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Abstract

Background: The detection of significant compensatory mutation signals in multiple sequence alignments (MSAs) is
often complicated by noise. A challenging problem in bioinformatics is remains the separation of significant signals
between two or more non-conserved residue sites from the phylogenetic noise and unrelated pair signals.
Determination of these non-conserved residue sites is as important as the recognition of strictly conserved positions
for understanding of the structural basis of protein functions and identification of functionally important residue
regions. In this study, we developed a new method, the Coupled Mutation Finder (CMF) quantifying the phylogenetic
noise for the detection of compensatory mutations.

Results: To demonstrate the effectiveness of this method, we analyzed essential sites of two human proteins:
epidermal growth factor receptor (EGFR) and glucokinase (GCK). Our results suggest that the CMF is able to separate
significant compensatory mutation signals from the phylogenetic noise and unrelated pair signals. The vast majority
of compensatory mutation sites found by the CMF are related to essential sites of both proteins and they are likely to
affect protein stability or functionality.

Conclusions: The CMF is a new method, which includes an MSA-specific statistical model based on multiple testing
procedures that quantify the error made in terms of the false discovery rate and a novel entropy-based metric to
upscale BLOSUM62 dissimilar compensatory mutations. Therefore, it is a helpful tool to predict and investigate
compensatory mutation sites of structural or functional importance in proteins. We suggest that the CMF could be
used as a novel automated function prediction tool that is required for a better understanding of the structural basis
of proteins. The CMF server is freely accessible at http://cmf.bioinf.med.uni-goettingen.de.

Background
A multiple sequence alignment (MSA) of proteins con-
tains a set of aligned amino acid sequences in which
homologous residues of different sequences are placed
in same columns. Therefore, functionally or structurally
important amino acids and their positions both of which
are often strictly conserved are easily detectable with
MSAs [1-3]. On the other hand, detection of impor-
tant non-conserved residue positions related to several
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essential conserved residues requires a more sophisti-
cated approach. The usage of methods such as correla-
tion analysis allow the identification of important non-
conserved residue positions based on their correlated
mutation manners [4,5] due to functional coupling of
mutation positions. This coupling might stem from one
mutation in a certain site affecting a compensating muta-
tion at another site, even if both related residue sites are
distantly positioned in the protein structure. Moreover,
these coupled mutations can result from spatial, physi-
cal, or chemical restrictions or signaling of allostery [4,5].
Thus, determination of these positions is as crucial as the
recognition of strictly conserved positions for the under-
standing of the structural basis of protein functions, and
for the identification of functionally important residue
regions which might be disease associated, responsible for
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the maintenance of internal protein volume, or possibly
form key sites for interactions within or between proteins
[6-9].
Until now, a variety of studies have employed

Pearson’s correlation coefficient methods [10-12], per-
turbation based methods [9,13] and mutual information
(MI) based methods [6,14-17] because of their simplicity
and efficiency for the detection of coupled mutations in
MSAs. However, due to background noise, all of these
methods interfere with the identification of compen-
satory mutation signals [14,18,19]. Hence, the significant
compensatory mutation signals must be separated from
the background noise that might occur as a result of: i)
false signals arising from insufficient data; ii) sites with
low or high conservation biasing the signal; iii) phylo-
genetic noise. While the first two types of noise can be
easily overcome by appropriately filtering the data [16],
phylogenetic noise can only be eliminated to some extent
by excluding highly similar sequences from the MSA [19].
Recently, several methods such as bootstrapping, sim-

ulation or randomization methods have been utilized in
order to minimize the influence of phylogenetic linkage
and stochastic noise [15,20,21]. Dunn et al. [19] have
introduced the average product correction (APC), to adjust
MI for background effects. Merkl and Zwick, in their
study, [16] have used a normalized MI (see Equation 1)
and focused on only 75 residue pairs with the highest
normalized MI values as significant for each MSA. Gao
et al. [17] have pursued a similar approach, where they
have replaced the metric used in [16] with the amino acid
background distribution (MIB). While the reduction of
background noise in the model of Dunn et al. is not quan-
tified, the approaches of Gao et al. and Merkl and Zwick
appear to be over-conservative, yet specific.
Despite the presence of a variety of different meth-

ods as mentioned above, to date there is still need for
a method to deal with the noise as well as for powerful
metrics to improve the sensitivity. In this study, we have
developed such a method called CoupledMutation Finder
(CMF). The CMF includes an MSA-specific statistical
model based on multiple testing procedures described in
[22,23] and a novel entropy-based metric to upscale dis-
similar compensatory mutations and also to complement
the normalized MI metric used in [16]. Unlike previous
normalized MI based studies [16,17], we have separated
metric-based significant compensatory mutation signals
from background noise with respect to our MSA specific
statistical model that quantifies the error made in terms of
the false discovery rate.
To demonstrate the performance and functionality of

the CMF, we analyzed the structurally or functionally
important positions of two human proteins, namely epi-
dermal growth factor receptor (EGFR) and glucokinase
(GCK). The proteins have been chosen because their

functionally and structurally important positions have
been experimentally well studied previously [24-35]. As
a result, the CMF detects in these two proteins disease
associated amino acid mutations (non-synonymous single
nucleotide polymorphisms (nsSNPs)), not strictly con-
served catalytic or binding sites, and residues that are
nearby one of these sites or in the close neighborhood of
a strictly conserved positions, which are likely to affect
protein stability or functionality [36-38].

Results
Our method to predict functionally or structurally impor-
tant residue positions is composed of two steps. First, we
have devised a new MSA-specific statistical method for
the identification of significant MSA column pairs with
respect to either of the two metrics U and UD(α). Assume
that M is the MSA under study, these pairs are annotated
as (U,M)-significant and (UD(α),M)-significant, respec-
tively. Second, we utilized the connectivity degree of a
residue site with respect to a metric introduced in [16].
The connectivity degree of a residue site indicates the
number of its significant coupled mutation pairs. In this
case, a site is called (U,M)-significant when the frequency
of occurrence of this site in the set of (U,M)-significant
pairs exceeds the 90-th percentile. Having defined the
concept of a (UD(α),M)-significant site analogously, a site
is defined as CMF-significant with respect to M, when it
is either (U,M)-significant or (UD(α),M)-significant.
In this study, we analyzed human EGFR (pdb entry

2J6M) and GCK (pdb entry 1V4S) proteins with a false
discovery rate (FDR) of 1%. For the preceding one, we
defined a total of 14339 out of 26079 non-conserved
column pairs as significant. 11365 of these significant
pairs are detected as (U,M)-significant and 3798 pairs are
observed as (UD(α),M)-significant. Only 824 EGFR pairs
are significant with respect to both metrics. On the other
hand, for GCK, we identified a total of 32654 out of 69645
non-conserved column pairs as significant where 18106
of them are U-significant and 16241 are UD(1)-significant.
Moreover, 1693 pairs are defined as significant for both U

and UD(1)-significant.
Applying the connectivity degree technique, we iden-

tified 22 and 36 residue positions as U-significant for
human EGFR and GCK proteins, respectively. Addition-
ally, 21 positions of EGFR and 36 positions of GCK were
detected as UD(1)-significant. Finally, a total of 43 sites of
EGFR and 72 of GCK were found as CMF-significant, and
predicted as of structural or functional importance. How-
ever, there have been no residue sites defined as significant
with respect to either metric.

Essential sites of human EGFR and GCK proteins
To evaluate the CMF-significant residue sites, we have
investigated essential sites of human EGFR (pdb entry
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2J6M) and GCK (pdb entry 1V4S) proteins. The essen-
tial sites of both proteins have been assigned into three
main categories: i) the nsSNP positions and their adja-
cent sites; ii) residue positions which are located at or
near active sites, allosteric sites, or binding sites; iii)
residue positions which are nearby strictly conserved
sites. Here, we have used “nearby” definition of Nussinov
et al. [39] and defined two residues as in contact or
adjacent when the distance between their major carbon
atoms is less than 6 Å. We have defined positions which
are nearby nsSNPs as essential, because several of them
are also adjacent to active sites, allosteric sites, bind-
ing sites, or strictly conserved sites. Thus, we refer to
a CMF-significant residue site as “functionally or struc-
turally important” if it falls into one of these categories of
essential sites.

Position analysis of the Human Epidermal Growth Factor
Receptor (EGFR) protein
The epidermal growth factor receptor (EGFR) is a mem-
ber of the ErbB (Erythroblastic Leukemia Viral Oncogene

Homolog) family receptors. Signaling through this recep-
tor is a highly conserved mechanism from nematode to
humans involved in numerous processes, including pro-
liferation, cell fate determination, and tissue specification
[40]. Furthermore, several studies have implicated that
mutations resulting in misregulation of the activity or
action of EGFR led to multiple cancers, including those
of the brain, lung, mammary gland, and ovary [24-27].
Here, in order to detect essential mutation positions
in corresponding sequence of human EGFR protein, we
determined altogether 43 CMF-significant residue sites
(see Additional file 1). 15 of these significant residue sites
have been verified as nsSNP sites through the Ensembl
database annotation and they are illustrated in Figure 1.
Additionally, the significant sites E746, Q791, and four

of the nsSNP positions (I759,Y764,M766 and K846) are
also in contact with critical active site regions for gefi-
tinib binding site in the wild type EGFR kinase [25,28] (see
Figure 2).
Moreover, we observed that 17 further CMF-significant

positions are essential sites (see Table 1). In total, we

Figure 1 CMF-significant nsSNP positions in human EGFR protein (PDB-Entry 2J6M). The red spheres correspond to structural localization of
15 different nsSNP positions found by CMF as significant in the EGFR protein.
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Figure 2 CMF-significant residue positions are in contact with gefitinib binding sites in human EGFR protein (PDB-Entry 2J6M ). Yellow
spheres denote positions of the gefitinib binding sites in the wild type kinase. Blue spheres show the localization of significant adjacent residue
positions found by CMF which are in contact with these binding sites. Moreover, the CMF-significant sites I759, Y764, M766 and K846, shown with
green spheres, are already described as nsSNP positions and they are also in contact with gefitinib binding sites E762 and M793, respectively. The
circles indicate clusters of gefitinib binding sites and their significant adjacent sites.

have established here for EGFR protein the importance
of 34 out of 43 CMF-significant residue sites via different
resources [25,28,35].
Although the vast majority of CMF-significant sites are

verified to be structurally or functionally important in
human EGFR protein, nine CMF-significant sites do not
overlap with essential sites. The reason for the high con-
nectivity degree of these unconfirmed significant sites and
their role in the EGFR protein is unclear.

Position analysis of the HumanGlucokinase (GCK) protein
Glucokinase (GCK) is a monomeric enzyme catalyz-
ing phosphorylation of glucose to glucose-6-phosphate,
which is the first step in the utilization of glucose, at
physiological glucose concentration in pancreas and liver.
Given the fact that GCK displays low affinity for glu-
cose, it acts as a glucose sensor playing an important
role in the regulation of carbohydrate metabolism. Muta-
tions of the GCK gene can lead to maturity onset diabetes
of the young (MODY) characterized by an autosomal
dominant mode of inheritance and onset early adulthood

[32], or familial hyperinsulinemic hypoglycemia type 3
(HHF), common cause of persistent hypoglycemia in
infancy [41].
Applying our method, we found 72 CMF-significant

sites to be structurally or functionally important in human
GCK protein (see Additional file 2). 16 of these significant
residue positions are related to disease associated nsSNP
positions [29-31,34,35] (see Figure 3).
Furthermore, nine significant sites are found to be in

contact with allosteric sites in the GCK protein struc-
ture. Among these sites, the R63 is also allosteric site by
itself [32] and T209, C213 and E221 overlap with nsSNP
regions (see Figure 4B). Moreover, the five significant sites
T149, F171, T206, Q287, and G294 interact with glu-
cose binding sites K169, D204, N205, and E290 [32] (see
Figure 4A).
Besides this, there are further 30CMF-significant essen-

tial sites which are nearby nsSNPs or strictly conserved
residue positions (see Table 2). Altogether, we showed the
functionality of 57 positions out of 72 CMF-significant
residue sites via different resources [29-35].



Gültas et al. BMC Bioinformatics 2012, 13:225 Page 5 of 12
http://www.biomedcentral.com/1471-2105/13/225

Table 1 CMF-significant essential sites in human EGFR
protein, which are nearby either nsSNPs or strictly
conserved sites

CMF-significant
essential sites

Nearby nsSNPs, or strictly
conserved sites

Reference

Y727 726c 743c -

H755 756s , 758s [35]

D800 798c -

G824 773s [35]

D830 829s [35]

E868 892s [35]

E872 873s [34]

V876 877c -

K879 877c , 880c -

Y891 892s , 895c [35]

S899 880c , 896c , 898c , 901c -

Y900 898c , 901c -

T909 906c , 936c -

S912 906c , 936c -

K913 914c -

D916 914c -

M947 901c , 950c -

s : non-synonymous snp site, c : strictly conserved site.

While we are able to establish the large number ofCMF-
significant sites as structurally or functionally important
in human GCK protein, 15 CMF-significant sites do not
overlap with essential sites. Their importance in the GCK
protein and the reason of high connectivity degree of
these unconfirmed significant sites has not been explicitly
determined yet.

A comparison betweenU-metric andUD(α)-metric
Similarities in physical or biochemical properties of amino
acids are likely to be crucial for the detection of function-
ally or structurally important positions of a protein. In
contrast to the U-metric, which is a normalized mutual
information that uses only the frequencies of occur-
rences of amino acids in the MSA columns, the novel
UD(α)-metric includes dissimilarities according to the
BLOSUM62 matrix when calculating normalized mutual
information. As a result the positions which have under-
gone dissimilar compensatory mutations are upscaled.
Having applied the U-metric as well as the UD(α)-metric

to human EGFR and GCK proteins, the UD(α)-metric has
shown better sensitivity and specificity. However, only
when we use the both metrics together, the sensitiv-
ity is significantly increased, whereas the specificity is
only moderately decreased. The details are presented in
Table 3.

It is important to note that the two metrics complement
each other. Thus, we propose to use them together.

CMF as a Web service
We have implemented a CMF Web service (http://cmf.
bioinf.med.uni-goettingen.de) that takes an MSA in mul-
tiple FASTA format and a real number from (0, 1) inter-
preted as false discovery rate as input. It reports the results
via email.

Discussion
To predict sites of structural or functional importance,
we combine the known U-metric of normalized mutual
information [16] with a novel metric UD(i)(1) to enhance
the influence of dissimilar compensatory mutations when
measuring covariation of two sites. We discuss how we
devised UD(1) in Methods section.
To learn the frequency of compensatory mutations, we

took U-significant site pairs as training data. We did that
for reasons of computation time regardless of the fact
that these data are biased. To deal with this bias, one
could carry through the training in an iterative process,
with our training being the first iteration. For i > 0,
in the (i + 1)-th iteration of this modified training, a
doubly stochastic matrix D(i+1)

CompMut is calculated based
on UD(i)(1)-significant site pairs. This is done until the
training data are stable.
According to Birkhoff’s Theorem [43], every doubly

stochastic matrix is a convex combination of permutation
matrices. Moreover, from the Hardy-Littlewood-Pólya
majorization theorem [44] follows that transforming the
probability mass function by a doubly stochastic matrix
increases entropy. Consequently, by linearly transform-
ing the empirical amino acid pair distribution of a site
pair by D(1) before calculating the U-value, we penalized
those site pairs whose original distribution does notmatch
the frequency pattern of formal dissimilar compensatory
mutations in the training data described in the Methods
section.
The challenge was to separate the signal caused by struc-

tural and functional constraints from the background. To
address this issue, we studied only metrics μ that sat-
isfy the following condition. The larger the μ(k, l)-value,
the larger the probability that the two sites k and l have
co-evolved. Our critical assumptions were: i) the μ(k, l)-
values follow three different distributions, one for the
signal, one for the noise, and one for pairs of completely
unrelated sites; ii) there is an MSA-dependent threshold
belowwhich themetricμ does not fall with overwhelming
probability, when it is applied to the site pairs of functional
or structural importance to which μ is sensitive; iii) there
is an MSA-dependent threshold significantly smaller then
the one in (ii) such that with overwhelming probability

http://cmf.bioinf.med.uni-goettingen.de
http://cmf.bioinf.med.uni-goettingen.de
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Figure 3CMF-significant nsSNP positions in human GCK protein (PDB-Entry 1V4S). Red spheres show the structural localization of 16
different nsSNP positions found by CMF as significant in the GCK protein.

Figure 4CMF-significant residue positions are in contact with glucose binding site and allosteric site in human GCK protein (PDB-Entry
1V4S). (A) Yellow spheres show the structural positions of the glucose binding sites (active sites). Blue spheres correspond to localization of
significant adjacent residue positions found by CMF which are in contact with these active sites. (B) Orange spheres denote the allosteric sites. Blue
spheres correspond to localization of just significant adjacent residue positions and green spheres indicate the significant residue positions which
are already described as nsSNP position and in contact with these allosteric site. Additionally, the significant position R63 is allosteric site by itself
and it is also in contact with an other allosteric site. The circles indicate clusters of glucose binding sites (A), allosteric sites (B), and their significant
adjacent sites.
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Table 2 CMF-significant essential sites in human GCK
protein, which are nearby either nsSNPs or strictly
conserved sites

CMF-significant
essential sites

Nearby nsSNPs or strictly
conserved sites

Reference

M34 36s [34]

T65 66c

E67 66c , 68c -

T82 81c -

N83 81c , 108s , 110s [34]

H105 106s [29]

C129 131s , 132s [29,34]

F133 131s , 132s [29,34]

F148 147c , 150c,s [34]

F152 150c,s , 151c [34]

H156 162s [29]

N180 162s , 182s [29,34]

F260 257s , 258c , 259s , 261s [34]

D262 259s , 261s , 264s [34,42]

L266 261s , 264s , 265s [29,34,42]

D267 264s , 265s [29,42]

L271 274c -

S281 278c , 279s [34]

Q286 259s [34]

E331 299c,s [34]

T332 295c , 299c,s [34]

R333 336s [34]

Q337 336s [34]

E339 336s [34]

N391 392s [29,34]

S411 227c,s , 410c , 414s [34]

S418 416s [30]

F419 416s [30]

E442 444c -

E443 444c , 445c -

s : non-synonymous snp site, c : strictly conserved site.

there are no μ(k, l)-values of pairs (k,l) of unrelated sites
exceeding it.
In order to near-completely eliminate the noise, we fil-

tered both our training and input data. We calculated the
significant pairs such that the preassigned false discovery
rate was guaranteed by generalizing the Storey-Tibshirani
procedure devised for multiple testing problems [22].
Ourmethod to eliminate noise is orthogonal to the tech-

nique developed in [19]. Therein, for every pair of sites the
so-called average product correction (APC) is calculated
as an explicit noise measure, by which the mutual infor-
mation is then decreased. Furthermore, it generalizes the

way Merkl and Zwick [16] as well as Gao et al. [17] cope
with noise. According to our judgment, taking only the top
75 high-scoring pairs or the top 25 pairs into account as
done in [16,17], respectively, is too conservative.
We based our noise separation technique on rather

weak distribution assumptions that are standard practice
in multiple hypothesis testing, instead of explicitly model
the noise in terms of a metric.We applied the connectivity
degree technique due to Merkl and Zwick [16] to signif-
icant site pairs with respect to our metrics. The cut-off
for the connectivity degree was set to the 90-th percentile.
That way we defined significant sites. Finally, a site was
defined to be CMF-significant, if it was μ-significant,
where μ is either U or UD(1).
Why did we set the cut-off value for the connectivity

degree to the 90-th percentile? Going through all possible
n-th percentiles for n = 80, 81, . . . , 99, the Matthews cor-
relation coefficient (MCC) of a joint prediction for human
EGFR and GCK proteins is maximal if n = 90.
It is plausible that the number of functionally or struc-

turally important sites does not only depend on the length
of the protein. Therefore, the 90-th percentile cut-off
should be replaced by an MSA-dependent threshold in
future studies.
Our results for human EGFR and GCK proteins suggest

that the large majority of significant compensatory muta-
tion sites found by CMF are in agreement with previous
experimental studies regarding the functions and stabil-
ity of these proteins. 15 and 16 CMF-significant sites in
human EGRF and GCK proteins, respectively, are verified
as disease associated nsSNP positions (see Figures 1 and 2)
where most amino acid substitutions in protein sequences
damage structural stability of proteins [36,37,45]. More-
over, we have observed that in both proteins some of
CMF-significant nsSNP positions are nearby allosteric
sites, binding sites or catalytic sites each of which are con-
sidered to be functionally important [46,47] (see Figures 2
and 4). Disease associated mutations at these nearby posi-
tions are likely to affect protein function [38,48].
Despite the large number of CMF-significant sites

demonstrated to be structurally or functionally impor-
tant for both of the proteins, 9 and 15 significant sites
in human EGFR and GCK proteins, respectively, are not
included in essential sites. However, we hypothesize that
most of the novel significant sites may play a critical role
in both proteins notwithstanding the absence of previous

Table 3 Comparison betweenU-metric andUD(α)-metric

Sensitivity Specificity

U-significance 9.7% 91.5%

UD(α)-significance 12.4% 97.2%

CMF-significance 22.1% 88.7%
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experimental data. Therefore, further progress from the
molecular and structural biology end is required not only
to assess the importance of these sites, but also for a
future perspective on a deeper understanding of protein
structure.
Because we have also used the U-metric, we compared

our tool with H2r presented in [16] rather than with
those methods developed in [17]. This way, we studied
the impact of applying the Storey-Tibshirani procedure in
combination with the effect of using the 90-th percentile
cut-off for the connectivity degree. We have applied H2r
without adding pseudo counts to the human EGFR and
GCK protein. For EGFR, the 14 sites T725, A755, N756,
A767, Q791, V802, N816, V819, K846, V876, M881, K913,
D916, and E931 are identified as significant. Out of these
significant sites, ten of these residue sites T725, A755,
N756, A767, Q791,K846, V876,M881, K913, andD916 are
essential sites. On the other hand, for GCK, H2r identi-
fied the 15 residue positions L25, R36, R63, M107, C213,
V226, G261, D262, G264, L266, D267, E268, T405, K414,
and H416 as significant. Twelve of these sites, namely R36,
R63, M107, C213, V226, G261,D262, G264, L266, D267,
K414, and H416, are essential sites. However, when using
the H2r Web service (http://www-bioinf.uni-regensburg.
de/) to analyze EGFR and GCK proteins, sensitivity is
decreased, while precision is increased. By this service
only eight sites for EGFR and nine sites for GCK were
found to be significant. Moreover, only five and eight of
them are verified as functionally or structurally important
for EGFR and GCK proteins, respectively. This difference
stems from the fact that the H2r Web service tightens

the filtering of the columns. In addition to this, statis-
tically evaluating H2r for EGFR and GCK proteins, we
observed a sensitivity of 5.4%, specificity of 96.7%, preci-
sion of 75.9%, and aMatthews correlation coefficient value
of 0.047. On the other hand, the CMF reaches precision
of 79.1%, and a Matthews correlation coefficiant value of
0.133. For sensitivity and specificity of the CMF refer to
the last row of Table 3.
The results of this comparison show that a vast majority

of functionally or structurally important residue positions
cannot be detected without using our novel MSA specific
model and both metrics (U and UD(1)) together.

Conclusions
The CMF is a new method which includes an MSA-
specific statistical model based on multiple testing pro-
cedures that quantifies the error made in terms of the
false discovery rate and a novel entropy-based metric to
upscale BLOSUM62 dissimilar compensatory mutations.
Hence, it shows how dissimilar compensatory mutations
have affected genomic sequences in the course of evo-
lution. The method is able to predict significant com-
pensatory mutation positions in protein sequences. We
suggest that CMF could be used as a novel automated
function prediction tool that is required for a better
understanding of the structural basis of proteins.

Methods
In this section we describe the training data used and the
methods applied and partly developed. Our descriptions
follows the structure of Figure 5, i.e. we start with the data

Figure 5 Flowchart of theCMF-analysis.

http://www-bioinf.uni-regensburg.de/
http://www-bioinf.uni-regensburg.de/
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and the preprocessing and systemically work towards the
CMF-significant site prediction.

Training data set and pre-processing
We used a redundancy free set of more than 35000 pro-
tein structures computed in Rainer Merkl’s Lab at the
University of Regensburg in the following way. The
protein structures were taken from the protein data
base (http://www.pdb.org/). The PISCES services [49]
was applied to assess proteins on sequence similarity
and equality of 3D-data. The related MSAs were gath-
ered from the HSSP data base (http://swift.cmbi.ru.nl/gv/
hssp/).
Taking pattern from [16], we filtered every MSA

obtained as follows. First, highly similar and dissimi-
lar sequences were deleted to ensure that the sequence
identity between any two sequences is at least 20%
and no more than 90%. Second, we removed strictly
conserved residue columns, where the percentage of
identical residues is greater than 95%. Third, we elimi-
nated the residue columns which contain more than 25%
gaps. Finally, we discarded all MSAs with less than 125
sequences. More than 17000MSAs survived the last filter-
ing step. We used approximately 1700 MSAs as training
data which we randomly chose from this set. The pdb
entries of the corresponding protein structures are listed
in Additional file 3.

Detecting compensatory mutations by theU-metric
In [16] a normalized measure of mutual information rang-
ing over the interval [ 0, 1] is successfully used to detect
important residues. It is defined as

U
(
i, j

)
:= 2 · H (i) + H

(
j
) − H

(
i, j

)
H (i) + H

(
j
) , (1)

where H (i) and H
(
j
)
are the entropy of the empirical

amino acid distributions of the columns i and j, andH
(
i, j

)
is their joint entropy.
We determine an MSA-dependent threshold τ above

which U-values are defined as significant. Let M be the
MSA for the protein under investigation. We extend a
standard approach of multiple testing theory [22,50,51]
with the following assumptions in mind. M’s U (k, l)-
values follow three different distributions. The null dis-
tribution F0 represents background signals. The distribu-
tions G1 and G2 model the unrelated pairs and the signal
pairs, respectively.
We assume F0 to be a β-distribution, and M’s U (k, l)-

values U1,U2, . . . ,Uμ to be an independent and identi-
cally distributed (iid) sample.
Let Xι := 1−F0(Uι) be the p-value ofUι with respect to

F0. If Uι is F0-distributed, then Xι is uniform over [ 0, 1].
However, if Uι is G1-distributed or G2-distributed, then
Xι is skewed to 1 or to 0 (see Figure 6). According to

[22,23], the fraction γ of the Uι’s that are F0-distributed is
estimated by

γ̂ := number of p-values in [ λ1, λ2]
μ(λ2 − λ1)

.

The tuning parameters λ1 and λ2 are chosen such that the
fraction of not uniformly distributed p-values that fall into
[ λ1, λ2] is negligible.
We call a pair of sites (i, j) of the protein under study

(U,M)-significant if and only if the p-value 1− F0(U
(
i, j

)
)

is less than or equal to τ , for a threshold τ ≤ λ1 that
ensures the input false discovery rate FDR, which in turn
can be estimated by

F̂DR(τ ) = γ̂ μτ

number of p-values ≤ τ
.

In order to determine the parameters of the β-
distribution F0, it is sufficient to estimate the expected
value and the variance. The expected value is estimated
by the sample mean of all U-values of M. As for the vari-
ance, we take pattern from [52]. Having drawn an iid
sample (C1,C′

1), (C2,C′
2), . . . , (Cν ,C′

ν) of random column
pairs of a sufficient size whose U-values fall in a preas-
signed subinterval of [ 0, 1], we calculate D1,D2, . . . ,Dν

by randomly shuffling C′
ι for every ι = 1, 2, . . . , ν. The

variance is then estimated as the sample variance of
(C1,D1), (C2,D2), . . . , (Cν ,Dν).
The connectivity degree of a site i with respect to the

metric U and the MSA M is defined as number of sites j
such that (i, j) is (U,M)-significant [16]. Site i is defined
to be (U,M)-significant, if i’s connectivity degree with
respect to U and M is greater than or equal to the 90-th
percentile. The (U,M)-significant sites of a protein do not
coincide with those predicted by H2r [16]. The connectiv-
ity degrees attained and the threshold used substantially
differ. In particular, the latter one is data-dependent rather
than constant.

Enhancing prediction by theUD(α)-metric that models
dissimilar compensatory mutations
A pair

(
(ai, aj), (ak , al)

)
of amino acid pairs is defined

to be a formal dissimilar compensatory mutation, if the
BLOSUM62 score both of (ai, ak) and (aj, al) is negative.
We use the training data set of approximately 1700

MSAs described above to estimate a 400 × 400 doubly
stochastic matrix DCompMut. This matrix is our mathe-
matical model of how dissimilar compensatory mutations
have affected genomic sequences in the course of evolu-
tion. Its training consists of five phases.

Phase 1. We calculate a signal and a null set of column
pairs. The signal set consists of all (U,M)-significant
column pairs, where M ranges over all training MSA.
The null set consists of sufficiently many column pairs

http://www.pdb.org/
http://swift.cmbi.ru.nl/gv/hssp/
http://swift.cmbi.ru.nl/gv/hssp/
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Figure 6 Four p-value distributions of (transformed) normalized mutual information values for human GCK and EFGR proteins having
PDB-ID 1V4S and 2J6M, respectively. The bar charts illustrate the two steps of our model: i) blue bars show the p-value distribution of the
U (i, j)-scores; ii) red bars display the p-value distribution of the UD(1) (i, j)-values. The p-values close to zero represent the significant pairs by means
of which we assess the individual residue position. As one can see, within [ 0.25, 0.70] these four distributions are approximately uniform.

randomly chosen from every training MSA. For both
the signal set and the null set we compute a symmetric
400 × 400 integer-valued matrix of frequencies of pair
substitutions Calt and Cnull. To this end, the method used
to compute BLOSUM62 matrices [53] is applied to count
residue pair substitutions in MSA column pairs rather
than residue substitution in columns.

Phase 2. Using Calt and Cnull, we define the matrix Csig
by

Csig
(
(ai, aj), (ak , al)

)
:=

{
Calt

(
(ai, aj), (ak , al)

)
if ϕ

(
(ai, aj), (ak , al)

)=1;
0 otherwise;

where ϕ
(
(ai, aj), (ak , al)

) = 1 if and only if (ai, aj) =
(ak , al) or

Calt
(
(ai, aj), (ak , al)

)∑
i′,j′,k′,l′ Calt

(
(ai′ , aj′), (ak′ , al′)

)
>

Cnull
(
(ai, aj), (ak , al)

)∑
i′,j′,k′,l′ Cnull

(
(ai′ , aj′), (ak′ , al′)

) .
Phase 3. We set all entries of the matrix Csig outside

the main diagonal that do not represent a formal dissim-
ilar compensatory mutation to zero. This results in the
matrix CCompMut. By normalizing CCompMut, we obtain a
symmetric matrix PCompMut. For ai, aj, ak , al ranging over
all amino acids, PCompMut

(
(ai, aj), (ak , al)

)
represents an

empirical probability distribution on pairs of amino
acid pairs.

Phase 4.We calculate the symmetric 400 × 400-matrix

SCompMut :=
(
log

PCompMut
(
(ai, aj), (ak , al)

)
PbCompMut

(
ai, aj

)
PbCompMut(ak , al)

)
(ai ,aj),(ak ,al)

,

where PbCompMut
(
ai, aj

)
is the marginal distribution of

PCompMut.

Phase 5. We set all negative entries of SCompMut to zero.
Then we compute the doubly stochastic matrix DCompMut
by means of the canonical iterated row-column normal-
ization procedure [54].

Now we define our new UD(α)-metric based on
DCompMut. For every column pair (i, j) of the input MSA
M, we linearly transform the associated empirical pair
distribution with the doubly stochastic matrix

D(α) := (1 − α)1 + αDCompMut

where 1 is the 400×400 unit matrix,DCompMut is the result
of training phase 5, and α ∈ (0, 1] is a preassigned real
number. UD(α)

(
i, j

)
is then defined to be the U-value (see

Equation 1) of this transform.
Having canonically carried over the definition of a sig-

nificant site pair and of the connectivity degree of a site to
this case, a site i is called (UD(α),M)-significant, if i’s con-
nectivity degree with respect to the metricUD(α) is greater
than or equal to the 90-th percentile.
Finally, a site is defined to be CMF-significant with

respect to the MSA M, if it is (U,M)-significant or
(UD(α),M)-significant. The CMF-significant sites are pre-
dicted as functionally or structurally important ones.
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Principally, the controlling parameter α ∈ (0, 1] can be
adjusted by the user. We set α to 1 to allow the two sets of
(U,M)-significant and (UD(α),M)-significant positions to
complement each other.
Note, that the matrix SCompMut could be replaced with

another scoring matrix meaningful in this context.
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