing the reference sequence
corresponding to the training set.

� SNP (optional): File of known variant locations to
remove from the training set before recalibration.

� nerr: The maximum number of errors tolerated at a
genomic position (default = 2). Positions with more
than nerr errors may likely be true variants, so bases
from these positions are removed from the training
region.

� nraf: The maximum non-reference allele frequency
at a genomic position that is allowed (default = 0.05).
Positions with non-reference allele frequency greater
than nraf are removed from the training set for the
same reason as nerr.

The first step is to read the training region, specified
by Region and MaxTrain, from the input BAM file. Posi-
tions that are listed in SNP are removed from the train-
ing set. Next, sequencing errors are identified as bases
that do not match RefSeq. In reality, some of these iden-
tified bases will not be errors but instead correct calls,
such as novel variants or mapping errors. In an attempt
to remedy this issue, two different thresholds are set to
remove positions most likely to contain false error calls.
At each genomic position, thresh =max{nerr, nraf ×
coverage} is calculated. This threshold sets a maximum
number of allowable called errors for positions with low
coverage, and a maximum frequency of non-reference
bases for positions with high coverage. The default set-
tings allow up to 2 errors per position if the coverage is
less than 60x, and more errors (0.05 × coverage) for posi-
tions with at least 60x coverage. Positions with more
called errors than thresh are identified and removed
from the training set. Note that when we say that “a pos-
ition is removed from the training set,” this is different
than keeping the bases at this position in the training set
but switching the call from error to non-error. Instead,
all bases at this position are removed from the training
set due to low confidence of the error call.
Every base in the training set has now been classified

as either error or non-error. There is a strong relation-
ship between errors and their position in the read. Most
errors occur at the end of the read, due to technical
aspects of the sequencing process [10]. This same pat-
tern is present in Figure 1A, which shows the distribu-
tion of sequencing errors in the training set by their
read position. The rest of Figure 1 is described in more
detail in the next section. To account for these high-
error read positions in the ReQON regression model,
the algorithm flags read positions that have more errors
than a specified threshold, set at 1.5 times the average
number of errors per read position. This threshold is
visualized by the dashed cyan line in Figure 1A. For
notational purposes, assume that there are k flagged
positions, denoted as fp1, fp2, . . . fpk.
Regression coefficients (βs) are obtained from the follow-

ing logistic regression model, logit Probability of Y ¼ 1ð Þ ¼
β0 þ β1X1 þ β2X2 þ β3X3 þ β4X4 þ β5X5 þ β6X6 þ
β7X7 þ β8X8 þ � � � þ β7þkX7þk ,
where Y is the (n x 1) response vector and the Xs are
(n x 1) vectors of explanatory variables, as
defined below.

� Y(i) = I{base i is a sequencing error (i.e., does not
match RefSeq)}.

� X1(i) = original quality score of base i.
� X2(i) = I{X1(i) = 0}. Many base calling algorithms

assign a quality of zero to indicate bad or randomly
called bases, so these bases are treated separately.

� X3(i) = average quality score across all bases in the
read containing base i. This helps identify reads for
which all bases are assigned low quality scores.

� X4(i) = Read position of base i.
� X5(i) = I{base i=A}.
� X6(i) = I{base i=C}.
� X7(i) = I{base i=G}.
� X7+m(i) = I{X4(i) = fpm} for m= 1, . . ., k. These

indicator variables identify bases originating from
one of the flagged read positions.

Additional covariates were originally considered, but
those that did not improve model performance were
dropped from the final model.
Due to memory constraints, it is not practical to fit

the model when the training set contains tens of mil-
lions of bases. Instead, the training set is split into smal-
ler subsets of no more than 10 million bases and the
regression model is run on all subsets. Then, for each
coefficient, the median is calculated over all regression
models. Once these median regression coefficients are
obtained, the model is applied to each base in the input
BAM file to obtain predicted error probability values.
These probabilities are transformed to the Phred scale
[6] and rounded down to the nearest integer.
Output and visualizations
ReQON outputs a BAM file with original quality scores
replaced by the recalibrated scores. Additionally,
ReQON produces diagnostic plots (Figure 1) which
show the effectiveness of the quality score recalibration
on the training set. Plot A shows the distribution of



Table 1 Comparison of Frequency-Weighted Squared
Error (FWSE)

Original ReQON GATK BAQ

Chromosome 10 Replicate 1 69.36 3.61 11.55 13.93

Replicate 2 62.89 5.31 14.91 21.76

Chromosome 20 Replicate 1 71.09 3.04 12.28 15.93

Replicate 2 64.34 5.82 17.43 24.38

Comparison of FWSE for two cell line replicates between original quality
scores reported from the sequencer machine and after recalibration with
ReQON, GATK and BAQ. ReQON quality scores have the lowest FWSE values,
corresponding to increased accuracy. ReQON does not overfit the model to
the training set, shown by the roughly equivalent FWSE values for both the
training (chromosome 10) and testing (chromosome 20) sets after
recalibration.
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errors in the training set by their read position. Any read
position above the threshold (dashed cyan line) is given
an additional indicator variable in the regression model,
discussed in the previous section. Plot B shows the rela-
tive frequency distribution of quality scores both before
(solid blue line) and after (dashed red line) recalibration.
The bottom two plots show the reported quality score

versus the empirical quality score before (plot C) and
after (plot D) recalibration. The empirical quality score
is calculated by computing the observed error rate for
all bases in the training set that are assigned a specific
quality score. This error rate is then converted to the
log-transformed Phred scale. If the quality scores are ac-
curate, which occurs when the observed and reported
sequencing error rates match, the points will fall on the
45-degree line.
The bottom plots also report the Frequency-Weighted

Squared Error (FWSE), a measure of how close the
points lie to the 45-degree line. FWSE is calculated by
squaring the error (vertical distance between the point
and 45-degree line), weighting this squared error by its
relative frequency (shown in plot B and represented by
shading of the point) and summing across all quality
scores. FWSE will be close to zero if the quality scores
accurately reflect the probability of a sequencing error.

Results
Accuracy
As an example, two replicates of RNA from the U87
glioblastoma cell line [11] were sequenced using Illumi-
na’s Genome Analyzer II, representing identical se-
quence runs but of slightly differing quality. For both
cell line replicates, ReQON was run using the default
settings with the model trained on chromosome 10.
Figure 1 shows the diagnostic output of ReQON after

recalibration. Plot A shows that a majority of the se-
quencing errors occur at the ends of the read. Plot B
shows that the majority of quality scores before recali-
bration were larger than 35, with almost 50% of the
bases receiving a quality score near 40. After recalibra-
tion, the quality scores are assigned smaller values, with
most quality scores falling between 25 and 35. Plot C
confirms that the original quality scores are not very ac-
curate because the quality scores with the largest fre-
quencies (shaded dark blue) are far from the 45-degree
line and, thus, FWSE is large. For example, plot B shows
that approximately 50% of the bases are assigned a qual-
ity score of 40. In plot C, the empirical quality of this
reported score is around 30. Thus, this single quality
score contributes approximately 0.5(40 – 30)2 = 50 to the
total FWSE of 69.36. Plot D shows that, after recalibra-
tion, the quality scores do a much better job of repre-
senting true sequencing error rates, reflected by the 95%
decrease in FWSE. Some of the lower quality scores lie
away from the 45-degree line, but because few bases are
assigned these scores (represented by unshaded circles),
they contribute little to FWSE. The high-frequency qual-
ity scores (shaded dark red) are very close to the 45-
degree line, resulting in a total FWSE that is very small.
Table 1 shows the FWSE values of the training set

(chromosome 10) for both cell line replicates before and
after recalibration with ReQON. ReQON decreases
FWSE by over 90% for both replicates. Because ReQON
is trained on a small subset of the genome, model per-
formance can be assessed on another region of the gen-
ome not used in training, which we will refer to as a
testing set. Table 1 also reports FWSE before and after
applying ReQON to an independent testing set (chromo-
some 20). In each case, FWSE of the recalibrated quality
scores is approximately the same for both the training
and testing sets. This demonstrates that ReQON does
not overfit the model to the training set and that recali-
brated quality scores accurately represent the probability
of a sequencing error.

Discrimination
Another desirable property of quality scores is the ability
to separate sequencing errors from true variants. To per-
form this analysis, all bases that do not match RefSeq
(hg 19) are analyzed. These non-reference bases are fur-
ther classified as true variants (reported in dbSNP ver-
sion 132 [12]) or sequencing errors (not in dbSNP132).
Similar to the training set, bases identified as sequencing
errors are removed if there are more than two errors at
a position (or allele frequency greater than 0.05 for high
coverage positions) as these may represent novel variants
or systematic alignment errors. To increase confidence
in the true variant calls, positions identified as true var-
iants with less than 3 non-reference bases (or allele fre-
quency less than 0.05 for high coverage positions) are
also removed, as these may actually be sequencing
errors.
Classification performance is measured by the area

under the corresponding receiver operating



Figure 2 Discrimination performance of original and ReQON-recalibrated quality scores. Relative frequency distributions of quality scores
for bases not matching the reference sequence in chromosome 20 of cell line replicate 2. These non-reference bases are separated as belonging
to positions in dbSNP version 132 (known variants, red curve) versus other positions (sequencing errors, blue curve). Plot A shows the distribution
of original quality scores and plot B shows the distribution after recalibration with ReQON. The area under the ROC curve (AUC) is reported. The
increased AUC demonstrates that the recalibrated quality scores do a better job of distinguishing sequencing errors from non-errors.
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characteristic (ROC) curve, or AUC. Figure 2 plots the
relative frequency distributions of quality scores for non-
reference bases in chromosome 20, an independent test-
ing set. The red curve plots the distribution of bases
belonging to positions in dbSNP (13,491 bases) and the
blue curve plots the distribution of bases identified as
sequencing errors (83,180 bases). Plot A shows the dis-
tribution of original quality scores before recalibration.
The AUC for the original quality scores is 0.764, repre-
senting reasonable separation between the two classes.
Plot B shows the distribution of quality scores after reca-
libration with ReQON. The two curves now have very
different distributions. The quality scores of most bases
at positions in dbSNP (red) have high quality scores
(above 25). It is possible that many of the lower quality
bases at positions in dbSNP may be sequencing errors,
as bases belonging to any third alleles were not filtered
out. In contrast, the quality scores of sequencing errors
(blue) are mostly below 25. This better separation be-
tween the two classes is supported by the increased
AUC (0.881 vs. 0.764). This analysis shows that, in
addition to providing quality scores that more accurately
reflect the probability of a sequencing error, the recali-
brated quality scores also do a better job of
Table 2 Comparison of the area under the ROC curve
(AUC)

Original ReQON GATK BAQ

Replicate 1 0.673 0.806 0.824 0.798

Replicate 2 0.764 0.881 0.874 0.814

Comparison of AUC for two cell line replicates recalibrated with ReQON, GATK
and BAQ. Bases from chromosome 20 that do not match the reference
sequence are separated as belonging to positions in dbSNP version 132 or
not. Overall, all three recalibration methods outperform the original quality
scores. ReQON and GATK have similar AUC values, with both methods
outperforming BAQ.
distinguishing sequencing errors from true variants. The
AUC statistics for both cell line replicates are shown in
Table 2.

Comparison to GATK and BAQ
There are other available computational tools that recali-
brate base quality scores. For example, some variant call-
ing tools, such as Atlas-SNP2 [13] and SOAPsnp [4],
recalibrate the quality scores as part of their algorithm.
These tools incorporate the recalibrated qualities into
their method, but do not output a file with the recali-
brated scores. Therefore, we are not able to compare
their performance to ReQON.
The most popular recalibration tool is embedded in

the Genome Analysis Toolkit (GATK) [3]. There are
four main differences between the recalibration algo-
rithms of ReQON and GATK.

1. GATK runs on Unix. ReQON is an R package.
2. GATK does not recalibrate bases originally
assigned a low quality score, with the default
threshold set at 5. ReQON recalibrates all bases
regardless of original quality score.

3. GATK requires a reference sequence file for
the entire genome and trains its model on all
bases in the input BAM file. ReQON allows the
user to specify a smaller region of the genome
(such as a chromosome) to train the model,
only requiring reference sequence for this
training region.

4. GATK identifies sequencing errors by filtering out
known variant positions, then calling all bases that
do not match the reference sequence as errors.
While reasonable on average, some of these
non-reference bases will not be sequencing errors but



Figure 3 Example position where bases are identified as sequencing errors by GATK but not ReQON. Plot A shows an Integrative
Genomics Viewer (IGV) visualization of chr10:75,531,679-75,531,712 for cell line replicate 1, highlighting a position where the reference sequence
is T but all of the bases mapped to this position are a C. This position (chr10:75,531,700) is not listed as a known variant in dbSNP version 132.
The bases at this position are removed from the training set by ReQON but are called as sequencing errors by GATK. Plot B shows box plots
comparing the quality scores of the bases at this position after recalibration with GATK and ReQON. Overall, ReQON assigns higher quality scores
to these non-reference bases than GATK.
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instead novel variants or systematic mapping errors.
In contrast, ReQON utilizes information from
multiple reads by removing positions from the
training set that do not pass quality thresholds
(determined by nerr and nraf ).

Figure 3 shows an example of a position in the train-
ing set where the bases do not match the reference se-
quence and the position is not listed in dbSNP version
132. Plot A visualizes the position and surrounding re-
gion using the Integrative Genomics Viewer (IGV) [14].
At the position, the reference sequence is a T, but all of
the 103 bases mapped to this position are C (colored
blue). This position most likely represents a novel vari-
ant or systematic mapping error. These bases are
removed from the training set by ReQON because this
position has a higher non-reference allele frequency
(100%) than nraf (set at 5%). However, GATK calls all
of these non-reference bases as sequencing errors when
training its model. Plot B shows boxplots of the quality
scores of the bases at this position after recalibrating
with ReQON and GATK. The quality scores assigned
by ReQON are significantly higher than the quality
scores assigned by GATK (two-sided paired t-test,
p = 8.36 × 10-9).
Another commonly used recalibration tool is BAQ

(Base Alignment Quality) [7]. BAQ uses Hidden Markov
Models to accurately measure the probability of a base
being incorrectly aligned. BAQ is not a traditional recali-
bration algorithm in the sense that it does not attempt
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to adjust quality scores so that they better reflect the
probability of a sequencing error. To account for incor-
rectly aligned bases, original quality scores are adjusted
by taking the minimum of the original quality score and
the BAQ score. BAQ has been shown to improve the ac-
curacy of SNP discovery and resolve false SNPs caused
by indels [7]. There are four main differences between
the methods of ReQON and BAQ.

1. BAQ is implemented in the SAMtools software
package [9] which runs on Unix. ReQON is an R
package.

2. BAQ requires a reference sequence file for the entire
genome. ReQON only requires reference sequence
for the specified training region.

3. BAQ can only decrease the base quality score.
ReQON allows quality scores to be adjusted both
higher and lower.

4. BAQ only adjusts quality scores to account for
alignment errors. We believe that alignment errors
and uncertainty should be reflected in the mapping
quality score and that the base quality score should
correspond to the probability that the base is a
sequencing error. To separate the effects of
sequencing errors from alignment errors, ReQON
filters out bases that may be alignment errors from
the training set before training the model.

In order to assess the accuracy of all three methods,
Table 1 compares the FWSE statistic between ReQON,
GATK and BAQ for two separate chromosomes, 10 and
20, on the two cell line replicates. Note that while GATK
and BAQ train their models on the entire genome,
ReQON only trained its model on chromosome 10. In
this regard, chromosome 20 can be viewed as an inde-
pendent testing set when assessing model performance
for ReQON but not GATK or BAQ. Error calls were
made in the same manner as the ReQON algorithm,
which we feel more accurately identifies true sequencing
errors, as described previously. In every case, FWSE is
much lower for quality scores recalibrated with ReQON
than GATK or BAQ. From this, we can conclude
that the recalibrated quality scores from ReQON more
accurately represent the probability that a base is a se-
quencing error.
In order to determine how well GATK and BAQ qual-

ity scores distinguish between non-reference bases clas-
sified as sequencing errors and non-reference bases
belonging to positions of known variants, the discrimin-
ation analysis was repeated using the GATK and BAQ
recalibrated quality scores. Table 2 shows the AUC for
the original quality scores and the recalibrated quality
scores. All of the recalibration methods outperform the
original quality scores for both cell line replicates. The
discrimination performance of GATK and ReQON is ap-
proximately the same, with GATK performing better in
one replicate and ReQON performing better in the other
replicate, and both outperforming BAQ.

Discussion
The previous analyses show that the original quality
scores assigned by the sequencer machine are neither
accurate nor do a good job of discriminating sequen-
cing errors from non-errors. ReQON, GATK and BAQ
produce much more reliable quality scores, although
the quality scores assigned by ReQON are more accur-
ate than those assigned by GATK or BAQ (Table 1).
In most cases, any of the three recalibration algorithms
is reasonable to use, but there are some distinct
differences.
The algorithms of ReQON and GATK consider very

similar covariates, yet Tables 1 and 2 show that ReQON
performs just as well as, and in most cases better than,
GATK. ReQON’s better performance than GATK can be
attributed to two main differences: recalibrating low-
quality bases and filtering out mismatch bases that may
be due to true variants or mapping errors.
First, as previously mentioned, GATK chooses not to

recalibrate bases with very low quality scores, with the
default quality threshold set at 5. Their reasoning is that
these quality scores indicate bad or randomly called
bases by the sequencer, so these original qualities should
be kept as is. This makes sense if these low-quality bases
are filtered out before later analyses. However, investiga-
tors may prefer not to filter out low-quality bases, such
as when sequencing experiments are expected to yield
low coverage. Under this low coverage setting, it makes
more sense to recalibrate all bases, regardless of quality
score, which is how ReQON operates. Due to this differ-
ence, in general, the low quality bases of GATK have
poor accuracy because they are not recalibrated. In con-
trast, the recalibrated low-quality scores from ReQON
are much more accurate.
The low-quality bases that GATK chooses not to re-

calibrate have a large contribution to its FWSE (Table 1),
indicating decreased accuracy. If these low qualities are
removed from the analysis, then FWSE is approximately
equal between GATK and ReQON. For a more exact
comparison, we could have changed the threshold for
GATK and recalibrated all bases regardless of its original
quality score. But, as most users will use the default
settings when running either recalibration algorithm, we
choose to only compare the output using these
default settings.
A second main advantage of ReQON over GATK is

the criterion used for identifying sequencing errors.
GATK identifies sequencing errors by filtering out
known variant positions, then calling all bases that do
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not match the reference sequence as errors. In reality,
some of these bases will not be sequencing errors but
will be correct calls, such as novel variants or mapping
errors. These miscalls disproportionately affect the
higher quality scores. Because GATK's observed error
rate is approximately the sum of the sequencing error
rate, the alignment error rate and the rate of novel var-
iants, GATK will be underestimating the true quality. In
contrast, ReQON goes a step further by utilizing infor-
mation from multiple reads and removing positions
from the training set with low confidence in the
error calls (determined by model parameters nerr
and nraf ). Figure 3 shows an example of such a pos-
ition. For cell line replicate 1, ReQON removed
77,133 bases at 2,117 positions (average of 36x cover-
age) from the training set that GATK called as se-
quencing errors. These removed positions are likely
to be novel variants or mismatches due to systematic
alignment errors. ReQON identifies these positions
without prior knowledge; in contrast, GATK would
need information about these positions in order to re-
move them when building its model. Therefore,
ReQON should be preferred when the data are
aligned to unfinished genomes, where many mapping
errors are expected, or when an input file of known
variant positions is not available.
Figure 3 also shows that ReQON assigns significantly

higher quality scores to the non-reference bases at this
position than GATK (two-sided paired t-test,
p = 8.36 × 10-9). This suggests that GATK biases against
discovering novel variants by assigning lower quality
scores to non-reference bases at positions supported by
multiple reads. Therefore, investigators interested in
detecting novel variants should prefer ReQON over
GATK.
An additional main difference between the recalibra-

tion algorithms is that GATK tests model performance
on the same data that were used in training the model
(the entire genome). This approach leads to over fitting
and overly optimistic estimates of the error. This issue,
along with the concern of falsely identifying non-
reference bases as sequencing errors, calls into question
the true performance of GATK recalibration. On
GATK’s software website [15], the authors discuss the
option of training their model on a smaller subset of the
data to reduce runtime. The authors provide evidence
that training the model on a subset of the data leads to
decreased accuracy. They conclude that users interested
in maximum recalibration accuracy should continue to
train on the full data set. We view this as further evi-
dence that the GATK model overfits to the training data
and, thus, overestimates the true model performance. In
contrast, ReQON trains the model on a training set,
which allows performance to be measured on a separate
testing set. The analyses presented in the Results section
show that ReQON does not overfit the model to the
training data.
ReQON was also compared to BAQ, which is not a

traditional quality score recalibration algorithm in the
sense that it does not attempt to adjust quality scores so
that they better reflect the probability of a sequencing
error. Instead, BAQ only considers alignment quality
and adjusts the base quality when the alignment quality
is low. Due to the difference in motivation, ReQON
greatly outperforms BAQ in terms of accurately repre-
senting the probability of a sequencing error, shown in
Table 1. BAQ adjustment has been shown to improve
SNP calling [7], especially in reducing false calls at posi-
tions near indels. Table 2 shows that ReQON does a bet-
ter job at distinguishing non-reference bases belonging
to dbSNP, representing true variants, from non-
reference bases at other positions, representing mainly
sequencing errors with possibly a few novel variants. Al-
though more detailed analysis is required, this suggests
that, overall, ReQON may be as effective at improving
variant calling as BAQ.
Like all available base quality score recalibration algo-

rithms, the ReQON results will be dependent on the ac-
curacy of the read alignments. Alignment becomes
much more complicated when considering indels, var-
iants, splicing or poorly annotated genomes. BAQ incor-
porates mapping quality into its recalibrated scores.
However, as seen in Table 1, this comes at the cost of
the quality scores accurately representing the probability
that a base is a sequencing error. We believe that align-
ment quality should be represented in mapping quality
scores and that base quality scores should only convey
information about the likelihood of a base being a se-
quencing error. ReQON attempts to separate out mis-
matches due to alignment by identifying and removing
such bases from the training set. Following the assump-
tion that mapping errors occur in a more systematic
fashion than stochastic sequencing errors, this filtering
is achieved through the use of parameters nraf and nerr.
While this may not remove all effects of alignment on
the quality score, it demonstrates a marked improve-
ment over GATK which fails to consider alignment-
specific sources of error.

Conclusions
The results presented here demonstrate the need for
quality score recalibration, especially if these quality
scores are used in downstream analyses. We presented a
novel R package, ReQON, which produces quality scores
that are both more accurate, in the sense that they more
closely correspond to the probability of a sequencing
error, and do a better job of discriminating between se-
quencing errors and non-errors. ReQON was compared
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to two of the most commonly used recalibration algo-
rithms, GATK and BAQ. All recalibration algorithms
significantly outperform the original quality scores in
terms of accuracy and discrimination performance.
ReQON produces more accurate quality scores than
GATK and BAQ, although in most cases, any recalibra-
tion algorithm is reasonable to use. However, due to dif-
ferences in the underlying assumptions and model used
to recalibrate the quality scores, we strongly recommend
recalibrating with ReQON when trying to identify
novel variants, or when aligning to genomes that are
unfinished or have incomplete databases of known vari-
ant positions.
Methods
Two replicates of RNA from the U87 glioblastoma cell
line [11] were sequenced using Illumina’s Genome
Analyzer II, representing identical sequence runs but of
slightly differing quality. Each run produced 76 base
pair single-end reads which were aligned to the human
genome reference version 19 (hg19) using Map Splice
[16]. The aligned reads were sorted and indexed using
SAMtools [9].
For both cell line replicates, ReQON was run using

the default settings. Region was set to chromosome 10
and input for RefSeq was hg19 and SNP was dbSNP ver-
sion 132 [12].
The same two cell line replicates were also recalibrated

using GATK [3] and the BAQ option in SAM tools [7]
for comparison. Similar to ReQON, hg19 was used as
the reference sequence. GATK recalibration used dbSNP
version 132 as the variant file and the following
covariates: ReadGroupCovariate, QualityScoreCovariate,
DinucCovariate and CycleCovariate. BAQ quality adjust-
ment was performed using SAMtools calmd function
with options –AEr.
Availability and requirements

� Project name: ReQON (version 1.3.8 or higher).
� Project homepage: http://bioconductor.org/

packages/devel/bioc/html/ReQON.html.
� Operating system(s): Platform independent.
� Programming language: R (version 2.15 or

higher).
� Other requirements: Bioconductor, Java 1.6 or

higher.
� License: GPL version 2.
� Any restrictions to use by non-academics:

none.
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