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Abstract

Background: Researchers seeking to unlock the genetic basis of human physiology and diseases have been studying
gene transcription regulation. The temporal and spatial patterns of gene expression are controlled by mainly non-
coding elements known as cis-regulatory modules (CRMs) and epigenetic factors. CRMs modulating related genes share
the regulatory signature which consists of transcription factor (TF) binding sites (TFBSs). Identifying such CRMs is a
challenging problem due to the prohibitive number of sequence sets that need to be analyzed.

Results: We formulated the challenge as a supervised classification problem even though experimentally validated
CRMs were not required. Our efforts resulted in a software system named CrmMiner. The system mines for CRMs in
the vicinity of related genes. CrmMiner requires two sets of sequences: a mixed set and a control set. Sequences in
the vicinity of the related genes comprise the mixed set, whereas the control set includes random genomic
sequences. CrmMiner assumes that a large percentage of the mixed set is made of background sequences that do
not include CRMs. The system identifies pairs of closely located motifs representing vertebrate TFBSs that are
enriched in the training mixed set consisting of 50% of the gene loci. In addition, CrmMiner selects a group of the
enriched pairs to represent the tissue-specific regulatory signature. The mixed and the control sets are searched for
candidate sequences that include any of the selected pairs. Next, an optimal Bayesian classifier is used to
distinguish candidates found in the mixed set from their control counterparts. Our study proposes 62 tissue-
specific regulatory signatures and putative CRMs for different human tissues and cell types. These signatures
consist of assortments of ubiquitously expressed TFs and tissue-specific TFs. Under controlled settings, CrmMiner
identified known CRMs in noisy sets up to 1:25 signal-to-noise ratio. CrmMiner was 21-75% more precise than a
related CRM predictor. The sensitivity of the system to locate known human heart enhancers reached up to 83%.
CrmMiner precision reached 82% while mining for CRMs specific to the human CD4+ T cells. On several data sets,
the system achieved 99% specificity.

Conclusion: These results suggest that CrmMiner predictions are accurate and likely to be tissue-specific CRMs. We
expect that the predicted tissue-specific CRMs and the regulatory signatures broaden our knowledge of gene
transcription regulation.

Background
Understanding gene regulation is crucial to understand
human development and to uncover the genetic basis of
physiological and pathological processes. DNA sequences
known as cis-regulatory modules (CRMs) play an impor-
tant role in the tempo-spatial regulation of a gene. CRMs

may be located a few dozen nucleotides from the tran-
scription start sites or millions of nucleotides way. To acti-
vate a gene in a specific tissue, transcription factors (TFs)
bind to their binding sites (TFBSs) in a CRM. Often, a co-
activator protein binds to the TF complex and to RNA
Polymerase II, bringing the CRM into close proximity to
the promoter to start transcription [1].
Experimental methods to identify tissue-specific CRMs

are available. One method relies on detecting DNase I
Hypersensitive regions that are strong makers of CRMs
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[2]. CRMs can also be recognized by identifying specific
histone marks, such as H3K4me1, H3K4me3, or
K3K27ac, for example [3]. Visel et al. [4] and Blow et al.
[5] used chromatin immunoprecipitation followed by
sequencing (ChIP-seq) to detect enhancers. The antibo-
dies used in the ChIP-seq method target the co-activator
P300 protein that forms a complex with TFs binding to
a CRM. Candidate sequences identified by the above
methods are usually fused to a reporter gene to be
tested in transgenic animals. Although experimental
methods are effective in identifying tissue specific
enhancers, they are relatively expensive, time consum-
ing, and may require animal models. In addition, experi-
mental methods are not perfect. For example, 87% and
62% of the P300 peaks obtained in [4] and [5] showed
the expected tissue-specific activity in transgenic mice.
Predicting CRMs from DNA sequences is a challen-

ging problem in computational biology. Few computa-
tional methods take advantage of the availability of
experimentally confirmed CRMs [6-9]. These methods
apply supervised-learning algorithms to identify
sequence features that are specific to the confirmed
CRMs. Sequence features may include motifs represent-
ing TFBSs and words of specific length. Even though
these methods are useful in identifying tissue specific
CRMs, they cannot be applied when there are not
enough known CRMs for a desired cell type. Since
experimentally confirmed CRMs are not available for all
tissues, alternative methods have been developed. Sev-
eral of these methods depend on detecting clusters of
predetermined TFBSs in a sequence [10-13]. These
methods can be useful to search for a specific combina-
tion of TFBSs. However, they cannot be applied when
the regulating TFs or their motifs are unknown. Search-
ing for clusters of the same TFBS has been the underly-
ing principle of related computational methods [14,15].
These methods can identify CRMs that include several
instances of the same TFBS. They cannot identify those
that include different TFBSs.
CRMs modulating co-expressed or co-regulated genes

are likely to share TFBSs that comprise the regulatory
signature. The main challenge facing the discovery of
the regulatory signature of a group of related genes is
the prohibitive number of all possible sets. To illustrate
the difficulty, consider a set of 100 co-expressed genes.
Each gene locus has 10 candidate sequences (this num-
ber can be much larger in reality). If only one sequence
includes a cis-regulatory module of a gene, the total
number of sets to be analyzed is 10100. Next, we illus-
trate how computational methods have attempted to cir-
cumvent this challenge.
Initially, computational methods limited the search for

CRMs to the promoter regions or to the conserved ele-
ments within a few thousand nucleotides upstream of

the transcription start sites (TSSs) [16-24]. Grad et al.
[25] reduced the number of sequences to be analysed by
searching for “similar short, conserved sequences” near
the co-expressed genes. The Enhancer Identification (EI)
method [26] searches for modules of TFBSs enriched in
conserved sequences in the promoter regions or in the
“three most conserved” sequences in the vicinity of tis-
sue-specific genes. Further, the EI method reduces the
number of sequences to be analysed by dynamically
considering only sequences that include a tissue-specific
TFBS module. Pairs of nearby co-occurring words or
TFBSs can describe the regulatory signature of the pro-
moters of tissues-specific genes [27-29]. The CRM-PI
[30] method predicts CRMs based on pairs of interact-
ing TFs by analysing “conserved regions” within 1.5 kbp
upstream of the TSSs. Then, it scans the regions 5 kbp
upstream of TSSs for segments that are enriched with
the interacting TFs.
The above mentioned methods are successful in

detecting tissue-specific CRMs modulating co-expressed
or co-regulated genes. Nevertheless, their search scope
is limited. CRMs can be located hundreds of thousands
of nucleotides from their target genes [31,32]. Therefore,
computational methods that can mine for tissue-specific
CRMs among a large number of sequences are needed.
We designed and developed a probabilistic discrimina-

tive system, CrmMiner. CrmMiner attempts to over-
come some of the limitations of the current state-of-
the-art. Specifically, CrmMiner is designed to mine for
CRMs in a large number of sequences. Hence, it has the
potential to find CRMs thousands of nucleotides away
from their target TSSs. Two principles provide the foun-
dation for CrmMiner. First, CRMs, which regulate a
group of tissue-specific genes, share TFBSs. Second, pro-
teins never act in isolation. Therefore, pairs of motifs
representing co-occurring TFBSs can be used to
describe the tissue-specific regulatory signature.
CrmMiner overcomes the problem of mining for

CRMs among a large number of background sequences
by filtering out sequences that are not likely to include
CRMs. The filtering step reduces the search space from
thousands to a few hundreds of sequences. For example,
the vicinity of a group of co-expressed genes includes
thousands of sequences. A few hundreds of these
sequences include CRMs. To reduce the number of
sequences to be analyzed, during training CrmMiner
identifies a subset of tens or a few hundreds of motif
pairs that are enriched in this group of loci. At the same
time, the system selects candidate sequences that
include any of the selected pairs. This step results in set
of a few hundred of sequences which are likely to
include CRMs. Often, there are thousands of motif pairs
that are enriched in a group of loci. However, selecting
the candidate sequences based on the entire set of the
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enriched pairs would result in thousands of sequences.
The majority of these sequences do not include CRMs.
As a result, the filtering step would be ineffective.
Therefore, we designed a greedy algorithm to select the
final enriched pairs during training.
From the technical point of view, we formulated the

task as a supervised classification problem. However,
CrmMiner does not require experimentally validated
CRMs. In sum, the contributions of our study are:
• The CrmMiner software,
• Putative CRMs specific to 62 human tissues and cell

types, and
• Predicted regulatory signatures specific to 62 human

tissues and cell types.
Next, we describe the classification algorithm and dis-

cuss the performance of CrmMiner.

Methods
CrmMiner
In this section, we present our discriminative probabilis-
tic system, CrmMiner. The goal of CrmMiner is mining
for CRMs in the vicinity of a group of co-expressed or
functionally related genes.
Input
The input to CrmMiner is two sets of sequences: a
mixed set and a control set. The mixed set is assumed
to include cis-regulatory modules (CRMs) mixed with a
large number of background sequences. In our experi-
ments, the mixed sets consisted of sequences found in
the vicinity of related genes. The control set consists of
background sequences that are unlikely to include
CRMs. A well-known problem in the field of machine
learning is over-fitting the training data. Over-fitting is
manifested by an excellent performance on the training
data; however, the performance on new testing data is
poor. In other words, the algorithm does not perform as
well on the testing data. To guard against over-fitting,
the input sequences are partitioned into three sets: (1)
training set, sequences in 50% of the loci; (2) validation
set, sequences in 25% of the loci; and (3) testing set,
sequences of 25% of the loci. We constructed a control
set for each of the three mixed sets.
Output
The output of CrmMiner is the predicted CRMs and
their regulatory signature. The signature is represented
by pairs of motifs of transcription factor binding sites
(TFBSs). Those CRMs should share the signature com-
pletely or partially.
Overview
Our procedure to predict CRMs consists of the follow-
ing steps (Figure 1):
• Scan sequences for motifs of known vertebrate

TFBSs.
• Train CrmMiner on the training set:

- Identify pairs of motifs that meet specific criteria.
- Search the mixed and control sets for candidate

sequences that include at least one of the selected pairs.
- Score candidate sequences.
- Determine a threshold that separates the scores of

candidates found in the mixed set from those found
among the controls.
- Predict candidate sequences found in the mixed set

as CRMs if their scores are above the threshold.
• Validate CrmMiner’s performance on the validation

set. Predict CRMs according to the list of pairs and the
threshold, both of which are determined during training.
• Repeat training and validation to find the parameters

that result in the best performance on the validation set.
• Test CrmMiner with the parameters determined in

the previous step on the testing set.
Scanning sequences for motifs of known vertebrate TFBSs
We obtained 966 position weight matrices representing
motifs of binding sites of known vertebrate transcription
factors from the TRANSFAC (release 2010.4) database
[33]. The MAST program [34] scanned each sequence
and its reverse complement to detect the presence of
the 966 motifs. In the case where multiple motifs over-
lapped, all of them were kept.
Selecting a set of motif pairs enriched in the training mixed
set
The initial set of motif pairs is selected according to
three criteria. First, the two non-overlapping motifs have
to be near one another and separated by no more than
a certain number of nucleotides (system parameter).
Second, a pair has to occur at least a certain number of
times in the mixed set (system parameter). For example,
suppose that the mixed set is expected to include 100
CRMs. The user may require a pair of motifs to be pre-
sent in at least 10% of the CRMs. In this case, CrmMi-
ner considers pairs that occur at least 10 times in the
mixed set. Third, the pair is more enriched in the mixed
set than the control set. The enrichment of a pair p is
measured by the E-valuep which is calculated as follows:

E-valuep =
lc
lm

× nm
nc

(1)

lc and lm are the sum of sequence lengths in the con-
trol and mixed sets, and nm and nc are the number of
times a pair occurred in the mixed and control sets.
Pairs that are not enriched in the mixed set (i.e. E-value
≤ 1) are excluded. However, not all enriched pairs are
considered. The E-value of a pair has to be above the
mean E-value of the enriched pairs, and less than 2-5
standard deviations above the mean (system parameter).
We avoid selecting pairs that are extremely enriched in
the training set because they may not be enriched in
other sets. In other words, those pairs may be potential
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outliers. The three parameters, discussed in this step,
are adjusted automatically during validation.
Selecting candidate sequences
The goal of this step is to select a set of sequences that
are more enriched with sequences found in the mixed
set than with controls. To this end, CrmMiner uses a
greedy algorithm to collect such a set. For a set h, we
define the E-valueh to measure the enrichment of h with
sequences from the mixed set as follows:

E-valueh =
lc
lm

× rm
rc

(2)

lc and lm are defined as before, and rm and rc are the
number of sequences from the mixed and control sets
in h. The algorithm depends on the enriched pairs
determined in the previous step. The algorithm begins

by sorting the enriched pairs in descending order. It
considers the top k (system parameter) enriched pairs in
the list. For each one of the k pairs, CrmMiner calcu-
lates the enrichment value that may be obtained if
sequences including this pair would be added to the set
of candidate sequences (initially empty). CrmMiner
selects the pair that results in the best E-valueh. The
sequences, which include this pair, are added to the set
of candidate sequences. The chosen motif pair is
removed from the sorted list and added to a list repre-
senting the regulatory signature. Then, the algorithm
repeats the search through the top k pairs in the
updated sorted list. The rational for this step is that,
although a pair could have the highest E-valuep, it may
not result in the best E-valueh. Therefore, examining
other highly enriched pairs should provide a better

Figure 1 Method overview. The diagram illustrates the workflow of the system. During training, the system contrasts sequences from the
mixed set to control sequences to identify motif pairs that are enriched in the mixed set. The system identifies and scores sequences that
include at least one of the enriched pairs. A Bayesian classifier is trained on the scores to distinguish candidate sequences in the mixed set from
candidates in the control set. During validation, the list of pairs and the trained classifier are used to classify sequences in the validation set. The
training and the validation are repeated to find the parameters that result in the best performance on the validation set. Finally, CrmMiner is
tested on sequences in the testing set.
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alternative. The algorithm stops if at least one of the fol-
lowing three criteria is violated:
• The enrichment of the candidate sequences with

sequences from the mixed set is above a threshold (sys-
tem parameter);
• The number of sequences from the mixed set among

the candidate sequences is less than the maximum
allowed (system parameter); and
• The number of pairs, representing the regulatory sig-

nature, is less than the maximum number of candidate
sequences gathered from the mixed set (system
parameter).
The algorithm selects a list of motif pairs representing

the regulatory signature. In addition, it outputs candi-
date sequences found in the mixed and control sets.
Based on experimental results, it is recommended to set
the minimum E-valueh to 3-5 fold, the maximum num-
ber of candidate sequences collected from the mixed set
to 1-5 times the number of the expected CRMs, and k
to 1-10. We determine the values of these parameters
automatically, by trying several combinations on the
validation set.
To illustrate how the algorithm works, suppose that

the training set includes 80 gene loci, where one CRM
is expected to regulate each gene. The user may wish to
set k to 3, the minimum E-valueh to 3 fold, and the
maximum number of candidate sequences collected
from the mixed set to 240 (3 × 80). Using 240 allows,
initially, at most one true positive in every three
sequences because the user assumed that there are 80
CRMs. Some of these sequences will be removed in the
next stage. Let P = {p1, p2, p3, p4, ..., pn} be the sorted
list of motif pairs such that E-valuepi ≥ E-valuepj, ∀i <j.
Let S = {} be the set of motif pairs representing the reg-
ulatory signature. Let H = {} be the set of candidate
sequences. Notice that H can include sequences from
the mixed and control sets. The algorithm considers
adding p1, p2, or p3 to S. Suppose that motif pair p1
results in the highest set enrichment, E-valueh. Then, p1
is removed from P and added to S. Sequences including
this pair are added to H. Then, the algorithm considers
pairs p2, p3, or p4. CrmMiner stops if (1) the E-valueh
drops below 3 fold, (2) H includes more than 240
sequences from the mixed set, or (3) the number of the
selected pairs, |S|, is more than 240.
Predicting CRMs
CrmMiner searches the mixed and control sets for
sequences that include at least one of the final motif
pairs. We refer to this set of pairs as the tissue-specific
regulatory signature. Many of these pairs are expected
to occur in control sequences by chance. To distinguish
between candidates found in the mixed set (potential
CRMs) and those found among controls, CrmMiner

trains a Bayesian classifier [35]. A sequence is scored as
the sum of the E-valuesp of the signature motif pairs
present in it. The goal is to find a score above which a
sequence is more likely to be from the mixed set than
from the control set. Our assumption is that a candidate
sequence found in the mixed set should include more
than one of the enriched pairs. In addition, the majority
of control sequences should include at most one of the
enriched pairs. Therefore, the scores of candidate
sequences gathered from the mixed set should be higher
than those of their control counterparts. One way to
find such a threshold score is to calculate the posterior
probabilities of a sequence being from the mixed set or
from the control set, given its score is greater than or
equal to the threshold (Equations 3 and 4).

p(C = c1|T ≥ t) =
p(C = c1) × p(T ≥ t|C = c1)

p(T ≥ t)
(3)

p(C = c2|T ≥ t) =
p(C = c2) × p(T ≥ t|C = c2)

p(T ≥ t)
(4)

The threshold is the score that maximizes the log
ratio of the class posteriors as in equation 5.

argmax
t

(
log(p(C = c1|T ≥ t)) − log(p(C = c2|T ≥ t))

)
(5)

Note that c1 and c2 represent the mixed and the con-
trol classes. The evidence, p(T ≥ t), does not need to be
calculated. Probabilities are calculated with respect to
the candidate set that was determined in the previous
step. The goal of the classifier is to remove (i) control
sequences, and (ii) sequences that belong to the mixed
set and have scores similar to the scores of control
sequences. Given that the scores of controls are due to
noise, it is appropriate to assume that they are normally
distributed. CrmMiner searches for a threshold starting
at the minimum score of controls with increments of
0.1, and ending at one standard deviation above the
average score of controls in the candidate set. A thresh-
old within this range can eliminate up to 84.2% of the
noise due to the normal distribution properties.
Optimizing CrmMiner’s parameters
CrmMiner is controlled by six parameters. We designate
the validation set to fine tune these parameters. During
validation, CrmMiner uses the motif pair list (the regu-
latory signature) and the threshold that were determined
at the training stage. The goal is to find a combination
of the six parameters that enables CrmMiner to perform
successfully on both of the training and validation sets.
CrmMiner’s performance is considered satisfactory if
the predicted CRMs are significantly more enriched in
the mixed set than in the control set. We use the one-
tailed Fisher’s exact test to obtain a P-value as a
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measure of statistical significance. The results are con-
sidered successful if the E-valueh > 1 and the P-value is
less than a threshold. Since CrmMiner performs multi-
ple tests on the training and the validation sets, we use
the Bonferroni correction to decide the significance
threshold (0.05/the number of tests). For example, we
searched 1080 parameter combinations in our experi-
ments described in the next section. Hence, the signifi-
cance threshold is 4.6e−5(0.05/1080). In this study,
sequences in the training mixed set were gathered from
80 gene loci. Therefore, we tried CrmMiner with combi-
nations of the following six parameters:
• Distance between two motifs defining a pair: {25, 50,

100, 150, 200, ∞}.
• Minimum number of pair occurrences in the mixed

set: {7, 8}.
• Maximum pair enrichment value, E-valuep: average

+ {2, 2.5, 3, 3.5, 4} standard deviations.
• Minimum set enrichment value, E-valueh: {3, 5}.
• Step size of the greedy algorithm, k: {1, 5, 10}.
• Maximum number of candidate sequences collected

from the mixed set: {160, 240, 320}.
One of two criteria can be used to determine the best

parameter combination. First, the best parameter combi-
nation is the one that results in the highest significant
E-valueh on the validation set. Alternatively, we may
search for a combination that results in the most signifi-
cant validation P-value. For either criterion, we require
a significant P-value and E-valueh > 1 during training.
Testing
We use the training set to obtain the regulatory signa-
ture and a threshold to predict CRMs. CrmMiner para-
meters are optimized on the validation set. Finally, the
performance of the optimized system is assessed blindly
on the testing set. A testing E-valueh > 1 and a P-value
< 0.05 suggest that CrmMiner found a common regula-
tory signature across the three sets.
Next, we illustrate the procedures used to construct the

mixed and control sets. The majority of the mixed sets in
our study were assembled from conserved non-coding
elements (CNEs). The control sequences were sampled
from the non-coding regions of the human genome.

Data
In this section, we give details of collecting the data sets.
CrmMiner requires a mixed set and a control set. The
mixed sets were gathered from CNEs located in tissue-
specific gene loci, and the control sets were collected
from non-coding genomic regions. In the following, we
discuss: (i) how the tissue-specific genes were selected,
(ii) how gene loci were determined, (iii) how the CNEs
were processed, and (iv) how we obtained the control
sequences.

Determining cell-type-specific and tissue-specific genes
Gene expression data in the GNF Novartis Atlas 2 [36]
are a valuable resource for our study. A tissue-specific
gene is expected to be expressed in a certain tissue
more than other tissues. To select a group of tissue-spe-
cific genes, a gene expression level is ranked relative to
its expression levels in other tissues. Specifically, we cal-
culate the z-score of a gene expression level with respect
to its expression levels in 72 non-cancerous tissues
(Equation 6).

sg =
eg − meang

stdg
(6)

sg is the z-score of gene g, eg is the expression level,
meang is the average expression of g in all tissues, and
stdg is the standard deviation of g’s expressions in all tis-
sues. We ranked genes according to sg in a descending
order. Finally, the top n genes are selected.
Determining gene loci
We determine the genomic location of genes using the
hg18 RefSeq annotation [37]. The boundaries of a gene
locus are the midpoints between the gene and each of
the two flanking genes. If the gene is the first or last
known gene on the chromosome, the locus starts or
ends 100 kbp away from the start or the end of the
gene of interest.
Processing CNEs
We obtained CNEs from the ECR browser [38]. CNEs
are human sequences, hg18, that are at least 70% identi-
cal with the mouse genome, mm9. If a CNE included a
coding sequence, we removed the coding part and kept
the rest of the CNE. The shortest CNE in our study is
100 bp long. CNEs including less than 50% repeats were
considered. CNEs in the vicinity of tissue-specific genes
comprise a mixed set.
Collecting genomic control sequences
Our database of control sequences contains 70960 ran-
dom sequences extracted from non-coding regions of
the human genome. The control sequences are similar
to CNEs in length, GC content (within 1%), and
repeats content (within 1%) [9]. In this study, we con-
structed a control set specific to a mixed set. The dis-
tribution of sequence length in the control set is
similar to that of the mixed set. We matched
sequences in the mixed set to controls in the database
according to ranges of 100 bp. For example, sequences
of length 100-199, 200-299, ... , and 1900-1999 bp are
matched with control sequences of length in the same
ranges. If the mixed set includes sequences longer than
2000 bp, these sequences are matched with control
sequences longer than 2000 bp. The ratio of sequence
number in the mixed set to that in the control set is 1
to 5.

Girgis and Ovcharenko BMC Bioinformatics 2012, 13:25
http://www.biomedcentral.com/1471-2105/13/25

Page 6 of 17



In the next section, we evaluate CrmMiner on several
data sets. First, CrmMiner performance is evaluated
under controlled settings. Then, we evaluate CrmMiner
on real data sets.

Results
Our efforts resulted in a software called CrmMiner. The
software is available as additional file 1. CrmMiner has
two specific goals. First, CrmMiner mines the vicinity of
related genes for tissue-specific CRMs. In addition,
CrmMiner searches for a common regulatory signature
describing the predicted CRMs. This signature consists
of pairs of motifs, which represent known vertebrate
transcription factor binding sites. We start by defining
the evaluation measures. Then, we report the following:
(i) the performance of CrmMiner under controlled set-
tings, (ii) a comparison between CrmMiner putative
CRMs and experimentally validated CRMs, (iii) the
application of CrmMiner to predict CRMs specific to 72
human tissues, and (iv) the application of CrmMiner to
a group of genes functionally related to the human
heart development.
To assess the performance of CrmMiner, evaluation

criteria had to be determined. We used a statistical mea-
sure, E-valueh (Equation 2), to evaluate the performance
of CrmMiner. Recall that the E-valueh quantifies the
enrichment of the predictions with sequences from the
mixed set. To determine the significance of the enrich-
ment, the Fisher’s exact test was applied to obtain a P-
value. In addition, when experimentally validated CRMs
are available, CrmMiner is evaluated in terms of the
true positive (TP), false positive (FP), false negative
(FN), and true negative (TN) predictions. When applic-
able, we used the sensitivity (Equation 7), the specificity
(Equation 8), and the precision (Equation 9) to evaluate
the performance of CrmMiner.

Sensitivity =
TP

TP + FN
(7)

Specificity =
TN

TN + FP
(8)

Pr ecision =
TP

TP + FP
(9)

Controlled Experiments
Mining for CRMs specific to the human CD4+ T cells under
controlled settings
The vicinity of related genes include CRMs and other
genomic sequences. To mimic this setting, we designed
special mixed sets consisting of the human CD4+ T
cells’s DNase I Hypersensitive Sites (HSSs) [2] and

background sequences. HSSs mark DNA elements that
take part in gene transcription. HSSs often include tran-
scription factor binding sites. Also, they are strong indi-
cators of CRMs. The exact number of CRMs among
HSSs is unknown; however, HSSs are enriched with
CRMs. The goals of this experiment are (i) to study the
effect of the number of background sequences in the
mixed set on CrmMiner performance, and (ii) compare
the performance of CrmMiner to that of CisModule
[19,39], a related CRM predictor.
To begin, the loci of the top 150 genes, which are

mainly expressed in the human CD4+ T cells, were
determined. Seventy-five loci were used for constructing
the training mixed sets; 37 and 38 loci were used to
construct the validation and testing sets. The training,
validation, and testing loci included 740, 445, and 443
HSSs, respectively. We considered HSSs that are at least
100 bp long and include at most 50% repeats. We
assembled six groups of mixed sets. The training and
validation mixed sets included the respective HSSs in
addition to x × l background sequences, x = 0, 5, 10, 15,
20, 25 and l is the number of loci used to assemble the
set. The testing mixed set contained HSSs only. The
control sets included three times as many sequences as
their mixed sets counterparts. We controlled for
sequence length while selecting control sequences (see
Methods).
The underlying principle of a related CRM predictor,

CisModule [19], is that TFBSs usually cluster within
CRMs. CisModule is based on a Bayesian hierarchical
model to learn overrepresented motifs that are “co-loca-
lized” in CRMs. The algorithm is unique in its ability to
learn CRMs while it is learning the over-represented
motifs. Both CisModule and CrmMiner can be applied to
mine for CRMs in the vicinity of tissue-specific genes.
We trained CrmMiner on the training sets and optimized
the parameters on the validation sets. The performance
of CrmMiner was evaluated on the testing sets. To com-
pare, we followed the same procedure to obtain CisMo-
dule predictions. Specifically, we trained CisModule on
the training set to find regulatory modules consisting of
3-5 motifs. The number of motifs that resulted in the
best performance on the validation sets was used to
obtain predictions from the testing sets. Both CrmMiner
and CisModule succeeded on the six testing sets. In
other words, the testing E-valueh was more than 1 and
the P-value is less than 0.05 (Fisher’s exact test).
The true positive rates, the false positive rates and the

precisions (Equation 9) of both methods were analysed.
We considered a putative CRM as a true positive if it
overlapped with a HSS. As expected, CrmMiner’s true
positive rate declined as the number of background
sequences in the training mixed set increased (Figure 2
(a)). CrmMiner true positive predictions were more than
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those of CisModule on the initial set (x = 0). The true
positive rates of both methods were comparable when x
= 10 or x = 15. CisModule true positive rates were
higher than those of CrmMiner when x = 5, x = 20, or
x = 25. Recall that the exact number of CRMs among
HSSs is unknown. Therefore, we were not able to deter-
mine the sensitivities (Equation 7). To count the false
positives, positive control predictions that overlapped
with HSSs were removed. In the six tests, CrmMiner’s
false positive rates were lower than those of CisModule
(Figure 2(b)). Finally, we calculated the precisions of
both methods. We found that CrmMiner was 21% (x =
15) - 75% (x = 25) more precise than CisModule (Figure
2(c)). These results show that CrmMiner can reliably
mine for CRMs in noisy data sets demonstrating its abil-
ity to retrieve functional CRMs.
Results on random sets
The purpose of this experiment is to ensure that the
observed enrichments were not due to a property of the
algorithm, or of the predicted TFBSs. We assembled 72
data sets in which the mixed sets were sampled from
random genomic sequences. Sequences of the mixed
sets, i.e. the pseudo-mixed sets, and the control sets
were random genomic sequences. The pseudo-mixed
sets and the control sets were similar in sequence length
distribution. A control set included five times as many
sequences as its pseudo-mixed set. The pseudo-mixed
sets were unlikely to share the same set of enriched
motif pairs. When CrmMiner was evaluated on the 72
testing pseudo-mixed sets, CrmMiner failed, as
expected, to predict the regulatory signature for all of
them. These results suggest that the CRMs were pre-
dicted due to the shared regulatory signatures and not
due to a property of the algorithm or the motifs repre-
senting the TFBSs.

Experiments
Mining for CRMs specific to the human heart
In this experiment, we applied CrmMiner to search for
conserved CRMs in the vicinity of heart-specific genes.
Specifically, we searched for CRMs among the human-
mouse CNEs. The goal of this experiment is to apply
CrmMiner to retrieve known conserved CRMs by ana-
lysing CNEs located in the vicinity of heart-specific
genes.
We obtained 160 heart-specific genes (see Methods).

The loci of 154 of these genes were determined; the
other 6 genes were located in random fragments of the
genome. The 154 loci were randomly divided into 75
loci for training, 38 loci for validation, and 39 loci of
testing. We assembled the three mixed sets (training,
validation, and testing) from the human-mouse con-
served non-coding elements (CNEs). Initially, the mixed

a 

b 

c 

Figure 2 Performances of CrmMiner and CisModule on
controlled data sets. The performance is measured in terms of the
true positive count, the false positive count, and the precision
(Equation 9). A set name indicates the number of folds of
background sequences mixed with the training and validation
hypersensitive sites (HSSs). For instance, the training mixed set of
“x10” included 740 HSSs located in the vicinity of 75 genes specific
to the human CD4+ T cells. In addition to the 740 HSSs, this training
mixed set contained 750 (10 × 75) background sequences. All
testing mixed sets consisted of 443 HSSs i.e. they were not mixed
with background sequences. All testing control sets were composed
of 1125 random genomic sequences. The exact number of CRMs
among the HSSs is unknown; however, HSSs are enriched with
CRMs.
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sets included CNEs located between 10 kbp upstream
and 10 kbp downstream of transcription start sites
(TSSs). We label this region, 10TSS10. Then, we
assembled additional eight sets by expanding the initial
mixed sets to include the closest n CNEs to TSSs, if
they were not already included. We assigned n to 0
(CNEs in the 10TSS10 regions only), 10, 20, 30, 40, 60,
80, 100, and ∞ (all). About 75% (116/154) of the loci
included 30 or less CNEs. Therefore, when n = 30, the
mixed sets included all CNEs of at least 75% of the loci.
The control sets had five times as many sequences as
their mixed sets. Both the mixed and control sets have
similar distribution of sequence lengths. Table 1 gives
the details of the nine data sets.
CrmMiner was trained on the training sets. For each

of the nine sets, we trained CrmMiner and optimized
the parameters on the training and the validation sets
(we used 288 parameter combinations instead of the
1080 combinations mentioned in the Methods section).
The enrichment of the predicted CRMs with CNEs, E-
valueh, was calculated. The Fisher’s exact test was used
to obtain a P-value to determine the significance of the
enrichment. We selected the parameters that result in
the most significant P-value on the validation set. Both
of the training and validation P-values were required to
be less than 1.7e−4(0.05/288), due to the Bonferroni cor-
rection. We evaluated CrmMiner, with the best para-
meters, on the testing sets. Interestingly, CrmMiner
succeeded in the nine tests. CrmMiner predictions
(additional file 2) were significantly more enriched (3.5-
11.2 fold) with CNEs than control sequences (Table 2).
We previously developed a supervised-learning method
to define the heart regulatory code from 77 known
heart enhancers. We used this code to mine the
sequence of the human genome and predicted about

42000 putative heart enhancers (PHEs) [9]. To compare
CrmMiner predictions to the PHEs, we started with
scrutinizing the predictions obtained from the first set
(n = 0). This set consisted of 1480 CNEs, 91 of which
overlapped with the PHEs. CrmMiner predicted 214
CRMs, 50 of which overlapped with the PHEs (expected
overlap: 13.1). Our predicted CRMs were 3.8-fold
enriched with the PHEs (Z-score = 11.4, P-value = 0).
The expected overlap between the two sets was calcu-
lated by sampling 10000 random sets from the 1480
CNEs. Each of the 10000 random sets included 214
CNEs. We averaged the results of the 10000 trails, and
obtained the P-value by converting the Z-score, which is
based on the two-sets overlap distribution of the 10000
trials. As we expanded the mixed set, the predicted
CRMs continued to significantly overlap with the PHEs
(Table 3) up to 7.5 folds. These results show the agree-
ment between the two methods, even though CrmMiner
was not trained on any known heart enhancers.
Finally, we searched for further evidence to show that

several of CrmMiner predictions are functional CRMs in
the human heart. We previously collected a set of 95
experimentally validated human heart enhancers [9]. We
assessed CrmMiner sensitivity (Equation 7) to detect
known heart enhancers present in the mixed set. As a
starting point, CrmMiner sensitivity was evaluated on
the first set, n = 0. This set consisted of 7400 control
sequences and 1480 CNEs, which are located in the
10TSS10 regions. The mixed set included 12 known
heart enhancers. CrmMiner predicted 214 CRMs includ-
ing 10 out of the 12 heart enhancers (83% sensitivity).
One may argue that these results are due to the abun-
dance of enhancers in the 10TSS10 regions. Hence,
these results might be obtained by selecting any 214

Table 1 Mining for heart-specific CRMs - input data

n CNEs/Locus CNEs Controls

0 9.6 1480 7400

10 10.8 1667 8335

20 13.1 2019 10095

30 15.3 2358 11790

40 17.5 2692 13460

60 20.9 3219 16095

80 23.7 3644 18220

100 25.7 3959 19795

All 31.9 4911 24555

The mixed sets consisted of CNEs found in the vicinity of 154 heart-specific
genes. Nine sets were constructed. All mixed sets contained CNEs within 10
kbp upstream and 10 kbp downstream of the transcription start sites (TSSs).
We expanded the mixed sets by including n CNEs that are closest to the TSSs,
if they were not already included, n = 0, 10, 20, 30, 40, 60, 80, 100, ∞. A
control set included five times as many sequences as its mixed set
counterpart. We controlled for sequence length while assembling the control
sets.

Table 2 CrmMiner’s performance on the 154 heart-
specific genes

n CNEs Controls PCRMs Controls(+) E-valueh P-value

0 375 1875 41 30 6.8 1.4e−15

10 492 2460 46 55 4.2 4.3e−12

20 537 2685 19 8 11.2 7.3e−10

30 680 3400 50 47 5.3 1.3e−15

40 602 3010 41 45 4.6 1.3e−11

60 768 3840 40 58 3.5 8.4e−9

80 656 3280 38 43 4.5 1.4e−10

100 1107 5535 32 32 5.0 6.5e−10

All 892 4460 14 15 4.7 7.6e−5

CrmMiner was evaluated on nine testing sets that were composed of CNEs
found in 39 heart-specific gene loci. PCRMs stand for putative CRMs. Controls
(+) stand for CRMs predicted among the control sequences. All mixed sets
included CNEs in the region between -10 kbp and +10 kbp. Mixed sets were
expanded as before. The number of CNEs in the mixed set did not always
increase when the number of the closest CNEs, n, was increased because we
randomly partitioned the loci into three sets every time n was increased. The
Fisher’s exact test was used to calculate the P-values.
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CNEs of the 1480 input CNEs. To disprove this assump-
tion, we calculated the expected overlap between the 12
heart enhancers and any 214 CNEs from the mixed sets,
as before. We found that 1.7 enhancers are expected to
overlap with a set of 214 CNEs. CrmMiner predictions
overlapped with heart enhancers about six-fold higher
than the expected overlap (Z-score = 6.7, P-value = 1.1e
−11). We obtained the P-value by converting the Z-score.
Further, when the number of sequences in the mixed set
was increased, CrmMiner remained sensitive to heart
enhancers (Table 4). For example, CrmMiner detected
11 out of 15 enhancers present in the seventh set (n =
80, sensitivity = 73%, expected overlap = 1, P-value = 0).
This set included 3644 CNEs and 18220 control
sequences. These results demonstrate CrmMiner ability
to locate functional heart enhancers.
Mining for CRMs specific to the human CD4+ T cells
We took advantage of experimental data to evaluate
CrmMiner performance on the human CD4+ T cells.
Recently, DNase I hypersensitive sites (HSSs) in the
same cell type have been determined experimentally [2].
HSSs are indicators of regulatory elements. We used
CrmMiner to predict CRMs modulating 160 genes spe-
cific to the human CD4+ T cells. We started with CNEs
located in the 10TSS10 regions. Then we expanded this
set by adding the closest n CENs to TSSs. CrmMiner
predictions were statistically significant up to n = 20
(testing E-valueh = 2.58, P-value = 0.0026, Fisher’s exact
test). These predictions are provided as additional file 2
(we used 288 parameter combinations instead of the
1080 combinations mentioned in the Methods section).

The initial set (n = 0) consisted of 1531 CNEs and
7655 control sequences. Predictions made at the train-
ing, validation, and testing stages were combined. In
total, CrmMiner predicted 148 CRMs from the mixed
set. In addition, 134 control sequences were predicted
as positives. Since the exact number of CRMs among
HSSs is unknown, the sensitivity cannot be determined.
We used the precision and the specificity measures to
evaluate the performance of CrmMiner. The 148 poten-
tial CRMs overlapped with 121 HSSs (Precision = 82%,
i.e 8 in every 10 predictions are true positives). In com-
parison to 10000 random simulations, we found about
60 of 148 input CNEs are expected to overlap with
HSSs. Therefore, the average precision of the random
simulations is 41%. CrmMiner precision is two-fold
higher than the average precision of the random simula-
tions. When the 134 positive controls were examined,
53 of them were found to overlap with HSSs (Precision
= 40%). The average precision obtained from the 10000
random simulations on the control set was 4.5%.
CrmMiner precision on the control set was about nine-
fold higher than the average precision of the random
simulations. CrmMiner achieved specificity of 99%.
Recall that the control sequences are random genomic
sequences that are similar to the tissue-specific CNEs in
length only. Therefore, the precision on the control set
and the specificity give estimates of the precision and
the specificity of CrmMiner on the human genome.
The results on the enlarged set, n = 10, were similar

(data not shown). The following are the results on the
largest set, n = 20. The precision on the mixed set was
67% (average precision of the 10000 random simula-
tions: 31%). The precision on the control set was 33%
(average precision of the 10000 random simulations:

Table 3 Comparison between CrmMiner predictions and
putative heart enhancers (PHEs)

n CNEs PCRMs Expected Enrichment (fold) Z-scores

0 91 50 13.1 3.8 11.4

10 96 56 13.9 4.0 12.6

20 108 58 6.4 7.5 21.7

30 118 69 9.9 7.0 20.1

40 129 64 11.1 5.8 17.1

60 150 63 10.4 6.1 17.3

80 164 79 10.6 7.5 22.2

100 177 48 6.7 7.2 16.7

All 205 28 5.9 4.7 9.4

The PHEs were obtained by a supervised-learning method [9]. Columns CNEs
and PCRMs display the number of overlaps between the CNEs and PHEs, and
the PCRMs (putative CRMs) and PHEs, respectively. The expected number of
overlaps between the CNEs and the PHEs was calculated experimentally in
10000 trials. In each trial, a set was randomly selected from the input CNEs.
These CNEs are located in the 154 heart-specific gene loci and comprise the
mixed sets that CrmMiner analysed. The number of CNEs in a random set is
the same as the number of the PCRMs. Then, the overlaps between a random
set and the PHEs were counted. The expected number is the average overlap
in the 10000 trials. The Z-scores were based on the distribution of the
overlaps in the 10000 trials. The P-values associated with the nine Z-scores
are 0.

Table 4 Comparison between predicted CRMs and
experimentally validated heart enhancers

n CNEs PCRMs Sensitivity Expected P-value

0 12 10 83% 1.7 1.1e−11

10 13 9 69% 1.9 8.0e−09

20 15 10 67% 0.9 0.0

30 15 11 73% 1.3 0.0

40 15 8 53% 1.3 1.9e−10

60 15 9 60% 1.0 4.4e−16

80 15 11 73% 1.0 0.0

100 16 9 56% 0.6 0.0

All 16 5 31% 0.5 1.0e−11

We calculated the overlaps of the CNEs found in the 154 heart-specific loci
and the putative CRMs (PCRMs) with 95 experimentally validated heart
enhancers [9]. Columns CNEs and PCRMs display the number of overlaps
between the CNEs and heart enhancers, and the PCRMs and heart enhancer,
respectively. The expected number is the average overlap between a random
CNE set and the heart enhancers. We selected 10000 random sets as before.
The P-values were based on the Z-scores calculated from the distribution of
the overlaps in the 10000 trials.
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5%). CrmMiner specificity was 99%. These results show
that many of CrmMiner predictions are functional regu-
latory elements specific to the human CD4+ T cells.
Mining for CRMs specific to 72 human tissues and cell types
Gene expression data of 72 non-cancerous human tis-
sues are currently available [36]. CrmMiner was applied
to the top 160 tissue-specific genes, divided into training
(50%), validation (25%), and testing (25%) sets. For each
tissue, we assembled the mixed sets from the CNEs
located in the vicinity of the 160 genes. The control sets
were assembled as before (see Methods). Initially, we
applied CrmMiner to mixed sets that consisted of the
CNEs located in the 10TSS10 regions (n = 0). Then the
mixed sets were expanded by increasing n to 10, 20, 40
and 80. Because experimentally validated CRMs are not
available for the majority of tissues, we used the E-
valueh to evaluate the performance. Recall that the E-
valueh measures the enrichment of CrmMiner predic-
tions with CNEs in contrast to control sequences.
CrmMiner performance on a testing set was considered
successful if the E-valueh is greater than 1 and the
enrichment with CNEs is significant (P-value < 0.05,
Fisher’s exact test). We evaluated CrmMiner on the 72
testing sets. CrmMiner predictions for the 72 tissues/
cell types are provided as additional file 3. CrmMiner
succeeded in 85% (61/72) of the initial sets (n = 0).
When n was increased to 10, 20, 40, and 80, CrmMiner
succeeded in 82% (59/72), 79% (57/72), 60% (41/72),
and 36% (26/72) of the tissues, respectively. Table 5 lists
the performance of CrmMiner on the testing sets (n =
20) of the 57 tissues.
Next, CrmMiner predictions, obtained from one of the
expanded sets (n = 20), are analysed. We assessed
whether CrmMiner located potential CRMs in all of the
tissue-specific gene loci. CrmMiner predicted CRMs
located in 57% of the loci. Three reasons can account
for loci without putative CRMs:
• We searched only for conserved CRMs; however,

CRMs may be weakly or not conserved [5,40],
• The missing predictions might be located outside the

search range, and
• The missing CRMs may include unknown TFBSs.
On average, CrmMiner predicted 2.4 CRMs per gene.

This is a known phenomenon. Genes regulated by more
than one CRM were reported in the literature [41,42].
The average length of a potential CRM is 422 bp which
is almost twice as long as the average CNE. Recall that
we controlled for sequence length while assembling the
control set.
The CNEs were distributed as follows: 11.7% were in

the promoters (within 2 kpb upstream of the TSSs),
45.2% were in intronic regions, and 43.1% were inter-
genic, whereas 28.6%, 29.6%, and 41.8% of the putative
CRMs were located in promoter, intronic, and

intergenic regions. CrmMiner predictions were 2.4-fold
enriched with CNEs located in the promoter regions (P-
value = 0, Fisher’s exact test). Promoter regions are
known to include CRMs [41-44]. Therefore, these
results suggest that these predictions are likely func-
tional tissue-specific CRMs. In addition, CrmMiner pre-
dictions included distal ones. Specifically, 20.8% of the
predicted CRMs were more than 50 kbp away from the
TSSs. Consequently, the putative CRMs and the regula-
tory signatures can assist in understanding the tissue-
specific gene regulation.
Mining for CRMs specific to the developing human heart
CrmMiner can be applied to a group of functionally-
related genes for which no expression data are available.
We used CrmMiner to predict CRMs that can potentially
regulate genes related to the development of the human
heart. The availability of such putative CRMs should
extend our understanding of the genetic basis of congeni-
tal heart diseases. We predicted CRMs located in the vici-
nity of 93 genes related to the human heart development
(GO:0007507). We obtained the functional annotation
through the Cardiovascular Gene Ontology Annotation
Initiative (http://www.ebi.ac.uk/GOA/CVI/). The 93 genes
were divided into 46 for training, 23 for validation, and 24
genes for testing. CrmMiner was initially applied to the
CNEs located in the 10TSS10 regions (n = 0). Then, the
search scope was extended to include the n closest CNEs
to the TSSs, if these CNEs were not already included. We
assigned n to 10, 20, 40, and 80. The control sets were
similar to their corresponding mixed sets in sequence
length distribution (see Methods). The ratio of the size of
the mixed set to that of the control set is 1:5.
We trained CrmMiner on the training sets, and opti-

mized the parameters on the validation sets. Finally,
CrmMiner was tested on the testing sets. Regarding the
testing sets, the predictions of CrmMiner were signifi-
cantly more enriched with CNEs than with control
sequences. The highest testing E-valueh was obtained
when n was 20 (E-valueh = 3.6, P-value = 1.1e−11, Fish-
er’s exact test). Based on the analysis of this set (n =
20), the predicted regulatory signature consisted of 132
motif pairs (Table 6). The maximum number of nucleo-
tides separating two motifs is 100 nucleotides (deter-
mined during the parameter optimization stage). These
motif pairs were selected based on their enrichment
values (E-valuep, Equation 1) during the training stage.
To predict whether a sequence includes a CRM or not,
the sequence is scored according to the predicted regu-
latory signature. Specifically, a sequence score is the
sum of the E-valuep of the signature pairs present in the
sequence. Those pairs must meet the distance constraint
(100 bp). Finally, a sequence that has a score of 23.8
(determined during the training and the parameter-opti-
mization stages) or above was predicted to be a CRM.
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Table 5 CrmMiner performance on 57 human tissues and cell types

Tissue E-valueh P-value Pairs The Three Most Enriched Pairs

subthalamic nucleus 6.72 2.1e −10 78 E2F1-TFIII E2F1DP2-ZBED6 GAF-NFMUE1

prefrontal cortex 6.60 5.7e −15 58 SP1-PITX3 PAX4-BEN EFC-E2A

cingulate cortex 6.44 4.3e −13 37 MAZR-NFAT2 PAX9-IK3 HEB-AHRARNT

heart 5.52 4.4e −20 89 PAX9-PXRRXR RSRFC4-E47 CETS1P54-NRSE

caudate nucleus 5.27 5.6e −14 20 SP1SP3-SP1 SP1-ETF MZF1-TAXCREB

prostate 5.03 4.2e −8 79 E2F-UF1H3BETA NFY-AP2GAMMA MSX3-SP3

amygdala 4.61 7.3e −10 34 ZFP281-RFX AHR-CKROX ETF-SP4

BM-CD71+ early erythroid 4.56 1.5e −8 90 PAX4-NRF1 NFY-KROX MOVOB-NFAT2

adrenal gland 4.40 5.7e −7 71 STAT6-ZF5 SP1-GATA3 NKX11-SP4

fetal brain 4.26 5.2e −15 90 VDR-E2F1 OBOX2-PPARA BEN-ETF

bone marrow 4.16 1.8e −7 68 CDXA-SP1 NFKB-E2F1 AR-PR

BM CD34+ 4.15 6.0e −9 130 NRSE-E2F1 E2F1-SP1 E2F-SP1

fetal thyroid 4.13 5.3e −8 108 E2F-SP4 NFY-ZF5 STAT3-MEF2

bronchial epithelial cells 4.09 7.4e −7 85 HOXD3-CEBP KLF15-CEBP NKX25-HEN1

occipital lobe 4.09 6.4e −4 38 EGR2-DEAF1 AHR-CACCCBINDINGFACTOR E2F1-SREBP

whole brain 4.05 3.5e −12 21 MAZ-ETF SP1SP3-GKLF MZF1-CTCF

PB-BDCA4+ dentritic cells 4.04 2.3e −9 98 ATF1-ETF AP1-PEBP AP2-PPARA 1

placenta 3.82 1.6e −11 96 COMP1-GKLF GKLF-NFY CTCF-AP1

hypothalamus 3.82 5.3e −5 80 GADP-ERR1 AP1-FOXO1 OCT-PAX5

liver 3.73 5.7e −9 97 COUP-SZF11 COUPTF-SRF GATA4-GFI1

thyroid 3.65 8.6e −8 93 MTATA-OLF1 MUSCLE-CHX10 LBX2-SP4

thymus 3.65 5.0e −7 93 IK1-KLF15 MINI19-ALPHACP1 IK1-GKLF

spinal cord 3.64 1.5e −6 68 IRF-LRF REX1-GLI3 ALPHACP1-PPARA

uterus 3.58 2.9e −8 85 ELK1-UF1H3BETA TAL1-E2F1 AP2ALPHA-PITX1

pons 3.57 6.1e −5 108 IPF1-CART1 NMYC-CNOT3 PAX4-MYOGNF1

trachea 3.48 1.1e −9 110 TRF1-TFIII DEC-CP2 COUPTF-STAT4

lung 3.47 3.0e −7 36 AP2-TR4 MAZ-CBF SP1SP3-AP1

tonsil 3.42 0.0019 60 HEN1-NFKAPPAB65 PAX4-SMAD E2F6-NRSF

PB-CD19+ Bcells 3.40 9.5e −8 61 ESE1-PAX6 PAX4-TBX5 MZF1-NRF2

721 B lymphoblasts 3.35 1.8e −6 104 SP1SP3-E2F4DP1 STAT4-NRF2 ZIC1-EGR1

testis 3.30 4.8e −4 73 AP2-ATF T3R-HNF4 MYOD-SRF

uterus corpus 3.27 1.3e −8 91 TCF4-POU6F1 CAAT-PITX3 PAX4-XVENT1

tongue 3.24 3.8e −7 72 ZFP281-NFY SP3-PITX3 AP2-IK2

temporal lobe 3.21 3.7e −7 95 TBX5-MTF1 MTATA-HIC1 ERG-ZIC3

PB-CD56+ NKCells 3.12 3.1e −5 53 NFY-SP1 CMYB-STAT6 SRF-SP4

smooth muscle 3.11 2.9e −6 87 KROX-MEF2 SP1-XBP1 HIF1-IK

pituitary gland 3.06 2.2e −6 96 MTATA-MAZR ZF5-WT1 AHR-ETF

adrenal cortex 3.04 1.5e −5 111 MYCMAX-PAX4 SP2-E2F1 VJUN-ZNF219

BM-CD105+ endothelial 2.95 0.0049 79 E2F-SMAD4 AP4-PAX4 P53-NFY

lymph node 2.94 2.6e −5 131 CETS1P54-GABP HIF1-NRSE PEA3-MTF1

adipocyte 2.91 1.3e −6 79 AP2-NFY E2F1-LXR CNOT3-IK2

skeletal muscle 2.89 7.6e −7 80 P53-CACD MEIS2-STAT1 MYOD-XVENT1

thalamus 2.86 0.0065 42 PLAG1-PAX3 AP1-CMAF MZF1-GATA2

pancreatic islets 2.79 6.7e −8 97 CDXA-PROP1 MEIS1-ZBED6 NFKB-E2F

skin 2.79 7.8e −5 73 CACBINDINGPROTEIN-XVENT1 NFKB-ZTA ER-SREBP1

medulla oblongata 2.78 7.9e −7 103 ZNF515-NKX25 CETS1P54-NKX26 P53-CMYB

whole blood 2.77 5.8e −5 53 PU1-SP2 GFI1-CTCF AP2-GR

cardiac myocytes 2.69 9.1e −4 120 EGR-MECP2 SRY-CNOT3 E2F-EGR3

fetal lung 2.62 1.7e −4 55 HIF1-LMAF CTCF-MECP2 AML2-CP2

PB-CD4+ Tcells 2.58 0.0026 121 NGFIC-EGR3 ZFP206-CBF AHRARNT- COUP

cerebellum peduncles 2.52 1.2e −4 74 ZNF219-NFY KLF15-OBOX2 NKX11-ZNF219
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The proposed signature included several TFs that reg-
ulate genes related to heart development. Examples of
such TFs are: E2F [45], MEF2 [46], MYOD/bHLH [47],
SRF [48], SP1, SMAD4 [49], SP4 [50], WT1 [51], AP1
[52], and AP2 [53]. This evidence indicates that our
putative CRMs are likely to regulate genes modulating
heart development. In addition, these results show that
CrmMiner can provide useful biological insight in the
absence of gene expression data.

Discussion
In this section we compare CrmMiner to a closely
related work and analyze the structure of the predicted
regulatory signatures. In addition, the impact of the dis-
tance between the two co-occurring motifs on the per-
formance is analyzed. Then, we illustrate the
applicability of CrmMiner to all sequences, regardless of
their conservation degree, and to experimental data.
Finally, additional results are presented to show the con-
sistency in CrmMiner performance on enlarged control
sets.

Comparison to related work
CRM-PI [30] is the work most closely related to
CrmMiner. Both tools are based on the same biological
principles. Specifically, they use enriched motif pairs to
mine for CRMs in the vicinity of related genes.
Although these two methods are similar in principle,
they differ in the following aspects:
• CRM-PI identifies motif pairs in the “conserved

regions” of the tissue-specific promoters, whereas Crm-
Miner uses sequences, which are in the vicinity of 50%
of the tissue-specific genes, to identify enriched motif
pairs. These sequences are located in or outside the pro-
moter regions.
• During training, CrmMiner selects a subset of the

enriched pairs simultaneously while it is selecting the
candidate CRMs. These two steps are independent in
the CRM-PI method.
• All “important” pairs contribute to a sequence

potential energy, i.e. a sequence score that the CRM-PI

calculates. However, a sequence score calculated by
CrmMiner depends on a subset of the enriched pairs.
• In the CRM-PI method, the weight associated with a

pair is a function of the enrichment and the distance
between the two co-occurring motifs. The shorter the
distance between the two motifs is, the higher the
weight. We apply a 0-1 weighting scheme to the
selected enriched pairs. If the distance between the two
motifs is less than a threshold, the weight is 1 × E-
valuep; otherwise, the weight is zero. Our weighting
scheme is inspired by two biological phenomena. First,
it was observed that the interaction between two clo-
sely-located TFs is preserved when the distance between
their binding sites is altered by up to 100 bp [54]. In
other words, the two TFs still interact as long as their
binding sites were separated by a maximum of 100 bp.
By interaction, we mean that the two TFs produce their
effects in synergy with each other. Second, the spacing
between TFBSs in CRMs is flexible. It was observed that
a complex between two TFs still forms if the distance
(bp) between their binding sites is increased by an “inte-
gral multiple” of 10 bp [54]. These two phenomena led
us to adapt the flexible spacing scheme instead of a spa-
cing system that favors TFBSs that are located close to
each other.
• CrmMiner requires three data sets. In comparison,

CRM-PI requires one data set.
• We apply the optimal Bayesian classifier to deter-

mine a threshold above which a sequence is likely to be
a CRM. The classifier is trained on sequences that
include at least one of the selected enriched pairs. These
sequences are collected from the mixed and the control
sets. The threshold used in CRM-PI was determined
experimentally on 10000 control sequences. The thresh-
old is the potential energy below which 5% of the con-
trol sequences are considered putative CRMs.

Structure of the tissue-specific regulatory signature
To understand the composition of the regulatory signa-
tures, we analyzed the 57 predicted signatures (n = 20).
We found that 22% of the TFs were components of

Table 5 CrmMiner performance on 57 human tissues and cell types (Continued)

olfactory bulb 2.31 4.3e −4 70 NFY-SP1 NFKAPPAB-CTCF CP2-GLI

cerebellum 2.30 0.0034 58 AP2-LBX2 COUPTF-E2F E2F-SREBP

kidney 2.29 4.08e −5 87 GCM-ARP1 E2A-RORBETA NFY-TFIII

BM-CD33+ myeloid 1.80 0.0489 92 SRF-HMGIY PR-STAT6 T3R-AP1

parietal lobe 1.78 0.0443 82 AP2ALPHA-E2F1 HIF1-GABP BEN-MYF

appendix 1.75 0.0285 88 AP1-LXR PAX2-PAX4 CNOT3-CREB

We trained, validated and tested CrmMiner on 72 human tissues and cell types [36]. The mixed sets consisted of CNEs in the vicinity of 160 tissue-specific genes.
Those CNEs were located within 10 kbp up or downstream of the TSSs, or were among the closest 20 CNEs to the TSSs. Here, we report CrmMiner performance
on the testing sets. The number of motif pairs comprising the tissue-specific signatures are listed under the Pairs column. The P-values were obtained by one-
tailed Fisher’s exact test.
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more than 25% of the signatures, and 78% were parts of
less than 25% of the signatures. For example, ubiqui-
tously expressed TFs such as SP1 and AP2 were parts of

95% (54/57) and 88% (50/57) of the predicted signa-
tures. Tissue-specific TFs such as GATA3 and OTX1
were components of 25% (14/57) and 9% (5/57) of the

Table 6 The predicted regulatory signature of the developing human heart

Pair E-valuep Pair E-valuep Pair E-valuep

ZF5 & SZF11 12.5 E2F & HIC1 12.5 IRF1 & HIC1 12.5

SOX2 & ZFX 11.2 GATA1 & ZFX 12.5 TGIF & COREBINDINGFACTOR 11.2

AP2 & GATA 11.2 LTF & E2F1 12.5 FOXJ2 & CREL 11.2

MSX3 & CKROX 11.2 AIRE & LMX1 11.2 EGR & NFY 11.2

DAX1 & LXR 11.2 E2F & MYOD 12.5 MEF2 & AP4 11.2

CETS1P54 & DEAF1 11.2 FPM315 & LMO2COM 12.0 ZFP206 & LUN1 11.2

MAZ & BARX2 11.2 BACH2 & COUP 11.2 ZF5 & CAAT 11.2

ATF1 & ZFX 11.2 ALPHACP1 & RNF96 11.2 LHX8 & IK 11.2

SP1SP3 & RFX1 11.0 SP1 & MSX1 11.2 PEA3 & SMAD4 11.0

MOVOB & ELK1 11.0 ZNF219 & GATA2 10.8 ETS & GABP 10.7

STAT1 & RNF96 10.0 PXRRXR & SP1 10.0 XPF1 & EGR1 10.0

POU6F1 & AP2GAMMA 10.0 GATA6 & KROX 10.0 AP2ALPHA & LMX1 10.0

RXRG & RNF96 10.0 GATA1 & AP2 10.0 NFY & CNOT3 10.0

ZIC2 & CMYB 10.0 HIC1 & FOX 10.0 FPM315 & ATF 10.0

EBF & CNOT3 10.0 LMX1 & NKX12 10.0 LEF1 & WT1 10.0

LIM1 & LHX61 10.0 SP4 & GATA 10.0 NFKB & PAX4 10.0

AR & PAX4 10.0 AP2 & AHRARNT 10.0 CNOT3 & LUN1 10.0

ZNF515 & BEN 10.0 NF1 & CAAT 10.0 CNOT3 & ARNT 10.0

AREB6 & RNF96 10.0 AP2ALPHA & NMYC 10.0 NFKB & NGFIC 10.0

MAZR & LMO2COM 10.0 TAL1BETAITF2 & ZIC1 10.0 MYOGNF1 & PAX5 10.0

HEB & EN2 10.0 MINI19 & LIM1 10.0 CPHX & VDR 10.0

SPZ1 & GATA3 10.0 EBF & E2F1 10.0 MEF2 & E2A 10.0

GLI3 & FOXO4 10.0 NFKB & MEIS1AHOXA9 10.0 MSX2 & UF1H3BETA 10.0

ETF & TBX22 10.0 ZBED6 & MEF2 10.0 CNOT3 & PXRRXR 10.0

KROX & NFY 10.0 SP2 & GATA2 10.0 MYOD & MEF2 10.0

ROAZ & E2F1 10.0 GATA6 & UF1H3BETA 10.0 SP1 & GATA 10.0

AML2 & KLF15 10.0 ZF5 & TTF1 10.0 MZF1 & MIF1 10.0

MECP2 & GC 10.0 NFY & WT1 9.1 AREB6 & WT1 9.3

ZIC1 & E2F1 9.3 HIC1 & FOX 9.1 ZNF219 & GTF2IRD1 9.1

EGR & GATA2 9.1 CNOT3 & PU1 9.2 MINI19 & AREB6 9.1

GATA & SP1 9.0 MUSCLE & CREBATF 9.0 STAT3 & E2F1 9.0

HIC1 & HFH4 9.0 MUSCLE & MEF2 9.0 TBX15 & SP3 9.0

CTCF & CPHX 9.0 FOXO3 & PAX5 9.0 PAX9 & PAX4 8.7

NFY & SP1 8.7 EGR & GATA2 8.6 SPZ1 & ZF5 8.4

LBP1 & POLY 8.3 PEA3 & MINI19 8.3 CNOT3 & AHRARNT 8.3

SP1 & SOX10 8.3 BARHL1 & CKROX 8.3 AP2 & ATF1 8.3

AP2 & MEF2 8.3 EGR & DEAF1 8.2 COUPTF & ZF5 8.2

SP1 & NFY 8.1 AMEF2 & TBX15 8.0 TAL1BETAITF2 & SP2 8.0

PXRRXR & HIC1 8.0 AP2 & E2F1 8.0 TGIF & MRG2 8.0

RXRG & ZBED6 8.0 E2A & SRF 8.0 SP3 & ELK1 8.0

CEBP & CEBP 8.0 TATA & ERR1 8.0 E2F1 & SP1 8.0

AML2 & GC 8.0 XPF1 & SREBP 8.0 EGR1 & SMAD 8.0

ZIC1 & PPARG 8.0 DBP & E47 8.0 KROX & HMEF2 8.0

CTCF & GATA3 8.0 EAR2 & ETF 8.0 SP1 & PXRRXR 8.0

CrmMiner predicted 132 motif pairs that comprise the regulatory signature of the developing human heart. The score of a sequence is the sum of the
enrichment values (E-valuep, Equation 1) of any of the 132 pairs present in the sequence provided that a pair of motifs meets the distance requirement (≤ 100
bp). A sequence that has a score equal to or above 23.8 is predicted to be a CRM specific to the developing heart. The 23.8 is the threshold that was determined
at the training and the parameter-optimization stages. The unit of E-valuep is fold.
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signatures. These results suggest the following: (i) the
majority of TFs comprising a regulatory signature are
tissue specific, and (ii) a tissue-specific regulatory signa-
ture is a combination of ubiquitously expressed TFs and
tissue-specific TFs. Such results confirm a similar
recently published observation [29]. In addition, the
interaction between tissue-specific and ubiquitously
expressed TFs in a CRM of the Secretin gene has been
previously reported [55].

Distance between the two co-occurring motifs
The parameter that controls the maximum distance
between two co-occurring motifs has a biological signifi-
cance. To gain the biological meaning of the parameter,
we analyzed the impact of this parameter on CrmMiner
performance on 57 tissues. The mixed sets of the 57 tis-
sues consisted of the CNEs that are located in the
10TSS10 regions or are among the closest 20 CNEs to the
TSSs. These tissues were chosen because there was statis-
tical evidence indicating that CrmMiner succeeded in pre-
dicting their tissue-specific CRMs and the regulatory
signatures. The performance of CrmMiner was the best
on 89% (51/57) of the tissues when the maximum distance
was constrained by a threshold. These results are sup-
ported by the phenomenon mentioned above, where two
TFs function in synergy as long as the distance between
their binding sites is less than a threshold.

Input sequences
CrmMiner can mine for CRMs in conserved elements
based on any conservation scheme. In addition, the user
may choose to apply CrmMiner to any sequences
regardless of their conservation degree. To illustrate,
regions in the vicinity of related genes should be divided
into shorter sequences of length, for instance, 400-500
bp. CrmMiner can be applied in an incremental manner.
A good starting point is to apply CrmMiner to the non-
coding sequences within 10 kbp up or downstream of
the TSSs. These regions can then be expanded by 5 kbp
in both directions until the signal is lost. As a proof of
concept, we applied CrmMiner to the 10TSS10 regions
of 160 genes specific to human CD4+ T cells. The non-
coding sequences of these regions were divided into
non-overlapping sequences of 500 bp in length. We
trained, optimized the parameters, and tested on the
training, validation, and testing sets. The predicted
CRMs of the testing set were significantly more
enriched with sequences from the mixed set than with
controls (E-valueh = 3, P-value = 1.3e−4, Fisher’s exact
test). CrmMiner processed the mixed set which included
4540 sequences and predicted 148 CRMs, 93 of them
overlapped with HSSs resulting in a precision of 63%, i.
e. 63 of every 100 predictions overlapped with HSSs. In

comparison, the average precision of 10000 random
simulations was 28%.
Further, we have demonstrated that CrmMiner can

predict CRMs by processing tissue-specific HSSs. Recall
that not all HSSs include CRMs; they are enriched with
CRMs. These results demonstrate the usefulness of
CrmMiner to analyse experimental data such as HSSs or
histone marks.

Experimental and predicted TFBSs
Currently, new technology such as the ChIP-seq makes
it possible to obtain tissue-specific transcription factor
binding sites. In the future, we will use experimentally
determined TFBSs or a mixture of experimental and
predicted TFBSs to detect tissue-specific CRMs.

Size of the control set
CrmMiner requires a set that includes CRMs mixed
with background sequences and another set of control
sequences. In this study, the controls were sampled
from the non-coding regions of the human genome.
The two sets were similar in their sequence-length dis-
tributions. CrmMiner identifies the enriched motif pairs
and the putative CRMs by contrasting the two sets. The
control set needs to be large enough to accurately com-
pute (i) the expected number a motif pair is found in
the genome and (ii) the threshold that separates CRMs
from background sequences. Initially, the control set
contained five times as many sequences as the mixed
set. We applied CrmMiner to these control sets and
mixed sets that consisted of CNEs located in the
10TSS10 regions or were among the 20 closest CNEs to
the TSSs. CrmMiner was able to predict the regulatory
signatures of 57 tissues (median E-value = 3.2 fold).
When the ratio of CNEs to controls was increased to
1:10 and 1:15, CrmMiner succeeded in predicting the
regulatory signatures of 55 (median E-value = 3.5 fold)
and 55 (median E-value = 3.7 fold) tissues, respectively.
These results show the consistent performance of
CrmMiner on increased numbers of control sequences.

Conclusions
In sum, we designed and developed a new system called
CrmMiner to predict CRMs modulating related genes.
CrmMiner contrasts the mixed sequences to random
genomic sequences to identify co-occurring motif pairs
that are enriched in the mixed set. A subset of the
enriched pairs is used to predict tissue-specific CRMs
and the regulatory signature. The following lines of evi-
dence support the validity of our method:
• Under controlled settings, CrmMiner was able to

find CRMs specific to the CD4+ T cells in noisy data
sets up to a 1:25 signal to noise ratio.
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• Although CrmMiner does not rely on experimentally
determined CRMs, its potential heart-specific CRMs
overlapped significantly with heart enhancers predicted
by a supervised-learning method. The model obtained
by the supervised-learning technique required known
heart enhancers for training.
• Several of the predicted heart CRMs overlapped with

experimentally validated heart enhancers.
• CrmMiner precision and specificity in detecting

CRMs specific to the human CD4+ T cells reached up
to 82% and 99%, respectively.
• As a starting point, we searched for CRMs located in

the 10TSS10 regions of co-expressed genes in 72 human
tissues and cell types. Statistical evidence suggests that
CrmMiner succeeded in predicting CRMs specific to 61
human tissues and cell types. When the signal sets were
enlarged to include the closest 20 CNEs to the TSSs,
about 21% of the predicted CRMs were located more
than 50 kbp from their target TSSs.
• CrmMiner was also proven useful in mining for

CRMs in the vicinity of genes related to the develop-
ment of the human heart. Prior published studies sup-
port the validity of the predicted TFs our method links
to transcription regulation of the developing heart.
Therefore, CrmMiner can play an important role in

learning the genomic signature of tissue-specific CRMs.

Availability
The CrmMiner software is included as an additional file
1. The most updated version is available from the
authors upon request.
Project name: CrmMiner
Operating systems: Unix/Linux
Programming language: Java and Perl
Other requirements: Java 1.6 or higher and Perl Sta-

tistics-Lite module
License: The code provided by the authors, National

Center for Biotechnology Information (NCBI), National
Library of Medicine, is a work of the U.S. Government and
is not subject to copyright protection in the United States.

Additional material

Additional file 1: Software. The CrmMiner software.

Additional file 2: Predictions for three tissues. This file contains
CrmMiner predictions for the human adult heart, developing heart, and
the CD4+ T cells. It includes the tissue-specific genes, the predicted
signatures, and the putative CRMs.

Additional file 3: Predictions for all tissues. This file includes
predictions for 72 human tissues and cell types. It includes the tissue-
specific genes, the predicted signatures, and the putative CRMs. This file
also contains predictions for the heart and the CD4+ T cells. We obtained
these predictions by searching a larger set of parameters.

Abbreviations
CRM: cis-regulatory module; TSS: transcription start site; HSS: DNase I
Hypersensitive Site; PHE: putative heart enhancer.
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