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Abstract

Background: A feature selection method in microarray gene expression data should be independent of platform,
disease and dataset size. Our hypothesis is that among the statistically significant ranked genes in a gene list, there
should be clusters of genes that share similar biological functions related to the investigated disease. Thus, instead
of keeping N top ranked genes, it would be more appropriate to define and keep a number of gene cluster
exemplars.

Results: We propose a hybrid FS method (mAP-KL), which combines multiple hypothesis testing and affinity
propagation (AP)-clustering algorithm along with the Krzanowski & Lai cluster quality index, to select a small yet
informative subset of genes. We applied mAP-KL on real microarray data, as well as on simulated data, and
compared its performance against 13 other feature selection approaches. Across a variety of diseases and number
of samples, mAP-KL presents competitive classification results, particularly in neuromuscular diseases, where its
overall AUC score was 0.91. Furthermore, mAP-KL generates concise yet biologically relevant and informative
N-gene expression signatures, which can serve as a valuable tool for diagnostic and prognostic purposes, as well as
a source of potential disease biomarkers in a broad range of diseases.

Conclusions: mAP-KL is a data-driven and classifier-independent hybrid feature selection method, which applies to
any disease classification problem based on microarray data, regardless of the available samples. Combining
multiple hypothesis testing and AP leads to subsets of genes, which classify unknown samples from both, small
and large patient cohorts with high accuracy.
Background
Microarray data analysis is widely used for the identifica-
tion of ‘informative’ genes. However, due to the ‘curse’ of
dimensionality, where the number of gene probes repre-
sented on microarrays far exceeds the available number
of cases (samples) as well as the inherent noise in micro-
array data, feature selection (FS) approaches strive to
achieve this goal. Typically, informative genes are
selected according to a two-sample statistical test com-
bined with multiple testing procedures to guard against
Type 1 errors [1]. This methodology generates gene lists,
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which then can be either ranked or filtered according to
certain statistical criteria, e.g. p-value, q-value etc. The
selected subset of genes is assumed to construct better
classifiers, both in terms of accuracy and efficiency. In
particular, we expect improved classification perform-
ance and generalization by avoiding over-fitting. Further-
more, the classifiers will be more efficient in time and
space because of the fewer features, and biologists’
insights will be augmented [2].
A wide variety of FS algorithms has been proposed

[3-5] and depending on how they combine the feature
selection search with the construction of the classifica-
tion model they can be classified into 3 categories: filter,
wrapper, and embedded [2]. A filter based algorithm ei-
ther selects features through univariate rankings [6-8] or
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incorporates feature dependencies (multivariate) like
Correlation based Feature Selection (CFS) [9]. On the
other hand, wrapper algorithms like genetic algorithms
[10-12], attempt to select multiple features simultan-
eously based on their performance on a training set [13].
Finally, embedded algorithms, like Random Forest [14],
select the best subset of genes incorporating the classi-
fiers’ bias [2].
Complementary to this categorization, hybrid approaches

have drawn researchers’ interest. Specifically the benefits of
usually two different techniques are combined towards the
identification of an improved gene subset selection, for ex-
ample, a univariate filter with a wrapper or an embedded
method [15-20]. Apart from FS methods, there are also data
reduction techniques such as principal component analysis
and partial least squares, which search for linear combina-
tions of all genes to provide us with a small subset of ‘meta-
genes’ [21].
An FS algorithm should perform efficiently and inde-

pendently of the sample size and yield its subset within a
reasonable period, to enable numerous experiments.
Moreover, the subset’s length should be small, for in-
stance, less than 50 genes, and the selected genes should
present biological relevance to the inspected disease so
as to facilitate further analysis. Despite the plethora of
available FS methods, none of them has managed to suc-
cessfully deal with all the aforementioned issues playing
the role of a milestone. For instance, some methods are
effective with small cohorts while others with large ones
[22]. Aside from this, there are methods that are devel-
oped and tested for specific diseases, leaving their suit-
ability for broader use unexplored [23]. Furthermore,
some FS algorithms are so sophisticated that they either
need specialized and expensive hardware to operate or
an impractically long run time [12].
We propose a data-driven and classifier-independent

hybrid FS method (mAP-KL), which combines multiple
hypothesis testing [24] and affinity propagation (AP)
clustering algorithm [25] in conjunction with the
Krzanowski & Lai [26] cluster quality index, to select a
small subset of informative genes. Our hypothesis is that
among the statistically significant genes there should be
clusters of genes that share similar biological functions
related to the investigated disease. Thus, instead of keep-
ing a number of the top ranked genes, it would be more
appropriate to define and keep a number of gene cluster
exemplars. We tested mAP-KL on real data from small
and large cohorts, as well as on simulated data, and
compared its performance against 13 other FS
approaches. According to the results, mAP-KL achieves
competitive classification results, particularly in the
neuromuscular disease data, as well as in breast and
colon cancers data, with subsets of less than 20 genes in
most of the cases.
Methods
Rationale for selecting the proposed approach
Jaeger et al. [16] claimed that ranking algorithms produce
lists of genes, where the top ranked genes are highly
correlated with each other, mainly because they belong to
the same pathway. Additionally, Hall in his thesis [9]
investigated the hypothesis that “A good feature subset is
one that contains features highly correlated with the class,
yet uncorrelated with each other”.
So far several approaches have been proposed [16,27-29]

based on these beliefs with promising classification
results [28,29]. However, certain methodological differ-
ences or limitations prompt the development of our ap-
proach. The order of the analysis steps (ranking and
clustering), the number of informative genes, and the
data manipulation are issues that need specific focus in
such an analysis. Our method uses ranking prior to clus-
tering, similarly to HykGene [28] and mRMR [29] and
contrary to Jaeger and Hanczar [27], because we wanted
to filter the statistically redundant genes to facilitate the
clustering analysis. Regarding the number of genes, we
employ a clustering index to determine the ‘actual’ num-
ber of representative genes. This differs from mRMR
method, which iterates in its ranked gene list before
concluding to a subset, and from Jaeger and Hanczar,
where the resultant subset is driven by the initial num-
ber of potential clusters, which is set arbitrarily. In rela-
tion to HykGene, we determine the number of clusters
and thus the ‘representative genes’ irrespectively of the
classifier employed. Finally, apart from the necessary
transformation and normalization on the raw intensity
values we do not perform any further preprocessing ma-
nipulation, like discretization as mRMR does to improve
the classification results.

The general framework and implementation of our
methodology
The proposed methodology combines ranking-filtering
and cluster analysis to select a small set of non-
redundant but still highly discriminative genes. In rela-
tion to the filtering step, we first employ the maxT
function (see Feature selection methods) from the ‘mult-
test’ package to rank the genes of the training set and
then we reserve the top N genes (N = 200) for further
exploitation. We based our decision on keeping only the
top 200 genes on the findings of a previous study [30],
where we observed a weak impact on the classification
performance when differentiating the subset’s length.
In turn, prior to clustering analysis with AP we have

to define the number of clusters, which in essence will
be the number of representative genes that finally will
compose our subset. We apply the index of Krzanowski
and Lai as included in the ‘ClusterSim’ package [31] to
determine the number of clusters solely on the disease
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samples of the training test set. Krzanowski and Lai is
defined by

DIFF kð Þ ¼ k � 1ð Þ2=pWk�1 � k2=pWk 0

when choosing the number of clusters (k) to maximize

the quantity KL kð Þ ¼ DIFF kð Þ
DIFF kþ1ð Þ
�
�
�

�
�
�: The Wk denotes the

within-cluster sum of squared errors.
The final step of our methodology involves the cluster

analysis. For this task, we engage the AP clustering
method, which detects n (n = k, the Krzanowski and Lai
index) clusters among the top N genes, according to the
pre-defined number, and provides us with a list of the
most representative genes of each cluster, the so called
exemplars. These n exemplars are expected to form a
classifier that shall discriminate between the normal and
disease classes in a test set. Finally, we formulate the test
set by keeping only those n genes, and proceed with the
classification.
The mAP-KL is developed under the R environment

[32], in which we first incorporated the ‘multtest’,
‘ClusterSim’, and ‘APCluster’ [33] packages, and then
created a function (see Supplementary) to implement
our methodology. The general flowchart of our method-
ology appears in Figure 1.

Affinity propagation clustering method
Affinity propagation identifies a set of centers (exem-
plars) from actual data points. Contrary to k-centers
technique, which begins with an initial set of randomly
selected exemplars and iteratively refines this set to de-
crease the sum of squared errors, AP considers each
data point as a node in a network, and recursively
transmits real-valued messages along edges of the net-
work until a good set of exemplars and corresponding
clusters emerges. At any point in time, the magnitude
of each message reflects the current affinity that one
data point has for choosing another data point as its
exemplar.
Messages exchanged between data points can be of

two kinds: ‘responsibility’ r(i,k), and ‘availability’ a(i,k).
‘Responsibility’ reflects the accumulated evidence for
how well-suited point k is to serve as the exemplar for
point i, taking into account other potential exemplars
for point i. On the other hand, ‘availability’ reflects the
accumulated evidence for how appropriate it would be
for point i to choose point k as its exemplar, taking into
account the support from other points that point k
should be an exemplar. Initially, the availabilities are set
to zero. AP can be applied to problems where the simi-
larities are neither symmetric nor satisfy the triangle in-
equality [25].
Classification and evaluation
Regarding the classification phase we employed SVM
[34] with linear kernel, KNN [35], and RF [14] classifiers
under the WEKA [36] environment, to evaluate the per-
formance of all FS methods employed. We first con-
ducted a 5-fold cross-validation (5-CV) on the training
sets to assess the potential classification strength of the
models’ and then estimated its prediction power on the
separate test sets.
To evaluate the classification results, we employed

various standard performance measures, which provide
different insights. Accuracy (ACC) is one of the most
popular performance measures in machine learning clas-
sification, though it does not take into account the na-
ture of the incorrect predictions, which can be crucial in
clinical medicine and totally misleading about the actual
classification performance of a given classifier. Therefore
we engaged the area under the receiver operating char-
acteristics (ROC) curve or in short AUC, which has been
introduced as a better measure for evaluating the pre-
dictive ability of machine learners than accuracy [37].
The ROC curve is a two-dimensional plot between the
TPR (Y-axis) against the FPR (X-axis) of the predictions.
The closer the curve is to the Y-axis (high true positives)
and the further away it is from the X-axis (low false
positives), the more accurate the predictions are [38].
Additionally, we employed true negative rate (TNR) or

specificity, which represents the ratio of correctly classi-
fied negatives to the actual number of negatives and
controls type I errors, as well as true positive rate (TPR)
or sensitivity, which is defined to be the ratio of positives
correctly classified to the actual number of positives and
controls type II errors. Both, specificity and sensitivity
are mutually independent [39]. The combination of
those three measures provides us with an adequate over-
view of the classification’s performance.

Datasets illustration
Microarray data
In this study, we utilized real and synthetic data to assess
mAP-KL’s performance. Neuromuscular and cancer dis-
eases data comprise the real microarray data and are avail-
able in comma-delimited format in the Supplementary
section. Neuromuscular diseases are rare among the gen-
eral population, thus the available tissue samples and
whole transcriptome data are very limited. This character-
istic is crucial since we intended to develop a FS method
that produces robust models even in studies with limited
number of samples. We therefore included data from
Bakay et al. [40] related to ‘amyotrophic lateral sclerosis’
(ALS), ‘Duchenne muscular dystrophy’ (DMD), ‘juvenile
dermatomyositis’ (JDM), ‘limb-girdle muscular dystrophy
type 2A’ (LGMD2A), and ‘limb-girdle muscular dystrophy
type 2B’ (LGMD2B), as well as ‘nemaline myopathy’ (NM)



Figure 1 The mAP-KL methodology flowchart.
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data from Sanoudou and Beggs [41] and Sanoudou et al.
[42]. The gene expression data for the first five diseases
originate from Affymetrix HG_U133A gene chips and
share a set of 18 normal samples, whereas the NM data
originate from Affymetrix HG_U95A gene chips and have
been compared to 21 normal samples. We divided the
data approximately in half, and kept the first half to build
a balanced train sets and the second half to validate the
classification models (Table 1). Concerning the pre-
processing approach, all neuromuscular data underwent
log2 transformation and quantile normalization across
samples.
Regarding the cancers datasets, we utilized microarray

data from breast cancer, colon cancer, leukemia, and pros-
tate cancer, all of which are considered benchmark
datasets and have been widely used in gene expression-
classification studies. Van’t Veer [23] explored breast can-
cer patients’ clinical outcome following modified radical
mastectomy or breast-conserving treatment combined
with radiotherapy. Patients with good and poor 5-year
prognosis following initial diagnosis were included. The
breast cancer data was already normalized so we omitted
the preprocessing step. The colon datasets [43] consisted
of 62 samples of colon epithelial tissue taken from colon-
cancer patients. Sample were obtained both from tumor
tissue as well as adjacent, unaffected parts of the colon of
the same patients, and measured using high density oligo-
nucleotide arrays. For the analysis of the colon microarray
data we followed the same pre-processing approach as we
did for the neuromuscular data i.e. we performed log2
transformation and quantile normalization across samples.
Datasets from acute lymphoblastic leukemia (ALL)

and acute myeloid leukemia (AML) [6], two distinct
acute leukemias, were used for cancer subtype classifica-
tion. The train set consisted of 27 ALL samples and 11
AML samples. Finally, prostate cancer [44] training data
consisted of 52 prostate tumour tissue and 50 normal
prostate tissue datasets, while the testing data consisted



Table 1 The real microarray data divided in train and test sets

Datasets Attributes
(nr of genes)

Train set samples
(class1:class2)

Test set samples
(class1:class2)

Amyotrophic lateral
sclerosis (ALS)

22,283 6:6 12:3

Duchenne muscular dystrophy (DMD) 22,283 7:7 11:3

Juvenile dermatomyositis (JDM) 22,283 10:10 8:11

Limb-girdle muscular dystrophy type 2A (LGMD2A) 22,283 7:7 11:3

Limb-girdle muscular dystrophy type 2B (LGMD2B) 22,283 7:7 11:3

Nemaline myopathy (NM) 12,600 8:8 13:5

BREAST CANCER (4348)24,481 44:34 7:12

COLON CANCER 7,129 15:15 7:25

ALL/AML LEUKEMIA 7,129 27:11 20:14

PROSTATE CANCER 12,600 52:50 25:9
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of 25 tumour and 9 normal datasets [45]. In relation to
the preprocessing of the leukemia and the prostate data,
we first set the Golub’s floor and ceiling values (floor =
100 and ceiling =16.000), though without filtering the
genes, and then applied log10 transformation and quan-
tile normalization across samples. For all cancers data-
sets we kept the train and test sets as provided, see
Table 1.

Simulated data
Apart from the real microarray data, we investigated
mAP-KL’s performance on two synthetic datasets. We
intentionally utilized two different simulation setups to
examine two different hypotheses. In the first hypoth-
esis, we wanted to verify that mAP-KL provides us
with a small subset of representative features, at least
one gene per cluster, adequate for accurate classifica-
tion. Therefore, we considered a binary classification
problem simulating a normal-disease case with six dif-
ferent scenarios (see Additional files 1, 2, 3, 4, 5, 6, 7,
8, 9) in relation to the number of differentially
expressed genes (DEGs) that are included in the dis-
ease class samples.
In particular, we started with 50 DEGs belonging to

five clusters of 10 ‘genes’ and reached to 500 DEGs
spreading in 25 clusters of 20 ‘genes’ per cluster, trying
to imitate pathways. The normal and the disease classes
have 1,200 samples of 10,000 ‘genes’ per sample, where
the first 100 samples from each class compose the train
set and the rest form the test set. The non-differentially
expressed genes are independently drawn from normal
distribution with mean = 0 and variance = 0.5.
In the second hypothesis, we employed a subset of the

publicly available ‘Golden Spike’ [46] Affymetrix case–
control experiment, incorporated in the ‘st’ package
[47,48] under the name ‘choedata’. In this scenario, it
was intriguing to explore the number of the known
DEGs included in mAP-KL’s subset and whether they
are capable of providing us with accurate models. The
‘choedata’ describes a binary classification problem with
three replicates per class and 1,331 DEGs scattered ran-
domly among 11,475 genes.
Feature selection methods
We employed 13 feature selection/elimination
approaches on the same real microarray datasets and
compared its performance with that from mAP-KL. We
set the subset’s length to 20 top ranked genes for all
methods, except for maxT where we additionally
engaged the top 200 gene list and evaluate their predic-
tion strength. We decided to include methods that
belong to different feature selection categories. In par-
ticular, we selected seven univariate filter methods
(eBayes, ODP, maxT, SAM, SNR and t-test), one multi-
variate filter algorithm (cat), three dimension reduction
approaches (BGA-COA, PCA, PLS), one embedded
method (Random Forest), one hybrid method (Hyk-
Gene) and one Monte-Carlo like (Rnd) technique.
Between Group Analysis (BGA) is a multiple discrim-

inant approach that can be used with any combinations of
numbers of genes and samples. BGA uses a conventional
ordination technique such as Correspondence Analysis
(COA) or principal component analysis (PCA) to carry
out ordination of groups of samples. For N groups we find
N − 1 eigenvectors or axes that arrange the groups so as to
maximise the between group variances. The individual
samples are then plotted along them. Each eigenvector
can be used as a discriminator to separate one of the
groups from the rest. New samples are then placed on the
same axes and can be classified on an axis-by-axis basis or
by proximity to the group centroids. It is especially effect-
ive when combined with COA because it allows us to
examine the correspondences between the grouped sam-
ples and those genes which most facilitate the discrimin-
ation of these groupings [49].
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The Hybrid system for marker Gene selection (Hyk-
Gene) is a hybrid approach that combines sequentially
gene ranking and clustering analysis. Firstly, a set of top-
ranked informative genes is selected with the aid of
filtering algorithms (Relief-F, Information Gain, and x2-
statistic), and secondly a hierarchical clustering is
applied on these genes to generate a dendrogram. Fi-
nally, a sweep-line algorithm is used to analyze the den-
drogram and marker genes are selected by collapsing
dense clusters. The best number of clusters is deter-
mined systematically by applying the leave-one-out
cross-validation (LOOCV) on the training data, trying
all different options for extracting clusters from the den-
drogram [28].
Principal component analysis (PCA) is a classic and

one of the oldest dimension reduction approaches. It
searches for linear combinations of the original measure-
ments called principal components (PCs) that can effect-
ively represent effects of the original measurements. PCs
are orthogonal to each other and may have dimensional-
ity much lower than that of the original measurements.
Because of its computational simplicity and satisfactory
statistical properties, PCA has been extensively used in
bioinformatics studies, particularly gene expression stud-
ies, to reduce the dimensionality of high-throughput
measurements and shown to have satisfactory perform-
ance [15]. We implement it through the BGA package.
The optimal discovery procedure (ODP) is a high di-

mensional approach that uses all of the relevant infor-
mation across tests when assessing the significance of
each one. It allows us to test multiple hypotheses simul-
taneously in such a way that the total number of
expected true positive results is maximized for each
fixed number of expected false positive results. This pro-
cedure can be viewed as a multiple-test extension of the
Neyman–Pearson (NP) procedure for testing a single hy-
pothesis. This method is available through the EDGE
software program [50].
maxT: It is a function that computes permutation

adjusted p-values for step-down maxT multiple testing
procedures as described in Westfall & Young [51], which
provides strong control of the family-wise Type I error
rate (FWER) [52]. It determines the family-wise error
rate adjusted p-values using the Wilcoxon rank sum
statistic. To do this the class labels are permuted, and
the Wilcoxon statistic for each gene is calculated. The
maximum Wilcoxon statistic is recorded for 1,000 ran-
dom permutations and the p for each gene is estimated
as the proportion of the maximum permutation-based t-
statistics that are greater than the observed value [22].
This is the ranking approach that we have engaged in
mAP-KL.
GenePattern is a software package, which provides a

comprehensive environment that can support (i) a broad
community of users at all levels of computational experi-
ence and sophistication, (ii) access to a repository of
analytic and visualization tools and easy creation of
complex analytic methods from them and (iii) the rapid
development and dissemination of new methods [53].
The Comparative Marker Selection suite is freely avail-
able as a GenePattern module that allow users to apply
and compare different methods of computing signifi-
cance for each marker gene, a viewer to assess the
results, and a tool to create derivative datasets and
marker lists based on user-defined significance criteria.
During our experiment we utilized two test statistics, the
t-test and signal-to-noise ratio. From a plethora of esti-
mates related with the significance of each gene we used
the “rank” estimate which is based on the value of the
test statistic [54].
t-test: This is the standardized mean difference between

the two classes. It is the difference between the mean ex-
pression of class 1 and class 2 divided by the variability of
expression, which is the square root of the sum of the
standard deviation for each class divided by the number of
samples in each class.
SNR: The signal-to-noise ratio is computed by divid-

ing the difference of class means by the sum of their
standard deviations.
Partial Least Squares (PLS) is a highly efficient statis-

tical regression technique that is well suited for the ana-
lysis of high-dimensional genomic data. The underlying
idea of PLS is to find uncorrelated linear transformations
of the original predictor variables which have high co-
variance with the response variables. These linear trans-
formations can then be used as predictors in classical
linear regression models to predict the response vari-
ables. Since the p original variables are summarized into
a small number of relevant new components, linear re-
gression can be performed even if the number of original
variables p is much larger than the number of available
observations [55].
Random Forests (RF) are a combination of tree-

structured predictors where each of the trees grows
using a random process. Given a training set with N
samples and M features, the N instances are sampled at
random (with replacement), so as to generate a random
vector Θ for each tree. For the kth tree, there is a ran-
dom vector Θk which is independent of the previous
random vectors, Θ1, . . . , Θk−1, but with the same distri-
bution for all trees in the forest. Hence, every tree is
grown using the training set and its random vector,
resulting in a classifier, which votes for the most popular
class.
When RF draws the training set for the current tree by

sampling with replacement, about one-third of the cases
are left out of the sample, and called out-of-bag data
(OOB). This OOB data is used to get estimates of
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variable importance. To measure the importance of vari-
able xj, values of xj are permuted in the OOB sample,
and the class membership of the OOB samples are pre-
dicted again from the tree. The number of correctly clas-
sified samples after permutation is subtracted from the
original count of correctly classified samples and divided
by the number of OOB samples for that tree, thus giving
the decrease in classification accuracy as a proportion of
samples. This permutation procedure is repeated for
each tree in the forest, and the mean decrease in accur-
acy (MDA) is defined as the average of these values over
all trees in the forest (multiplied by 100 and presented
as a mean percentage decrease in accuracy). In this ex-
periment, a random forest classifier with 1,000 trees is
applied [14].
Significance Analysis of Microarrays (SAM) identi-

fies genes with significant changes in gene expression by
conducting a set of gene-specific t-tests and then assign-
ing a score to each gene relative to the standard devi-
ation of those tests. Genes are characterized as
significant if their score is greater than an adjustable
threshold (delta). SAM employs permutations of the
repeated measurements in order to estimate the false
discovery rate (FDR) i.e. the percentage of genes identi-
fied by chance. Through the threshold adjustment, we
may conclude to smaller or larger sets of genes [56].
The empirical Bayes moderated t-statistic (eBayes)

ranks genes by testing whether all pairwise contrasts be-
tween different outcome-classes are zero. It is applied to
extract information across genes thus making the final
analyses more stable even for experiments with limited
number of arrays. Moderated t-statistics lead to p-values
with increased degrees of freedom for the individual var-
iances hence, reflecting the greater reliability associated
with the smoothed standard errors [57]. Linear Models
for Microarray Data (Limma) is a package, which incor-
porates this statistic [58].
Correlation-adjusted t’-scores (cat) is the product of

the square root of the inverse correlation matrix with a
vector of t scores and represents the individual contribu-
tion of each single feature (gene) to separate two groups
after removing the effect of all other features. This
method takes account of correlations among genes be-
fore adjusting the t-statistics. In the absence of correl-
ation the cat score reduces to the standard t-score. The
cat score offers a simple approach to feature selection,
both of individual genes and sets of genes [48].
Apart from these standard methods, we wanted to

explore whether the use of a feature selection method
over the top 200 list will benefit the prediction or not.
Therefore, we decided to select randomly gene probes
from the ranked list and then assess its classification
performance. In order to control the randomness and fi-
nally conclude to a stable outcome we created randomly
10 subsets of 20 gene probes, run the classification
process and finally summarized the results. Thus, the
random (Rnd) scores refer to these mean values per
disease.

Results and discussion
Overview
Following the development of mAP-KL we designed and
executed an elaborate set of analytical experiments with
5-CV on the training set and hold-out validation on a
separate set to assess its performance across whole gen-
ome expression datasets from both small and large pa-
tient cohorts. In relation to small cohorts, we employed
data from 6 neuromuscular diseases, while for large
cohorts we utilized data from 4 different types of cancer.
On those microarray datasets, we also applied 13 other
feature selection/elimination approaches and compared
the classification results (Table 2 and Table 3).
We further assessed the mAP-KL’s performance to-

wards other feature selection and/or classification stud-
ies, conducted on the same cancer datasets. Finally, we
engaged two different simulation setups with known
structures and investigated mAP-KL’s behaviour.

Neuromuscular diseases data
The use of small cohorts in biomedical research is com-
mon in some types of studies such as those of rare
diseases. These small cohorts make feature selection
algorithms prone to overfitting and thus less reliable
[59] compared to larger cohorts. It was therefore intri-
guing to explore the robustness and generalization of
mAP-KL on train sets with length ranging from 12 to 20
samples and test sets with 15 to 19 samples respectively
(Table 1).
The majority of the methods in ALS and DMD

validation achieved the highest classification score
(AUC =1.00) except for the HykGene in ALS and the
PCA in DMD with AUC scores of 0.64 and 0.61 respect-
ively. Similarly, in 5-CV test, only the BGA-COA and
the PCA with AUC scores of 0.98 and 0.48 respectively,
deviated from the rule. In JDM although all of the
methods achieved the highest AUC score (1.00) during
hold-out validation, the respective TNR score was 0.88
for the BGA-COA, eBayes, ODP, SNR and cat methods.
In 5-CV the PCA was the only method that failed to
distinguish correctly all samples (AUC = 0.90).
In relation to the LGMD2A, ten methods, including

the maxT (200), achieved the highest AUC value, though
only BGA-COA, mAP-KL and maxT (200) achieved the
highest TNR and TPR, too. The TNR score for PLS-CV
was 0.91, for RF-MDA, ODP and SNR was 0.73, while
for HykGene was 0.45 and for eBayes 0.36. It is worth
noticing that the TNR score of the maxT with the 20
genes subset, was considerably lower to that of maxT



Table 2 The FS methods sorted by the AUC metric achieved in validation test for each neuromuscular disease using
the RF classifier

FS methods 5-CV Hold-out Validation

AUC TNR TPR AUC TNR TPR

ALS mAP-KL 1.00 (0.00) 1.00 (0.00) 0.98 (0.14) 1.00 1.00 1.00

BGA-COA 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

cat 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

eBayes 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

maxT 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

maxT (200) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

ODP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

PCA 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

PLS-CV 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

SAM 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

SNR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

t-test 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

RF-MDA 1.00 (0.00) 1.00 (0.00) 0.93 (0.25) 1.00 1.00 1.00

Rnd 1.00 (0.00) 1.00 (0.01) 1.00 (0.00) 0.99 0.92 0.97

HykGene 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.64 0.42 0.67

DMD mAP-KL 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.91 1.00

BGA-COA 0.98 (0.14) 0.85 (0.32) 1.00 (0.00) 1.00 1.00 1.00

cat 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

eBayes 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.91 1.00

HykGene 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

maxT 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

maxT (200) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

ODP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

PLS-CV 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

RF-MDA 1.00 (0.00) 1.00 (0.00) 0.99 (0.07) 1.00 1.00 1.00

SAM 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

SNR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

t-test 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

Rnd 1.00 (0.00) 0.99 (0.04) 1.00 (0.00) 0.99 0.96 0.93

PCA 0.48 (0.42) 0.48 (0.46) 0.41 (0.45) 0.61 0.55 0.67

JDM mAP-KL 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

HykGene 1.00 (0.00) 1.00 (0.00) 0.95 (0.15) 1.00 1.00 1.00

maxT 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

maxT (200) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

PCA 0.90 (0.19) 0.77 (0.31) 0.73 (0.32) 1.00 1.00 1.00

PLS-CV 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

RF-MDA 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

SAM 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

t-test 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

BGA-COA 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.88 1.00

eBayes 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.88 1.00

ODP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.88 1.00

SNR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.88 1.00

cat 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.88 1.00

Rnd 1.00 (0.00) 1.00 (0.00) 0.99 (0.03) 1.00 0.99 0.98
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Table 2 The FS methods sorted by the AUC metric achieved in validation test for each neuromuscular disease using
the RF classifier (Continued)

LGMD2A FS methods 5-CV Hold-out Validation

AUC TNR TPR AUC TNR TPR

mAP-KL 1.00 (0.00) 0.87 (0.30) 1.00 (0.00) 1.00 1.00 1.00

BGA-COA 1.00 (0.00) 0.96 (0.17) 1.00 (0.00) 1.00 1.00 1.00

maxT (200) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 1.00

PLS-CV 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.91 1.00

ODP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.73 1.00

RF-MDA 1.00 (0.00) 0.98 (0.10) 1.00 (0.00) 1.00 0.73 1.00

SAM 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.64 1.00

cat 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.64 1.00

t-test 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.64 1.00

eBayes 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.36 1.00

HykGene 1.00 (0.00) 0.97 (0.12) 0.98 (0.10) 0.94 0.45 1.00

maxT 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.94 0.45 1.00

SNR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.94 0.73 1.00

Rnd 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.89 0.70 0.93

PCA 0.83 (0.30) 0.61 (0.43) 0.77 (0.39) 0.58 0.27 1.00

LGMD2B RF-MDA 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.73 1.00

maxT (200) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.64 1.00

PLS-CV 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 0.55 1.00

BGA-COA 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.98 0.73 1.00

maxT 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.91 0.64 1.00

Rnd 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.90 0.56 1.00

SNR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.88 0.73 1.00

HykGene 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.82 0.64 1.00

t-test 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.82 0.73 0.67

ODP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.73 0.45 1.00

mAP-KL 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.70 0.36 0.67

SAM 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.52 0.27 1.00

eBayes 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.48 0.27 0.67

cat 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.36 0.09 1.00

PCA 0.89 (0.25) 0.74 (0.38) 0.61 (0.44) 0.21 0.09 1.00

NM SNR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.90 0.77 1.00

t-test 1.00 (0.00) 0.98 (0.10) 1.00 (0.00) 0.89 0.77 0.80

HykGene 1.00 (0.00) 1.00 (0.00) 0.99 (0.07) 0.88 0.69 0.80

maxT (200) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.80 0.69 0.80

cat 1.00 (0.00) 1.00 (0.00) 0.99 (0.07) 0.78 0.46 1.00

mAP-KL 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.74 0.69 0.60

Rnd 0.98 (0.03) 0.87 (0.09) 0.96 (0.06) 0.67 0.49 0.76

SAM 1.00 (0.00) 0.87 (0.28) 0.98 (0.10) 0.65 0.15 1.00

PCA 0.82 (0.30) 0.77 (0.35) 0.73 (0.39) 0.55 0.92 0.40

BGA-COA 0.96 (0.14) 0.87 (0.28) 0.91 (0.19) 0.47 0.23 0.60

PLS-CV 0.97 (0.12) 0.87 (0.28) 0.99 (0.07) 0.42 0.08 1.00

maxT 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.37 0.38 0.40

ODP 1.00 (0.00) 0.92 (0.23) 1.00 (0.00) 0.25 0.38 0.20

RF-MDA 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.22 0.15 0.60

eBayes - - - - - -
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(200). During the 5-CV evaluation, the classification
results are almost ideal, since only PCA had an AUC
score less than 1.00.
Contrary to the previous datasets, in LGMD2B valid-

ation, only three of the methods (RF-MDA, maxT (200)
and PLS-CV) achieved the highest AUC (1.00) but their
TNR score was 0.73, 0.64 and 0.55 respectively. Al-
though many methods distinguish all disease samples
correctly i.e. TPR = 1.00, all of them failed to discern all
normal samples i.e. TNR < 1.00. Approximately half of
the methods had a TNR below 0.50 (included, eBayes,
SAM and mAP-KL) and no method had TNR greater
than 0.80. On the other hand, the 5-CV classification
results were very promising since all methods but PCA
achieved the highest score i.e. 1.00 in all three metrics.
Likewise in NM validation, all of the methods faced con-

siderable difficulties in distinguishing disease and normal
samples. Only the SNR, the t-test and the HykGene meth-
ods managed to reach an AUC score close to 0.90. The
TPR results for NM as opposed to those for LGMD2B
were discouraging, since only four methods (PLS-CV, cat,
SAM, and SNR) classify all the disease samples correctly,
and the TPR score for the rest of the methods range from
0.20 to 0.60, with the exception of t-test and HykGene
(TPR = 0.80). In contrast, in 5-CV ten methods achieved
AUC score of 1.00, though only mAP-KL, maxT, maxT
(200), RF-MDA, and SNR achieved the optimum score in
TNR and TPR metrics. The PLS-CV and BGA-COA had
the same TNR score (0.87) but different TPR (0.99 and
0.91) and AUC (0.97 and 0.96). The PCA method achieved
the lowest AUC score (0.82) with TNR and TPR scores
equal to 0.77 and 0.73. Finally, the eBayes method failed to
produce a list of significant genes.

Cancer data
As far as the large patient cohorts is concerned, we uti-
lized microarray data from four different types of cancer
(breast cancer, colon cancer, leukemia, and prostate can-
cer), with train sets length ranging from 30 to 102 sam-
ples and test sets from 19 to 34 (Table 1).
In breast cancer HO validation, mAP-KL attained the

optimum score (1.00) in TNR metric and the best AUC
score (0.87). Two methods, PLS-CV and RF-MDA,
achieved competitive TNR and AUC scores of 0.86 and
0.82 respectively. However, all methods faced difficulties
to distinguish the non-responsive samples, and except the
maxT (200) with a TPR score of 0.83, followed by the Rnd
technique (0.78) and the RF-MDA, the HykGene and the
SAM methods (0.75). During the 5-CV validation, PLS-
CV, RF-MDA, HykGene and cat had an AUC score of
0.91, which was also the highest score attained. The rest of
the methods achieved AUC scores between 0.73 and 0.77,
but only SAM had a balance performance between TNR
and TPR metrics. It is worth noticing that the TPR results
for all methods were below the TNR results. The eBayes
method failed to fulfil the analysis task.
In relation to colon cancer, mAP-KL presented similar

classification behaviour to breast cancer, with an AUC
score of 0.89 and a more balanced behaviour between
TNR and TPR (0.71 and 0.84). Only the BGA-COA
method achieved a competitive AUC score of 0.87. The
AUC score for the rest of the methods lay between 0.79
and 0.84. Contrary to breast cancer, the TPR scores were
higher than the TNR scores and range from 0.80 to 0.84
for all methods. Regarding the TNR metric, all methods
but Rnd (0.73) and PCA (0.43) and cat (0.57) achieved
the same score of 0.71. The classification results in 5-CV
are very promising with AUC values from 0.98 to 1.00
for all of the methods except PCA, which attained an
AUC score of 0.79.
Concerning the leukemia datasets, 10 of the methods

(BGA-COA, eBayes, RF-MDA, PLS-CV, SAM, cat, Hyk-
Gene, Rnd, maxT (200) and maxT) performed similarly
in both validation tests. Their AUC were close to 1.00 in
both cases, and the TNR results were better than the
TPR scores. The mAP-KL, although achieving high clas-
sification scores in 5-CV, failed to predict correctly all
AML samples (TPR = 0.43), and as a results its overall
performance was 0.71 during the hold-out validation.
The PCA, SNR and t-test methods failed to predict any
of the 14 AML samples, although they identified all or
almost all of the ALL samples. The ODP algorithm
failed to analyse the colon dataset.
Finally, in prostate cancer, no method succeeded in

discriminating the samples in both types of validation,
alike to NM in neuromuscular diseases section. Even
more importantly, during the hold-out validation, many
of the methods (eBayes, SAM, maxT (200), maxT, PCA,
SNR and t-test) failed to identify even a single sample
from the normal class. Only the HykGene excelled in
this metric with a TNR score equal to 0.89. However, be-
cause of the normal: disease ratio (9 normal and 25 dis-
ease samples), the AUC values of eBayes (0.86) and
SAM (0.92) are a little deceptive. On the other hand,
PLS-CV and mAP-KL appear to have an opposite behav-
iour in relation to TNR and TPR metrics, but the nor-
mal: disease ratio tips the scales in favour of PLS-CV
(AUC = 0.87). Two algorithms, ODP and cat, could not
deal with the prostate data.

Analysis of previous experiments
At a different level of assessment, we compared the mAP-
KL’s classification results of the specific cancer datasets,
against those published in previous classification studies
of the same data. For the purposes of this comparison, we
have cited the author’s name, the classification type, the
number of the features used, and finally the achieved ac-
curacy (ACC). Since we utilized three different classifiers



Table 3 The FS methods sorted by the AUC metric achieved in validation test for each cancer disease using the RF
classifier

FS methods 5-CV Hold-out Validation

AUC TNR TPR AUC TNR TPR

BREAST mAP-KL 0.80 (0.11) 0.79 (0.16) 0.73 (0.18) 0.87 1.00 0.50

maxT(200) 0.85 (0.11) 0.83 (0.13) 0.69 (0.17) 0.83 0.71 0.83

PLS-CV 0.91 (0.08) 0.85 (0.13) 0.77 (0.15) 0.82 0.86 0.42

RF-MDA 0.91 (0.07) 0.91 (0.11) 0.70 (0.16) 0.82 0.86 0.75

maxT 0.87 (0.10) 0.84 (0.13) 0.74 (0.18) 0.77 0.71 0.58

SAM 0.82 (0.11) 0.79 (0.15) 0.69 (0.19) 0.77 0.71 0.75

SNR 0.86 (0.10) 0.85 (0.14) 0.72 (0.20) 0.77 0.71 0.67

BGA-COA 0.83 (0.10) 0.79 (0.15) 0.67 (0.15) 0.76 0.57 0.58

HykGene 0.91 (0.06) 0.86 (0.12) 0.76 (0.17) 0.76 0.71 0.75

Rnd 0.79 (0.01) 0.76 (0.03) 0.65 (0.03) 0.76 0.70 0.78

cat 0.91 (0.07) 0.86 (0.12) 0.78 (0.16) 0.75 0.71 0.50

PCA 0.72 (0.14) 0.66 (0.18) 0.56 (0.19) 0.75 0.43 0.67

ODP 0.83 (0.10) 0.80 (0.14) 0.69 (0.18) 0.74 0.71 0.58

t-test 0.82 (0.10) 0.81 (0.14) 0.69 (0.19) 0.73 0.71 0.58

eBayes - - - - - -

COLON mAP-KL 0.99 (0.03) 0.95 (0.12) 0.97 (0.09) 0.89 0.71 0.84

BGA-COA 0.98 (0.06) 0.89 (0.22) 0.87 (0.19) 0.87 0.71 0.80

Rnd 0.98 (0.02) 0.90 (0.06) 0.90 (0.03) 0.84 0.73 0.82

maxT(200) 1.00 (0.00) 0.94 (0.13) 0.94 (0.13) 0.83 0.71 0.88

PCA 0.79 (0.19) 0.80 (0.23) 0.72 (0.26) 0.83 0.43 0.84

ODP 0.99 (0.03) 0.97 (0.13) 0.93 (0.13) 0.82 0.71 0.80

HykGene 0.98 (0.06) 0.93 (0.14) 0.95 (0.12) 0.81 0.71 0.88

RF-MDA 0.99 (0.03) 0.96 (0.11) 0.93 (0.13) 0.81 0.71 0.80

eBayes 0.99 (0.03) 0.97 (0.11) 0.93 (0.13) 0.80 0.71 0.80

SAM 1.00 (0.02) 0.99 (0.09) 0.93 (0.13) 0.80 0.71 0.80

cat 0.99 (0.04) 0.97 (0.14) 0.93 (0.13) 0.80 0.57 0.80

maxT 1.00 (0.02) 0.97 (0.10) 0.94 (0.13) 0.79 0.71 0.80

PLS-CV 1.00 (0.02) 0.94 (0.16) 0.94 (0.13) 0.79 0.71 0.80

SNR 0.99 (0.03) 1.00 (0.00) 0.93 (0.13) 0.79 0.71 0.80

t-test 0.99 (0.03) 0.99 (0.05) 0.93 (0.13) 0.79 0.71 0.80

LEUKEMIA BGA-COA 0.99 (0.04) 1.00 (0.00) 0.81 (0.27) 1.00 1.00 0.86

maxT(200) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 1.00 0.86

eBayes 1.00 (0.00) 1.00 (0.00) 0.91 (0.19) 1.00 0.95 0.93

RF-MDA 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.99 1.00 0.86

PLS-CV 1.00 (0.00) 1.00 (0.00) 0.89 (0.25) 0.99 0.95 0.93

SAM 1.00 (0.00) 1.00 (0.00) 0.91 (0.19) 0.99 0.95 0.93

cat 1.00 (0.00) 1.00 (0.00) 0.95 (0.14) 0.99 0.95 0.93

HykGene 1.00 (0.00) 1.00 (0.00) 0.90 (0.20) 0.97 0.90 0.93

Rnd 0.99 (0.01) 0.98 (0.02) 0.86 (0.06) 0.97 0.99 0.75

maxT 1.00 (0.02) 0.98 (0.07) 0.85 (0.27) 0.96 1.00 0.64

mAP-KL 1.00 (0.00) 1.00 (0.00) 0.97 (0.17) 0.71 0.90 0.43

PCA 0.56 (0.16) 1.00 (0.00) 0.00 (0.00) 0.64 0.95 0.14

SNR 0.50 (0.00) 1.00 (0.00) 0.00 (0.00) 0.50 1.00 0.00

t-test 0.50 (0.00) 1.00 (0.00) 0.00 (0.00) 0.50 1.00 0.00

ODP - - - - - -
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Table 3 The FS methods sorted by the AUC metric achieved in validation test for each cancer disease using the RF
classifier (Continued)

PROSTATE SAM 0.96 (0.04) 0.97 (0.05) 0.88 (0.10) 0.92 0.00 1.00

maxT(200) 0.95 (0.10) 0.95 (0.10) 0.89 (0.10) 0.88 0.00 1.00

PLS-CV 0.97 (0.03) 0.95 (0.08) 0.92 (0.07) 0.87 0.33 1.00

eBayes 0.96 (0.04) 0.98 (0.04) 0.89 (0.10) 0.86 0.00 1.00

RF-MDA 0.97 (0.04) 0.97 (0.06) 0.90 (0.09) 0.83 0.11 1.00

mAP-KL 0.93 (0.06) 0.90 (0.09) 0.85 (0.11) 0.80 1.00 0.36

BGA-COA 0.95 (0.05) 0.91 (0.09) 0.89 (0.10) 0.73 0.22 0.88

Rnd 0.93 (0.02) 0.89 (0.04) 0.86 (0.03) 0.70 0.18 0.94

HykGene 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.69 0.89 0.24

maxT 0.89 (0.07) 0.88 (0.09) 0.79 (0.13) 0.50 0.00 1.00

PCA 0.84 (0.09) 0.77 (0.15) 0.75 (0.15) 0.50 0.00 1.00

SNR 0.50 (0.00) 0.08 (0.27) 0.92 (0.27) 0.50 0.00 1.00

t-test 0.50 (0.00) 0.08 (0.27) 0.92 (0.27) 0.50 0.00 1.00

ODP - - - - - -

cat - - - - - -
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to build and test mAP-KL’s models, in this comparison we
present all three results achieved.
In relation to the van ’t Veer et al. [23] breast cancer data-

sets, we present the classification results from 9 different
approaches stemming from 7 studies, see Table 4. Regard-
ing the CV test, Hassan et.al [21] and Hu et al. [60]
achieved ACC above 90.00%, higher than van ’t Veer et al.
and with less features. However, they utilized all of the sam-
ples contrary to van ’t Veer et al. Our method achieved
moderate results (ACC= 75.93%) as absolute numbers for
the 78 samples but with only 6 features and 5-CV contrary
to LOO-CV that engaged by the others. In the hold-out
test, although the ACC of mAP-KL is the lowest score, we
did manage to identify correctly all responsive samples.
However, we should consider why we discern only half of
the non-responsive samples (type II error).
Fourteen methods employed the Alon et al. [43] colon

cancer datasets to assess their classification performance,
see Table 5. During the CV assessment we achieved
ACC = 96.00% with RF and KNN classifiers higher than
the one achieved by Tan and Gilbert [63] (95.16%).
Regarding the hold-out validation, Li et al. [64], Nguyen
and Rocke [65] and Furey et al. [66] achieved ACC of
94.1%, 93.5% and 90.30% respectively. We reached to
81.25% and 87.50% ACC with 20 genes contrary to
Nguyen and Rocke with 50 genes.
The ALL/AML discrimination in the leukemia data-

sets, Table 6, as first presented by Golub et al. [6], is the
one most often analyzed among the datasets considered.
More than 16 studies and 29 methods have based their
evaluation on this set of data. Comparing mAP-KL to
Golub classification results, we notice that in CV we
identify one more sample, whereas in hold-out we mis-
classify two samples from Golub, though we did that with
only 5 genes. There are many methods that distinguish
correctly all samples in CV although only Hewett and
Kijsanayothin [38] achieved an ACC of 98.61% with only
two genes, but using all of the 72 samples. Regarding the
hold-out validation, several methods achieved high clas-
sification scores with ACC above 95.00%, though only
Mukherjee et al. [70] reached the 100%, with only 40
genes. Liu et al. [67] predict correctly all samples in both
validation assessments, but we are unaware of the sub-
set’s length. Finally, Singh et al. [40] first employed the
specific prostate cancer datasets and we have included
the results from three studies, Table 7. mAP-KL with the
aid of SVM-linear classifier, misclassified one sample in
hold-out validation just like Liu et al. [67]. However, in
CV we misclassified approximately eight samples more
than Liu et al., but with only 12 genes.

Biological relevance of discriminatory gene lists
The power of the proposed FS approach is evident not
only from its performance in the statistical metrics, but
also from the biological relevance of the selected genes ei-
ther to a broad range of different molecular pathways and
biological processes or more importantly to the respective
pathological phenotypes. Representative examples include
the genes COL3A1, SPARC and PTTG1IP, which are
related to extracellular matrix formation and fibroblast
growth, biological processes consistent with the increased
fibrosis that is observed in skeletal muscles affected by
DMD [75]. In ALS the selected genes FHL2 and ALDOA
have been directly implicated in muscle function and
pathology [76,77] while the multiple genes implicated in
the translational process support previous reports on an
ALS mouse model [78]. In NM and LGMD2B, the struc-
ture associated MYH3, MYH7 and PFN2 genes were



Table 4 An overview of the published classification results in van ’t Veer et al. breast cancer data

Authors Cross Validation Train-Test Features

Samples Accuracy (%) Samples Accuracy (%)

[23] 65/78 83.3 17/19 89.5 70

[21] - 92.13 - 91.67 3

[61] 60/78 76.90 15/19 78.9 231

[61] - 76.20 15/19 78.9 231

[61] 62/78 81.40 17/19 89.5 44

[60] 88/97 90.7 - - 50

[62] 49/78 62.9 - - -

[63] - - 17/19 89.47 834

[38] 66/97 68.04 - - 8

mAP-KL (RF) - 75.93 13/19 68.42 6

mAP-KL (KNN) - 56.35 5/19 26.32 6

mAP-KL (SVM-linear) - 71.47 11/19 57.89 6
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depicted, in agreement with the reports of cytoskeletal
disorganization in the affected muscle fibers of these
patients [41,79]. As opposed to the other skeletal muscle
diseases included in this study, JDM is an inflammatory
myopathy of presumed autoimmune dysfunction. Consist-
ently with the disease pathology, multiple short-listed
genes (CCL5, PCGF2, IFITM1, ISG20) are related to inter-
feron or to chemokine and cytokine production, all key
molecules of the immune system [80].
These findings jointly, demonstrate that despite their

small size, the discriminatory ‘lists of selected genes’ (see
Table 5 An overview of the published classification results in

Authors Cross Validation

Samples Accuracy (%

[67] 57/62 91.94

[67] 53/62 85.48

[66] - -

[64] - -

[68] - -

[68] - -

[68] - -

[65] - -

[65] - -

[65] - -

[65] - -

[69] 52/62 (MAVE-LD) 83.87

[60] 56/62 90.3

[63] 59/62 95.16

mAP-KL (RF) - 96.00

mAP-KL (KNN) - 96.00

mAP-KL (SVM-linear) - 94.00
Additional file 4) depicted by the proposed FS approach
contain biologically relevant genes, representative of the
respective disease related molecular pathways.

Simulation studies
i. The clusters setup
We applied the mAP-KL on training sets of 200 samples
with 10.000 ‘genes’ and diverse number of DEGs. More-
over, for each training set we differentiated the number
of the top ranked genes kept for clustering (see Table 8).
The purpose of this case study was twofold. On the one
Alon et al. colon cancer data

Train-Test Features

) Samples Accuracy (%)

- -

- -

- 90.3 -

- 94.1~ -

- 80.6 -

- 74.2 -

- 72.6 -

- 87.1 -

- 87.1 -

- 93.5 50

- 91.9 1000

- - 50

- - 50

- - 135

26/32 81.25 20

26/32 81.25 20

28/32 87.50 20



Table 6 An overview of the published classification results in Golub et al. ALL/AML leukemia data

Authors Cross Validation Train-Test Features

Samples Accuracy (%) Samples Accuracy (%)

[6] 36/38 94.73 29/34 85.29 50

[67] 38/38 100.00 34/34 100 -

[67] - - 33/34 97.06 -

[64] - - - 94.1 -

[66] - - - 94.1 -

[68] - - - 91.6 -

[68] - - - 94.4 -

[68] - - - 95.8 -

[65] - - - 94.17 50

[65] - - - 95.44 50

[65] - - - 95.94 50

[65] - - - 96.44 50

[70] 38/38 100 31/34 91.17 7129

[70] 38/38 100 34/34 100 999

[70] 38/38 100 32/34 94.11 99

[70] 38/38 100 30/34 88.23 49

[70] - - 34/34 100 40

[70] - - 32/34 94.11 5

[71] - - - 95.0~ -

[71] - - - 95.0~ -

[71] - - - 95.0~ -

[72] 37/38 98 34/34 100 185

[73] 38/38 100 34/34 100 3800

[74] 37/38 98 32/34 94.11 21

[62] 71/72 98.6 - - -

[38] 71/72 98.61 - - 2

[69] 38/38 (DLDA) 100 33/34 (DLDA) 97.06 50

[60] 38/38 100 - - 50

[63] - - 31/34 91.18 1038

mAP-KL (RF) - 98.93 24/34 70.59 5

mAP-KL (KNN) - 93.61 24/34 70.59 5

mAP-KL (SVM-linear) - 97.36 27/34 79.41 5
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hand, we wanted to investigate how many DEGs are
included in our final subset along with their cluster ori-
gin. Furthermore, we explored the influence on the
DEGs’ selection when varying the number of top ranked
Table 7 An overview of the published classification results in

Authors Cross Validation

Samples Accuracy (%)

[67] 98/102 96.08

[63] - -

[38] 124/136 91.18

mAP-KL (RF) - 87.33

mAP-KL (KNN) - 82.22

mAP-KL (SVM-linear) - 87.82
genes. We also employed three other FS methods,
(eBayes, maxT and RF-MDA), keeping either the top 20
ranked ‘genes’ (cases of 50 DEGs, 100 DEGs, 200 DEGs,
300 DEGs) or the top 30 ranked ‘genes’ (cases of 400
Singh et al. prostate cancer data

Train-Test Features

Samples Accuracy (%)

33/34 97.06 -

25/34 73.53 3071

- - 6

18/34 52.94 12

29/34 85.29 12

33/34 97.06 12



Table 9 The subsets of genes selected from the
‘choedata’ according to mAP-KL

Wilcoxon Welch-t

Symbol Position Symbol Position

tun 17 Rim 7983

CG6904 21 CG14254 8561

SH3PX1 53 Cyp4p2 9874

CG10283 66 CG10483 10011

Tgt 92 CG8193 593

CG17930 114 Gdh 11006

CG8300 120 CG17600 3545

b 123 Gprk2 11303

CG12213 162 kek3 2322

RhoGEF2 163 CG5880 10244

Imp 188 CG3544 9612

Dip2 209 CG4785 11063

Spred 219 CG32043 1148

NA 269 CG18125 2424

NA 333 CG7069 9585

orb 9432
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DEGs and 500 DEGs) trying to keep their length com-
parable with the subset’s length of mAP-KL.
As far as the identification of DEGs belonging to dif-

ferent clusters is concerned, the mAP-KL managed to
compose subsets with at least one representative ‘gene’
from each cluster. Besides, as shown in Table 8, in al-
most all cases the maximum subsets’ length does not ex-
ceed the actual number of clusters in the training set. In
relation to the other FS methods, only the RF-MDA
method composed subsets of ‘genes’ with satisfactory
representation of the actual clusters and comparable to
mAP-KL. The eBayes and maxT methods demonstrated
poor enrichment.
With respect to the effect of the number of top ranked

‘genes’ kept for clustering, it is evident that the closer to
the real number of DEGs, the better the identification
and selection of representative genes. Specifically, in
cases where the number of DEGs is considerably lower
than the number of N top ranked genes (e.g. 50 DEGs
with 200 top ranked genes) the identified clusters are less
than the actual. Similarly, when the number of DEGs far
exceeds the number of N top ranked genes the identified
clusters are fewer, for instance 500 DEGs with 200 top
ranked genes parameter. Nonetheless, during the real
gene expression data experiment, we employed a moder-
ate value for the parameter N = 200 top ranked genes.
As a final point, we formed the respective train-test

sets for all methods and evaluated their performance
with the aid of three classifiers (SVM-linear, KNN, RF).
All methods performed accurately (ACC = 100%) for all
three classifiers, see Additional file 7.
ii. The ‘choedata’ setup
In this setup, we were interested in exploring, the length
of the mAP-KL’s subset in relation to the known DEGs
included in it. Therefore, we applied on the ‘choedata’ the
mAP-KL, engaging a non-parametric and a parametric
statistical methods Table 9. We observed that the para-
metric Welch-t test, led us to a subset of 16 genes with
13 DEGs included, whereas the non-parametric
Table 8 The number of clusters identified by mAP-KL for seve
methods (the number of genes per subset is in parenthesis)

Identified Clusters

DEGs Top ranked genes (mAP-KL)

50 100 150 200 250 300 350

50 5 (5) 6 (6) 4 (4) 3 (3) 3 (3) 3 (3) 2 (2)

100 3 (3) 5 (5) 6 (6) 6 (14) 5 (5) 4 (4) 4 (4)

200 3 (3) 6 (6) 8 (8) 10 (10) 11 (11) 11 (11) 8 (8)

300 3 (3) 6 (6) 8 (8) 10 (10) 13 (13) 15 (15) 11 (1

400 4 (4) 6 (6) 8 (8) 11 (11) 13 (13) 15 (15) 18 (1

500 4 (4) 7 (7) 9 (9) 11 (11) 13 (13) 16 (16) 18 (1
Wilcoxon’s test, concluded to a subset of 15 genes with
only 8 DEGs.
We then formed classification models with the assist-

ance of three classifiers (SVM-linear, KNN, RF) and
assessed their performance. Despite this remarkable dif-
ference in the number of DEGs included in the two sub-
sets, the classification results were accurate in both
cases. Nonetheless, including more DEGs in a classifier
is of benefit to the biological analysis if not to the classi-
fication process itself.

Conclusions
The proposed hybrid FS method (mAP-KL), demonstrates
how effective the combination of a multiple hypothesis
testing approach with a clustering algorithm can be to se-
lect small yet informative subsets of genes in binary classi-
fication problems. Across a variety of diseases and
number of samples, mAP-KL presents competitive
ral top N ranked genes compared to three other FS

eBayes maxT RF-MDA

400 450 500

2 (2) 2 (2) 2 (2) 2 (20) 2 (20) 5 (20)

4 (4) 3 (3) 3 (3) 1 (20) 2 (20) 5 (20)

5 (5) 5 (5) 5 (5) 1 (20) 2 (20) 10 (20)

1) 7 (7) 7 (7) 6 (6) 2 (20) 4 (20) 10 (20)

8) 20 (20) 21 (23) 10 (10) 3 (30) 4 (30) 16 (30)

8) 20 (20) 23 (23) 25 (25) 3 (30) 4 (30) 19 (30)
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classification results (Figure 2), compared to other FS
methods and specifically to the HykGene method, which
follows a similar philosophy, first ranking and then clus-
tering. However, we discern an unbalanced behaviour be-
tween the TNR and TPR metrics. In particular, the mAP-
KL outperforms the other FS methods regarding the con-
trol of the type I error but underperforms with regard to
the type II error. This issue is under ongoing investigation
so as to further improve the efficiency of our method.
Apart from the classification performance, its data-

driven and classifier independent features characterize
mAP-KL. Indeed, the engagement of a cluster quality
index diminishes any fuzziness and provides the
Figure 2 The overall performance of the FS methods according to the
not actually a method, according to the mean of the AUC values. The stan
method. The mean value per disease across all feature selection methods i
the prostate cancer were the most difficult cases towards the phenotype d
clustering algorithm with a representative number of po-
tential clusters, as clearly presented in the first simula-
tion data setup. Hence, the data determine the size of
the subset and the clustering algorithm decides on
which informative genes are to be included. Since no
classifier takes part during the subset construction, our
subsets perform efficiently across several classification
algorithms, for instance SVM-linear, KNN and RF. A
further advantage of the employment of mAP-KL is that
the clustering correlation on the gene expression values
may reflect biological relevance of the selected genes
with the respective disease, thus providing a reasonable
basis for discovering prognostic biomarkers [81].
AUC metric. We have sorted the methods, except the Rnd, which is
dard deviation across all diseases quantifies the robustness of each
s a difficulty index of discrimination. The NM from the myopathies and
iscrimination.
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Finally, we would like to highlight some points of interest
in relation to ranked gene lists, which retrospectively con-
firm our initial motivation towards the mAP-KL’s imple-
mentation. In particular, a subset of 200 or more top
ranked genes, may lead to accurate classification as
demonstrated by the results of maxT (200), which achieved
outstanding classification results with AUC= 0.97 in
neuromuscular diseases and AUC= 0.89 in cancers, but
such a lengthy subset may contain a number of irrelevant
genes that will act as “noise” when performing further bio-
logical analysis. On the other hand, keeping a subset of top
N genes, where N = 5,10,. . .n, needs several rounds of “trial
and error” attempts before concluding to the best N value.
Otherwise setting the N parameter arbitrarily does not
guarantee robust and efficient classification results, as
shown in the case of the 20 genes subset of the maxT.
Additionally, forming subsets by selecting genes randomly
from an already ranked list may lead to satisfactory classifi-
cation results. The Rnd technique achieved comparable
classification results to maxT either with 200 or 20 genes
subset. However, the subsets are not reproducible and no
biological evidence can be inferred for them. Taking into
account all the aforementioned issues, we claim that the
novelty and strength of mAP-KL is the efficient sampling
of the ranked gene list, selecting those genes that are ne-
cessary for improved classification, rather than keeping just
a predefined number of top N ranked genes.

Additional files

Additional file 1: This function implements in R-code, the mAP-KL’s
functionality.

Additional file 2: In this file, we present the 5-CV classification
results for all real microarray data, when using three different
classifiers (SVM-linear, KNN, and RF).

Additional file 3: In this file, we present the Hold-out validation
results for all real microarray data, when using three different
classifiers (SVM-linear, KNN, and RF).

Additional file 4: In this file, we have cited the subsets of genes
according to the mAP-KL method.

Additional file 5: Contains the microarray data used in this
experiment. For each disease, we provide the ‘class_labels.csv’, ‘train.csv’
and ‘test.csv’ files, which represent the analogy of samples as described
in table 1. The intensity values are unprocessed.

Additional file 6: In this file, we have cited the clustering setup
parameters, the DEGs position per simulation dataset, as well as
the DEGs identified per method.

Additional file 7: In this file, we present the classification results of
(mAP-KL, eBayes, maxT, RF-MDA) in the first simulation setup, where
the clustering identification was under investigation.We employed
three classifiers (SVM-linear, KNN, and RF).

Additional file 8: In this file, we present the classification results in
the ‘choedata’ when using two different mAP-KL’s subsets,
stemming from two different ranking approaches. We used the
SVM-linear, KNN, and RF classifiers to assess their performance.

Additional file 9: This file contains the relevant scripts and
functions for generating the simulated data. The ‘clusterSim’
r-package is required.
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