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Abstract

rapid discovery of homologous protein sequences.

Background: New computational resources are needed to manage the increasing volume of biological data from
genome sequencing projects. One fundamental challenge is the ability to maintain a complete and current catalog
of protein diversity. We developed a new approach for the identification of protein families that focuses on the

Results: We implemented fully automated and high-throughput procedures to de novo cluster proteins into
families based upon global alignment similarity. Our approach employs an iterative clustering strategy in which
homologs of known families are sifted out of the search for new families. The resulting reduction in computational
complexity enables us to rapidly identify novel protein families found in new genomes and to perform efficient,
automated updates that keep pace with genome sequencing. We refer to protein families identified through this
approach as “Sifting Families,” or SFams. Our analysis of ~10.5 million protein sequences from 2,928 genomes
identified 436,360 SFams, many of which are not represented in other protein family databases. We validated the
quality of SFam clustering through statistical as well as network topology-based analyses.

Conclusions: We describe the rapid identification of SFams and demonstrate how they can be used to annotate
genomes and metagenomes. The SFam database catalogs protein-family quality metrics, multiple sequence
alignments, hidden Markov models, and phylogenetic trees. Our source code and database are publicly available
and will be subject to frequent updates (http://edhar.genomecenter.ucdavis.edu/sifting_families/).

Background
Advances in DNA sequencing technology have expe-
dited the rate at which new genomes are being
sequenced. While this is a tremendous benefit for biol-
ogy, this deluge of genome sequences presents new chal-
lenges for the management, distribution and analysis of
data. New computational approaches are required to ef-
ficiently analyze biological data in a timely fashion.
Genome sequences form the basis for our significantly
improved understanding of the diversity of proteins. As
genomes are sequenced, they reveal both new versions
of known proteins, helping us to construct “families” of
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related but distinct proteins, as well as representatives of
previously unknown protein families [1]. This is espe-
cially the case for microorganisms, as even very closely
related taxa can have significant differences in protein
families [2-4]. Recent genomic [5] and metagenomic [6]
analyses suggest that we have yet to discover a tremen-
dous amount of the protein diversity that exists in
nature.

Protein family databases serve to define our knowledge
of protein diversity. Many protein family databases have
been developed, including COGs [7], UniProtKB/Swiss-
Prot [8], the KEGG [9], HAMAP [10], FIGfams [11],
PFAM [12], TIGRFAM [13], Panther [14], PhyloFacts
[15], ProtClustDB [16] and EggNOG [17]. Protein data-
bases differ in a variety of ways, including how protein
families are defined, the phylogenetic diversity repre-
sented in the database, the method by which protein
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families are identified, and the format in which family
data is encoded. These resources have proven to be crit-
ical components of genome and metagenome annotation
[6,18], evolutionary analysis (e.g., the evolution of bio-
logical functions [19]), and community ecology (e.g., the
functional assortment of communities [20]). Maintaining
an up-to-date catalog of protein family diversity is im-
portant to the development of these research fields.

While these databases have been and remain useful
resources for biological sequence analysis, they are gen-
erally not designed to be able to rapidly discover and ac-
commodate new protein families that may be revealed
through the sequencing of new genomes. For example,
most databases invoke some amount of curation in the
process of identifying families. Curation improves the
precision of data, but results in a bottleneck when pro-
cessing new sequences. In addition, when updating their
catalog of protein family diversity, many databases de
novo cluster all sequences, including those that were
previously identified as being members of a family.
While this helps ensure optimal clustering of sequences
into families, it can present substantial computational
challenges in the face of ever-increasing amounts of
data.

Given the infrastructural challenges that result from
increased rates of sequencing, we reasoned that an alter-
native protein family identification strategy might be
warranted. With the goal of maximizing the coverage of
protein family diversity, we developed a high-throughput
procedure for identifying protein families that focuses
on efficiency, automation, and updatability. Specifically,
we employ a fully automated method to cluster
sequences into families using as much starting data as
possible. This has the benefits of minimizing the cur-
ation bottleneck and producing families that are not
biased towards historical artifacts, such as human-
created labels that interfere with what the data supports.
In-depth curation is left to researchers if a particular
family is deemed relevant in a scientific analysis. Add-
itionally, we increase the ease of updating the database
by decreasing the computational complexity associated
with processing new data. This is accomplished by an it-
erative clustering procedure that uses previously identi-
fied families to sift out homologs of known families in
new data. Only the remaining sequences are then subject
to de novo clustering to identify new families. This
process gives rise to what we call “Sifting Families”, or
SFams for short.

Here, we outline our strategy for creating SFams in an
automated manner given any set of protein sequences.
We also describe a computational pipeline that executes
this strategy and produces a database of 436,360 SFams
based upon sequences from 2,928 genome sequences
from all three domains of life (over 95% of which are
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bacterial). We demonstrate how SFams can be rapidly
updated given new genomic data. We use SFams to an-
notate genomes and metagenomes by classifying
sequences into SFams. We find that SFams cover most
of the diversity in new genomes and recover a greater
number of metagenomic homologs than alternative
HMM-based protein family databases. Our SFam identi-
fication software and database is publically available
for download (http://edhar.genomecenter.ucdavis.edu/
sifting_families/).

Results and discussion

An iterative approach to defining protein families

We developed an easily implemented solution that gen-
erates families from protein sequences that exhibit glo-
bal homology and allows for relatively rapid and regular
updates as new genomes are sequenced (Figure 1). Our
procedure uses the Markov clustering algorithm (MCL)
with pairwise BLASTP percent sequence identity as a
distance measure to group protein sequences into fam-
ilies. MCL is a fast and scalable unsupervised de novo
clustering algorithm [21]. We build a MySQL database
that includes an alignment, a profile-Hidden Markov
Model (HMM), and a phylogenetic tree to describe the
diversity of each family. These resources can be used for
a variety of research problems, including annotating pro-
tein sequences according to similarity to the HMMs and
studying the relationships between protein families.

To update the families with new sequence data (e.g.,
from recently sequenced genomes), we assign each new
protein sequence to an existing family if it has high
enough similarity to the family HMM (see Methods). All
sequences with no significant match in the current data-
base are clustered with MCL to identify novel families,
which we call Sifting Families (i.e., SFams). This process
can be periodically repeated. Our iterative strategy limits
the number of sequences that need to be clustered at
each update, enabling the de novo identification of large
numbers of diverse protein families in a computationally
feasible manner.

Generating the SFam database

We applied our approach to a large collection of pro-
teins from sequenced genomes. First, we initialized our
database by downloading the December 2009 snapshot
of annotated genomes available in the JGI IMG database.
This data set includes 1,741 Bacterial genomes, 77
Archaeal genomes and 76 Eukaryotic genomes. Of the
1,894 genomes in the first iteration of the database, 992
are finished genomes, 898 are draft assemblies and 4 are
permanent drafts. There are 7,165,275 annotated protein
sequences associated with these genomes, which served
as the input to our clustering workflow.
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Figure 1 A Computation Workflow to Rapidly Identify and Update SFams. This workflow illustrates the general steps (boxes) used to
initialize (left) and update (right) the database of SFams (center). Where appropriate, the algorithms used at each step are listed in parenthetical
statemnents as are the e-value (eg., e107'%) and coverage thresholds (e.g., 80%) used to infer homology between a pair of sequences or a
sequence and an HMM. The number of sequences or HMMs considered at various steps is also listed (e.g., N=720). The SFam database was
initialized by identifying 720 de novo clustered families that are found in 50% of the 100 phylogenetically diverse representative Bacterial and
Archaeal genomes that we selected. The similarity between all pairs of protein sequences from these genomes was calculated and used to
cluster proteins into families. Each SFam's sequences were then aligned and used to train Hidden Markov Models (HMMs). These HMMs were
then used to screen for homologs among the ~7 million protein sequences found in the 1,894 genomes we originally downloaded, which
include the 100 representative families. Detected homologs were added to the database of previously identified SFams. All protein sequences in
the database that are not SFam members were then subject to independent de novo clustering and HMM construction. A similar iterative

N=344,921

Generating de novo protein families requires calcula-
tion of the similarity of each pair of proteins, a proced-
ure that grows as a function of the square of the
sequence database size. Performing this calculation on
over 7 million proteins requires significant time and
memory. To reduce the computational complexity of
this pairwise sequence-similarity search, we applied our
iterative approach to sift through genomes and define
protein families. We start with large, well-defined fam-
ilies and sequentially add in the remaining proteins. Be-
cause the vast majority of the available sequence data is

from Bacteria and Archaea (88.5% of total protein
sequences) and because genomes from these groups
have been selected for sequencing in a phylogenetically
informative manner [5], we limited our initial cluster
analysis to 313,139 proteins from 100 phylogenetically
diverse representative Bacterial and Archaeal genomes
(Additional file 1). We clustered these proteins using
MCL and identified 23,336 protein families, 720 of
which were present in at least 50% of the 100 represen-
tative genomes. These widely distributed families tend to
be large, well studied, phylogenetically diverse, and well
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conserved across the Bacteria and Archaea (Additional
file 2). We built profile HMMs of these families and
used them with the hmmsearch algorithm to identify
additional family members in the full set of ~7 million
proteins. We found that the 720 widely distributed fam-
ilies recruited 1,541,029 sequences.

Next, we subjected the remaining 5,624,246 proteins
to a pairwise similarity search, which took approximately
76,000 cpu hours. We found that 4,557,723 sequences
exhibit significant similarity to at least one other se-
quence in the database. This similarity data was used as
input into MCL to cluster sequences into SFams. Prior
to running MCL, we filtered this pairwise similarity data
using alignment coverage to mitigate sequence length-
dependent clustering biases and to ensure that all mem-
bers of an SFam are global homologs. Specifically, the
pairwise alignment had to include at least 80% of both
sequences or their similarity was set to 0. Applying MCL
to this coverage-filtered data grouped the sequences into
344,921 SFams. SFams ranged in size from 2 to 45,609
members and are composed of global homologs. Most
SFams were small, suggesting that they are phylogenetic-
ally restricted or not well represented by the current
sampling of genomes (Figure 2). The biological annota-
tions that are enriched among the largest families
reinforce the hypothesis of phylogenetic restriction; most
appear to be relatively well-studied and involved in
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general cellular maintenance (e.g. ABC transporter
(IPR010067), DNA Polymerase III (IPR006054), etc.) and
are thus likely common to most genomes (p<0.05;
Additional file 3). However, some of the annotations that
are enriched among large families appear to be more
specific in their activity and are thus less likely to be
found in most genomes (e.g., Drug resistance transporter
EmrB/QacA (IPR004638), Disease resistance protein
(IPRO00767), etc.). SFams with such annotations may have
been subject to relatively large copy number expansions.
Future work will thoroughly explore the evolution of
SFam size across the tree of life.

We then generated multiple sequence alignments,
phylogenetic trees and HMMs for each SFam. Because
large multiple sequence alignments can be prone to
error [22], we developed a method that selects diverse
representative sequences from a family (Methods).
Representatives were used to generate a training align-
ment for those SFams with more than 250 members
(N=3,084). All other family sequences were aligned to
this training alignment before building HMMs and phy-
logenies for these large families.

Our iterative MCL clustering approach assigned 85.1%
of the proteins subject to clustering to an SFam. The
remaining 1,066,523 sequences are either ORFans, mis-
annotated sequences (e.g., sequence truncations due to
gene splitting), or too diverged from the other family
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members for homology to be inferred via sequence com-
parison. Notably, many of these sequences have signifi-
cant local alignments to other sequences, suggesting that
they may share common and promiscuous protein
domains.

Requiring high coverage identifies truncated and novel
sequences

Because we designed SFams to represent globally hom-
ologous proteins, the step in our workflow that calcu-
lates the similarity between every pair of sequences only
does so if their alignment covers at least 80% of both
sequences. As a result of this threshold, 801,279
sequences were removed from the clustering analysis,
many of which exhibited significant local pairwise align-
ments with other sequences. We characterized these fil-
tered sequences by comparing them to each family’s
HMM and analyzing the alignments.

We found that 27.4% of the filtered sequences
(N=219,707) display evidence of being relatively trun-
cated (e.g., fragmented) members of at least one family.
Specifically, these sequences have significant alignments
with a relatively long HMM (i.e., one that is at least 20%
longer) and the alignment includes at least 80% of the
filtered sequence. Conversely, 16.9% (N=135,841) of the
sequences are longer than any of the HMMs they signifi-
cantly align with, suggesting that these sequences may
have been subject to an evolutionary event (e.g., gene fu-
sion, expansion of repetitive elements) or annotation
error that increased the sequence’s length. The
remaining 55.7% of the filtered sequences may represent
novel protein families for which only a single member
has been identified, or highly diverged members of other
protein families.

SFam HMMs can be used to accurately identify new
family members

We evaluated the ability of each family's HMM to re-
cruit new family members by comparing the initial
7,165,275 input protein sequences to each of the 345,641
HMMs. Sequences were recruited into families if they
could be globally aligned to a SFam’s HMM. We then
used recall and precision metrics to estimate how well
an HMM exclusively detects all members of the family it
represents (i.e., family members). For example, a recall
equal to 1.0 indicates that the HMM detected all of its
family members, suggesting that the HMM accurately
recruited members of the family and that the family
members are generally global homologs of one another.
A precision equal to 1.0 indicates that the HMM only
recovered its own family sequences, suggesting that the
HMM differentiated family members from non-family
members and that the family members are generally not
homologs of members of other families.
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Figure 3 illustrates the distribution of precision and
recall across SFams. The large mass of SFams with a
recall near 1.0 indicates that the families generally in-
clude only sequences that are detectably homologous
to one another across their entire length using HMM
profile searches. Indeed, roughly 90% of the SFams
have a recall of 1.0 (N=312,966) and the average SFam
has a recall of 0.99. However, this estimate of recall
does not account for novel sequences, because the test
sequences that we classify into SFams were all used
during HMM construction. To estimate recall for
novel sequences, we conducted a leave-one-out ana-
lysis, wherein the sequence being tested is removed
from its family’s alignment and the HMM for that
SFam is recomputed. Since it is computationally in-
tractable to perform a leave-one-out analysis every se-
quence from every family, we analyzed 3,500 randomly
sampled families that contain at least three sequences
to leave-one-out recall tests (N~50,000 sequences).
We find that SFam leave-one-out recall is high
(mean=0.97) and exhibits a significant positive correl-
ation with its standard recall (Pearson’s r = 0.59; p<107?).
These results suggest that standard recall serves as a
good proxy for the leave-one-out recall and that SFam
HMMs are generally capable of identifying homologs of
the family.

The distribution of SFam precision values has a larger
spread, indicating that a subset of SFams are derived
from sequences that are not highly differentiated from
each other. While approximately 58% of the families have
a precision of 1.0 (N=199,913), there is a long tail of
lower-precision families. Indeed, roughly 35% of the fam-
ilies (N= 121,409) have a precision less than 0.75. These
families are enriched for several biological functions that
are well distributed across the tree of life, fre-
quently found in high copy number per genome,
and often curated into superfamilies (i.e., large clusters
composed of distinct sub-clusters) in various protein
family databases (p<0.05; Additional file 4). These in-
clude various transport proteins (e.g., ABC Transporter
(IPRO10067), Permease (IPR005495), Secretin/TonB
(IPR0O11662), etc.) and proteins involved in cytochrome
assembly (e.g., cytC (IPR012127), Cytochrome b/b6
(IPR005797), Cytochrome P450 (IPR001128), etc.). These
results suggest that a subset of SFams share similarity
with other SFams and that they may be over partitioned.
As evidenced by the functional enrichment data, many of
the low-precision SFams may actually represent subfam-
ilies (i.e., sub-clusters) within a superfamily. Over 54% of
the families have a precision and recall of 1.0, suggesting
that, in general, SFams are well partitioned and can be
used to accurately identify their members. We include
the results of this precision and recall analysis for each
family as a qualifier in our database.
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SFams are related through a sparse network

The precision results indicate that some SFams recruit
non-member sequences. This may result from an over-
partitioning of the data, wherein some SFams share an
evolutionary history with other families. For example,
two SFams may be distinct sub-clusters (i.e., subfamilies)
within a larger family (i.e., superfamily). We emitted an
HMM consensus sequence for each SFam and aligned
all pairs of consensus sequences to evaluate the relation-
ship between SFams. We found that 33% of our SFams
do not exhibit significant sequence similarity with any
other family, suggesting that they are well partitioned
and distinct. The remaining 67% of SFams have similar-
ity to at least one other family, indicating that some of
the SFams are either over-partitioned (at an MCL infla-
tion value of 2) or not phylogenetically distinct (e.g., dis-
tinct families that share common protein domains).

We evaluated the structure of these relationships
through network analysis. We represented families as
nodes (N=231,107) and relationships of significant simi-
larity between families as unweighted and undirected
edges (N=1,177,242). We evaluated the network top-
ology by calculating various network summary statistics,
including the median node (Additional file 5) degree
(4.0), betweenness (3.0), transitivity (0.24), and closeness
(0.12). The distributions of the degree and betweenness
summary statistics are characterized by a long tail, which
indicates that most SFams share similarity with a small
number of families. We also found that the network
contains 24,674 distinct components (i.e., sub-networks),
many of which may represent superfamilies. Most are
composed of two SFams (Figure 4), though one compo-
nent is especially large, containing 54% of the nodes.
The network summary statistic distributions for this
large component are similar to those of the entire net-
work, though the median node is slightly more

connected (median degree = 7) and the average node is
skewed towards a higher connectivity (Additional file 6).
This suggests that while the topology of this large com-
ponent is analogous to the entire network, it contains an
enrichment of highly connected nodes compared to the
other components.

This analysis reveals that most SFams have few direct
relationships to other SFams and represent peripheral
nodes within the network. A relatively small number of
SFams represent network hubs. High-degree SFams are
enriched for several functions (p<0.05; Additional file 7),
including signal transduction [e.g., Signal transduction
histidine kinase-related protein (IPR004358), response
regulator (IPR001789), and core (IPR005467); PAS
(IPRO00014), etc.], membrane transport [e.g., ABC
transporter-like (IPR003439); Type II secretion system
gspD (IPR004845); and ABC Transporter, permease pro-
tein (IPR000522)], and sugar metabolism [e.g., Carbohy-
drate kinase (IPR000577), various Glycoside hydrolases
(IPR0O08270, IPR000322)]. Some functions that are
enriched among high-degree SFams are also enriched
among low-precision SFams, especially those functions
associated with ribosome biogenesis [e.g., Ribosomal
proteins S5 (IPR000851), S18 (IPR018275) and L30
(IPRO18038)]. In total, these network results indicate
that while the majority of our SFams share sequence
similarity with at least one other SFam, most are not
similar to more than two other SFams. Hence, a user
wanting to annotate a novel sequence via comparison to
our SFam HMMs may want to evaluate two or three of
the top hits, but generally does not need to consider a
large number of hits.

We use the results of this consensus-sequence net-
work analysis to partition SFams into sets of families
that are related through sequence similarity (i.e., clans).
Clans can be used to improve the interpretation of SFam
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Figure 4 SFams are Related Through a Sparse Network. Comparing the similarity between SFams reveals a network of relationships between
families. The components that comprise the network tend to have a minimally connected topology, as illustrated by a random sampling of 250
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search results. For example, when using SFams to func-
tionally annotate a new sequence, one might place
greater weight on the putative annotation for a sequence
that is recruited into multiple SFams within the same
clan relative to a sequence that is recruited into multiple
SFams that are distributed across multiple clans. To pro-
vide flexibility to users of our database, we also provide
a listing of SFam clans that is based on HMM recruit-
ment of member sequences. Specifically, if two families
reciprocally recruit 80% of one another’s member
sequences, then we merge these families into a clan
using single-linkage clustering. This procedure finds that
236,542 families are recruited into one of the 26,253
clans that this analysis identifies. Both sets of clans are
made available to users of our database.

The majority of SFams are associated with Interpro
annotations

We functionally annotated each SFam by assigning Inter-
pro [23] annotations to the families on a majority-rules
basis. We find that 52% of the families (N=180,646) have
at least one Interpro annotation (Additional file 8). An
additional 43,395 SFams (12%) contain at least one
Interpro-annotated sequence, but not enough to meet the
majority-rules threshold. The remaining families have no
described functional annotation, suggesting that their

function is unknown. We also evaluated the functional
consistency of each network component by calculating the
fraction of annotated component SFams that share an
Interpro annotation. We found that the majority of com-
ponents have at least one Interpro annotation identifier
that is common to all annotated SFams within the compo-
nent (Figure 4).

These functional annotations can be used to rapidly
annotate new genomes with fairly high confidence by
classifying the protein sequences into SFams and trans-
ferring the annotation. However, similarity-based anno-
tation can yield erroneous inferences of function when
similarity and function are not tightly linked [24]. Thus,
we recommend using only the 39% of the SFams
(N=135,929) that contain sequences which all share the
same functional Interpro identifier when inferring the
function of a new sequence.

SFams cover most diversity in new genomes and can be
automatically extended to incorporate new families

To illustrate how our SFam database can be used to an-
notate new protein sequences, we executed a second it-
eration of our workflow to classify protein sequences
obtained from recently released microbial genomes into
SFams. Specifically, we evaluated 3,394,628 predicted
proteins obtained from 1,079 genomes that were
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submitted to the JGI IMG database between December
2009 and August 2011. Each protein was compared to
each of the 345,641 SFam HMMs identified in the first
iteration of our workflow. Roughly 84% of the sequences
(N=2,866,297) were assigned to an SFam currently
defined in our database, and 73% (N=2,101,401) were
recruited into a functionally annotated family. This high
rate of annotation demonstrates the utility of our SFam
identification procedure and suggests that our SFams
cover a large percentage of protein diversity in recently
sequenced genomes.

Nonetheless, a substantial number of protein families
remain to be identified. Our automated, iterative MCL
procedure provides a means for defining new SFams from
the unannotated sequences. After sifting out all sequences
that show homology to one of the existing SFams, we sub-
jected the remaining 528,331 proteins from recently
sequenced genomes plus the 801,279 proteins that were
not clustered into an SFam in our initial analysis to an in-
dependent round of pairwise BLASTP and MCL, as
described above. This de novo clustering identified an add-
itional 90,719 SFams. These SFams and their member
sequences were added to our database and can be differ-
entiated from the previously identified SFams through
a unique identifier (familyconstruction_id = 3). As add-
itional genomes are sequenced, this procedure will be
repeated to expand the diversity of SFams encoded in our
database. This analysis demonstrates how our SFam data-
base can be rapidly and automatically updated.

SFams can be used to rapidly and thoroughly annotate
metagenomic sequences

Our database of SFams can also be used to annotate
metagenomes. For example, metagenomic sequences can
be compared the database of HMMs to identify homo-
logs of SFams. In their study of the Sorcerer II Global
Ocean Sampling (GOS) metagenome, Yoosef et al. [6]
predicted proteins from assembled metagenomic reads
using two methods: (1) de novo clustering of translated
open reading frames predicted from metagenomic
sequences, along with full-length reference proteins and
(2) annotation of translated metagenomic ORFs using
HMMs from Pfam [12] and TIGRFAM [13]. The authors
discovered that while de novo clustering was computa-
tionally expensive (>1 Million CPU hours), it resulted in
substantially more predicted proteins than did the
HMM based strategy.

We evaluated the performance of SFams on the anno-
tation of metagenomic data by classifying predicted GOS
metagenomic peptides into SFams. Specifically, we
downloaded from CAMERA [25] 6,115,812 peptides that
were predicted in the GOS study [26] and compared
each peptide to each of the 345,641 first-iteration SFam
HMMs in our database using hmmscan. We classified
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80.4% of the sequences (N=4,919,769) into one of our
SFams. Of these sequences, 92.3% (N=4,540,966) were
classified into a functionally annotated SFam. These per-
centages exceed the 63% of proteins that we were able to
annotate when using Pfam (v 26.0) and TIGRFAM
(v 12.0) HMMs, indicating that our SFams cover a greater
diversity of marine metagenome proteins than other
protein family databases. Importantly, we can fairly thor-
oughly annotate a metagenome with substantially fewer
computational requirements than de novo clustering. As
metagenomic studies grow in size due to advances in
technology and dropping sequencing costs, the classifi-
cation of metagenomic sequences into reference SFams
will be more tractable than performing de novo protein
family clustering for every study.

Resources and availability

Our SFam database and software workflow is publicly
available for download (http://edhar.genomecenter.ucda-
vis.edu/sifting_families/). This database includes the
~10.5 million protein sequences obtained from the 2,928
genomes that we analyzed across the two iterations of
our workflow. It also includes multiple sequence align-
ments, HMMs and phylogenetic trees describing each
of the 436,360 SFams that we characterized. We also
make available various details on the SFams, including
precision, recall, clan listings and functional annota-
tion. As additional genome sequences become avail-
able, we will expand the diversity of the SFams
described in our database through iteration of the
workflow. Our procedure ensures that our knowledge
of known protein family diversity will grow at a rate
consistent with the rate at which new genomes are
discovered.

We recognize that some of the large-scale computa-
tional analyses that we conducted produced data that
may be useful for other researchers. Thus, in addition
to the SFam database, we provide access to several
large datasets, including the results of the initial pair-
wise sequence—similarity search (~7 million proteins),
the pairwise similarity matrix used as input into MCL,
the MCL result files (Inflation = 2), and the SFam
similarity network. Researchers can use these data sets
to explore the relationship between proteins or SFams
or build their own families using MCL with alternative
inflation values or different de novo clustering algorithms.

Conclusions

We developed an automated, high-throughput proced-
ure that iteratively identifies SFams from whole genome
sequences. We used this procedure to populate a data-
base of SFams that provides a basis for describing the di-
versity of protein families and functions. Our approach
streamlines the identification of novel protein families,
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ensuring that the diversity described in our database of
SFams will keep pace with the diversity discovered
through additional genome sequencing. The approxi-
mately 30% of SFams that do not have an Interpro iden-
tifier suggests that our database contains novel diversity
relative to other commonly used HMM-based protein
family databases. SFams should thus prove to be a useful
supplemental resource for analyses that rely on classify-
ing sequences into families. Indeed, we found that our
procedure facilitates rapid and thorough annotation of
genome and metagenome sequences.

Although this approach provides an updateable and
comprehensive dataset of families, our sequence similar-
ity—based SFams are limited because they are not built
based on functional relatedness. Additionally, SFams are
identified using high-throughput procedures, which may
trade sensitivity for accuracy. For example, many SFams,
especially those with low precision or a large number of
degrees, may represent subfamilies within a superfamily.
Given that we apply a single MCL inflation value to all
SFams that we identify, some over-partitioning of the
data during de novo clustering is expected. In addition,
our selection of various thresholds that are used to infer
homology between a pair of sequences or a sequence
and a family may produce family-composition errors.
Fortunately, our statistical assessments indicate that
most SFams are well partitioned and only exhibit simi-
larity with no more than one other SFam. Furthermore,
we use previously identified families to reduce the com-
putational complexity of identifying novel SFams. This
could introduce errors, such as in the case where two
proteins from the same family are recruited into two
separate previously identified families. Our decision to
maximize the phylogenetic diversity of the set of gen-
omes that we used to initialize our database of families
should mitigate — though it cannot eliminate — this po-
tential problem. Regardless, as a result of these afore-
mentioned properties of our SFam database, downstream
curation is required for SFams of interest. We provide
access to our pairwise similarity matrix as well as our
SFam statistics and network relationships to aid users of
our database in the curation of specific SFams.

We plan to provide regular updates to the SFam data-
base as new genome sequences become available. In
addition, as the phylogenetic representation of Eukaryotic
genome sequences improves, we will identify those
SFams that are widely distributed across Eukarya. Future
work will also include automatically detecting super-
family and subfamily SFams. Additionally, we plan to
characterize the phylogenetic and ecological distributions
of SFams. Our ultimate hope is that through adoption of
high-throughput and computationally efficient proce-
dures such as the identification of SFams, researchers
can leverage the inundation of biological sequence data
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to thoroughly and rapidly characterize the diversity of
proteins in nature.

Methods

Identification of widely distributed protein families

We use representative genomes and widely distributed
proteins to seed the iterative clustering of protein fam-
ilies. First, we selected 100 representative bacterial and
archaeal genomes in a phylogenetically informative man-
ner (SI Table 1). To identify archaeal representatives, we
retrieved the translated RadA gene sequence from 49
completed archaeal genomes, aligned these sequences
using MUSCLE (v3.8) [27], and constructed a phylogen-
etic tree using PHYML with the JTT model [28]. This
tree was used to sort genomes by their phylogenetic dis-
tance (PD) contribution [5]. The top 15 archaeal PD
contributors were selected to be the representatives for
the domain. Similarly, to identify bacterial representa-
tives, we used a phylogenetic tree constructed from a
concatenated alignment of 31 bacterial marker genes [5].
The bacterial genomes were sorted by their PD contri-
bution and the top 85 genomes were selected as
representatives.

The 313,139 proteins encoded in these 100 genomes
were used to define an initial collection of protein fam-
ilies. We calculated the similarity between all pairs of
proteins using BLASTP (v2.2.22) [26]. We applied two
thresholds to the BLASTP results to infer whether a pair
of sequences is homologous across their entire length:
the pairwise alignment must produce an e-value no
greater than 10 and cover 80% of the lengths of both
proteins. We apply particularly stringent e-value thresh-
old at this step (compared to the steps below) to ensure
that the families that we identify as being widely distrib-
uted across the Bacteria and Archaea are designated as
such due to a high degree of sequence similarity and not
a relaxed cutoff. Alignments that did not meet these
requirements were discarded and the similarity between
the pair of sequences was set to zero.

We used MCL (v1.008) [21] with an inflation value of
2 to de novo cluster proteins into homologous families
based on the similarity between all pairs of proteins.
This procedure identified 23,336 families with two or
more members. We then calculated the universality
score for each family, which is the percentage of the rep-
resentative genomes that have at least one member of
the family of interest. Widely distributed protein families
were defined as those families that span at least 50% of
the 100 representatives. We identified a total of 720
widely distributed families.

Next, we constructed an alignment and a profile-
Hidden Markov model (HMM) for each widely distribu-
ted family. Because the families tend to be composed of
many proteins (N > 250), we performed these steps with
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a diverse subset of sequences for each family. For each
family, we first clustered member sequences into de novo
subfamilies by subjecting the family’s BLASTP similarity
data to MCL. Here, we included as input to MCL only
those pairs of sequences that were no greater than 80%
similar. If this procedure divided a family into more than
200 subfamilies, we iteratively decreased the similarity
threshold and repeated the process until fewer than 200
subfamilies were identified. One member sequence was
randomly selected from each subfamily to serve as a rep-
resentative sequence. Representative sequences were
aligned using MUSCLE. Alignment columns containing
more than 80% gaps were excised from the alignment.
HMMs were built from the trimmed alignments using
hmmbuild (HMMER v3.0, March 2010) [29]. These
alignments were also used to build phylogenetic trees
using FastTree [30].

Using widely distributed gene family HMMs to reduce
sequence database size

We identified and filtered (i.e., “sifted”) homologs of
widely distributed families to reduce the size of the se-
quence database subject to de movo clustering. We
downloaded the December 2009 snapshot of the JGI's
Integrated Microbial Genomes database [31], which con-
tains 7,168,765 protein sequences distributed across
1,894 annotated genomes. We then used hmmscan
(HMMER3) to compare these sequences to the 720
widely distributed family HMMs [29]. Proteins that
matched an HMM with an e-value less than 10 and
that produced a match that includes at least 80% of the
residues from both the sequence and the HMM were
designated as members of that family and were excluded
from the subsequent clustering analyses. We use the
HMM alignment envelope coordinates to calculate the
number of HMM positions that match the sequence.
These widely distributed families and their member
sequences, including those that were identified in this
analysis of 1,894 genomes, are included in our database
in the Families and Familymembers tables, respectively.
They are differentiated from the other families we con-
structed via a unique identifier (familyconstruction_id = 1).

Identification of SFams via de novo clustering

All remaining unfiltered sequences were compared to
one another using BLASTP. We inferred that a pair of
proteins are homologous across their entire length if
their BLASTP alignment covered at least 80% of both
sequences and produced an e-value no greater than 107
For these homologous pairs of sequences, we defined
similarity as their percent sequence identity. The similar-
ity for remaining pairs was set to zero. We used this
relatively sparse similarity matrix to cluster sequences
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into SFams via MCL (Inflation = 2). Clusters containing
a single sequence were not considered SFams.

Multiple sequence alignments, phylogenetic trees and
HMMs were generated for each SFam. For SFams larger
than 250 sequences, we identified representative
sequences using the method described above. For each
family, sequences were aligned using MUSCLE [27].
Phylogenetic trees and HMMs were generated from the
multiple sequence alignments via FastTree [30] and
hmmbuild [29], respectively. These de novo families and
their member sequences are available through our data-
base in the Families and Familymembers tables, respect-
ively. They are identified through a unique index
(familyconstruction_id = 2).

Analysis of protein family quality and similarity

We evaluated the quality of each SFam’s HMM by using
hmmscan (HMMER3) to compare each HMM to each
protein sequence in our database. Sequences were
recruited into families if their alignment to a SFam’s
HMM had an e-value no greater than 10 and covered
at least 80% of both the sequence and the HMM.
Recruited sequences were used to calculate the precision
and recall of each SFam’s HMM, where the precision is
the fraction of total sequences recruited by the HMM
that are family members, and the recall is the fraction of
family members that are recruited by the HMM.

We compared the similarity between SFams by com-
paring HMM consensus sequences. We used hmmemit
(HMMERS3) [29] to generate each family’s consensus se-
quence. All pairs of consensus sequences were compared
using BLASTP. Homology was inferred between a pair
of consensus sequences if their alignment had an e-value
no greater than 10 and covered at least 80% of the
shorter sequence in the pair. We used the R package
igraph [32] to analyze the network of homologous rela-
tionships between SFams.

Identification of fragmented family members

Not all sequences that were obtained from the initial
genomes were clustered into an SFam. These sequences
may represent novel SFams. Alternatively, many may be
fragmented or incompletely sequenced members of fam-
ilies that were separated from the family through the fil-
tering criteria of our bioinformatics pipeline. To
differentiate fragmented SFam members from represen-
tatives of putatively novel SFams, we used hmmsearch
(HMMER 3.0) to compare each non-clustered sequence
to each SFam’s HMM. Sequences were considered SFam
member candidates if they aligned to a consensus se-
quence with a maximum e-value of 10 and if the align-
ment covered at least 80% of either sequence. We do
not include family member candidates in our database
of SFams.
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Functional annotation of SFams and identification of
enriched annotations

The member sequences for each SFam were functionally
annotated using Interpro. We obtained Interproscan
[23] annotations for each sequence from the JGI's IMG
Database. Sequence-level annotations were mapped onto
family-level annotations if a majority of sequences in the
SFam support the annotation.

We conducted tests of independence to identify func-
tions that are statistically associated with various family
properties (e.g., family size, precision, and degrees). The
distributions of family properties were used to partition
the families for each property. Large families and high-
degree families were designated as those in the fourth
quartile of their respective distributions. Low precision
families were designated as those with a precision less
than 0.75. We then constructed two-by-two contingency
tables for each Interpro annotation by counting the
number of families that do and do not possess the anno-
tation as well as the number of families that are and are
not in the property partition of interest. We used these
tables to conduct one-sided tests of independence in R
using the fisher.test function. We applied a Bonferroni
correction to account for multiple tests.

Additional files

Additional file 1: Representative genomes used in this study.
Additional file 2: Widely distributed protein family statistics.

Additional file 3: Interpro annotations enriched among the quartile
of SFams with the largest size.

Additional file 4: Interpro annotations enriched among SFams with
a precision less than 0.75.

Additional file 5: Distributions of various network topology
statistics for the entire SFam similarity network. Each histogram
illustrates the distribution of a network statistic for each node in the
SFam similarity network, including degree centrality (upper left, log scale),
betweenness centrality (upper right; x-axis scale constrained at a
betweenness of 50), transitivity (lower left), and closeness centrality
(lower right).

Additional file 6: Distributions of various network topology
statistics for the largest SFam similarity component. Each histogram
illustrates the distribution of a network statistic for each node in the
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(upper left, log scale), betweenness centrality (upper right; x-axis scale
constrained at a betweenness of 50), transitivity (lower left), and
closeness centrality (lower right).
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