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Abstract

Background: Allostery is one of the most powerful and common ways of regulation of protein activity. However, for
most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood.
Uncovering commonmechanistic patterns underlying allostery would allow not only a better academic understanding
of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored
therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the
attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility
of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and
location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on
protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure.

Results: By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric
proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed
normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of
the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes
in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive
predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set,
0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of
allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained
methodology is able to capture the effects triggered by allosteric ligands already described in the literature.

Conclusions: We introduce a simple computational approach to predict the presence and position of allosteric sites
in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at
predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins
with reported allosteric properties. The software developed in this work is available upon request from the authors.

Background
Proteins can be regarded as the functional building blocks
of life, carrying out and coordinating almost all biological
processes. Tight regulation of these processes is funda-
mental in all kingdoms of life and allostery represents one
of the most commmon and powerful means of modulat-
ing protein activity [1]. Allostery can be defined as the
regulation of a protein’s function by binding of an effector
molecule at a site which is not the active site. Its relevance
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was emphasized decades ago by Jacques Monod, when
he referred to allosteric regulation as the ‘second secret
of life’, second only to the genetic code [2]. Even though
allostery and its often intrincate nature have captured
the interest of researchers since the initial discoveries
more than half a century ago (for a review see [3]), most
allosteric mechanisms are still not completely understood
[1]. At present, allosteric phenomena are being intensively
studied for their potential as target mechanisms for the
development of new classes of therapeutics [4].
Expanding drug-design through allostery opens up an

unexplored territory of novel potential therapeutic solu-
tions, beyond what has been already covered by the
classic, active-site oriented drug-development approach.
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An important factor fueling interest in allosteric drugs
consists in their characteristic advantages compared to
traditional active-site inhibitors. For example, allosteric
sites tend to be under lower sequence-conservation pres-
sure than active sites, facilitating the design of highly
specific drugs and reducing the risks of toxicity or side-
effects [5-7]. To explain this briefly, if the pathogen’s
active site is very well conserved in nature it may share
important structural features with the human homo-
logue, which could be then bound and inhibited as well
by the antimicrobial drug causing toxic side-effects on
the patient. Thus, lower levels of evolutionary conser-
vation at ligand-binding sites may allow for more selec-
tive drugs. Furthermore, allosteric drugs may not only
inhibit but also increase target-protein activity, enabling
novel therapeutic possibilites as seen for example in the
activation of glucokinase by allosteric drugs, a potential
treatment for type 2 diabetes mellitus [8,9]. On the same
line, traditional drugs may be complemented by allosteric
effectors, as observed in the case of aminoglycoside phos-
photransferase where a previously unknown binding site
could be exploited to allosterically counteract antibiotic
resistance [10].
However, the field of allosteric-drug design is rather

young and the amount of allosteric drugs known today is
still marginal [7]. For example, at the time of this writing
a query in DrugBank [11] for the term ‘allosteric’ returns
7 results, while ‘inhibition’ returns 483 entries. This may
be in part due to the intrinsic difficulties in understand-
ing allosteric mechanisms and to the lack of systematic
studies on the topic [12]. Only recently the first initia-
tive to store and organize information on allosteric cases
has surfaced in the form of the AlloSteric Database (ASD)
[13]. By browsing ASD it becomes apparent that part of
the difficulty in studying allosteric systems lies in the large
degree of variety found among them, as there are many
ways in which protein activity can be affected alloster-
ically [12,14]. A textbook example is the one provided
by glucose-induced glucokinase, in which the ligand trig-
gers a conformational change allowing the active site to
become functional [15]. In other cases the presence of
the allosteric ligand triggers the formation of the bio-
logically active protein complex (e.g. GTP cyclohydrolase
stimulatory complex [16]). A protein illustrating the vari-
ety and complexity allosteric mechanisms may reach is
ribonucleotide reductase. This protein presents two dif-
ferent allosteric sites: one affects the enzyme catalytic rate
and the other alters its specificity allowing the enzyme
to switch substrates [17]. Furthermore, allosteric signals
may also propagate solely by altering protein dynamics,
without a detectable conformational change [18,19].
In the context of such diversity, unveiling common

patterns beneath allosteric phenomena could increase
their potential for therapeutic exploitation, stimulating

the design of allosteric drugs. We postulate that the first
step in such a procedure would be to computationally
detect or predict the presence and location of protein
allosteric sites, to allow further focusing of drug-screening
processes on selected protein targets down the pipeline.
The algorithm should be able to pinpoint which proteins
are sensible to allosteric regulation. However, if as already
suggested any dynamic protein has the potential to be
regulated allosterically [20], then the method should indi-
cate the location of putative allosteric sites on the protein.
Based solely on sequence, it would be very hard to pre-
dict the location of allosteric sites as it has been done
by homology on active sites [21,22], because the evolu-
tionary pressure for sequence conservation on allosteric
sites is generally much lower and harder to detect, if at all
present [3,23].
Until now, much of the research in the field has

been focusing on the conformational changes induced
by allosteric signals. The group of Jeffrey Gray studied
conformational changes upon allosteric activation [24]
and expanded this research by analysing the networks of
quaternary and tertiary motions on which allosteric com-
munication relies [25]. Following a similar line, a very
interesting and thorough study was published where dif-
ferent parameters were interrogated in terms of their
potential to indicate which protein residues are involved
in transmitting the allosteric signal, on the basis of experi-
mental mutation data [26]. The results from these analyses
aim at defining the particular pathway of residues that
mediate the allosteric communication. However, other
authors have argued that this may not be the case in vivo,
where multiple effector sites may be present on the pro-
tein acting through multiple signaling pathways [27]. In
general, recent studies aggree in the idea that allostery is
mainly a thermodynamic process and among the different
protein properties that are involved in allosteric phenom-
ena, flexibility (i.e. protein dynamics) stands out as the
most significant one [3,28-31].
Following this line of thought, Ming and Wall devel-

oped a theoretical framework to study allosteric effects by
comparing the dynamics of bound and unbound protein-
ligand pairs [32]. They further refined their methodology
and tested its ability to predict functional ligand-binding
sites (not necessarily linked to allosterism) on a set of 305
protein-ligand complexes of known structure [33]. Very
recently, two other approaches partially aiming at predict-
ing allosteric sites have been published by Mitternacht
and coworkers. In a first article they describe a geomet-
ric measure that helps at locating biologically functional
ligand-binding sites, while a second one describes a more
elaborate measure called ‘binding leverage’, related to
protein dynamics, which appears useful at locating bio-
logically relevant binding sites including allosteric sites.
They tested this last feature on 15 allosteric proteins
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[34,35], observing different results for specific proteins
and concluding that regulatory sites may be identified
without previous experimental knowledge on conforma-
tional changes. However, these studies were not com-
pletely focused on allosteric sites and did not benefit from
the larger data set now available at ASD [13].
Even though the previously cited articles represent an

important step forward in the understanding of allostery,
we consider that further research is needed if allosteric
sites are to be predicted with the same coverage and pre-
cision as active sites [21,22]. The first thing we did in
this direction was to integrate more than one hundred
allosteric entries available at ASD. Among the multiple
allosteric mechanisms known and the different effectors
(other proteins, small-molecules, phosphorylation, etc),
we chose to focus on small-molecule ligands, as these are
the best candidates to be mimicked by therapeutic drugs
[4,14]. Moreover, the approach presented here is based
on the idea that changes in protein flexibility upon ligand
binding can be related to allosteric and regulatory effects
[1,24,36-38]. A simple computational way to estimate pro-
tein structural flexibility is the use of Normal Mode Anal-
ysis (NMA) [32,35,38,39]. In this case, however, we were
not interested in measuring absolute flexibility values but
the change in flexibility that occurs when a ligand binds
to the protein structure in a particular location, in a sim-
ilar fashion to the approach developed by Ming and Wall
[32]. Once we had gathered and filtered allosteric pro-
teins of known structure, we tested if changes in flexibility
could be linked to the presence of the allosteric ligand.
Experiments were performed using different molecular
representations of the small-molecule ligands, and across
different ranges of normal modes. Moreover, as a con-
trol we simulated the presence of ligands in alternative
binding sites. This helped in parameterizing the method-
ology and made it applicable to cases where there is no a
priori knowledge on the allostery the protein may present.
Besides evaluating the overall results on a set of allosteric
proteins, we took a closer look into particularly interesting
cases.

Results and discussion
Gathering structural data on allosteric sites
To study allosteric sites from a structural perspective we
first gathered the available data. We started by integrat-
ing the 146 allosteric site entries that were, at the time of
this writing, annotated in the AlloSteric Database (ASD)
[13] with another 72 allostery examples we had previously
found in the literature. We proceeded to filter and clus-
ter the data set as described in the Methods section to
avoid overrepresentation [40] and low quality structures,
turning the inital 213 cases into a total of 91 representa-
tive proteins where both the structure and location of the
allosteric ligand are known.

Allosteric-ligand presence affects protein flexibility
Our first experiment aimed at quantifying the number of
proteins in our data set that undergo a significant change
in flexibility when the allosteric ligand is bound. However,
known allostery cases show large diversity in their mech-
anisms [12] and we did not expect a positive result on the
complete data set, since in many cases the allosteric effect
may not be primarily driven by changes in local or overall
flexibility but specific conformational changes, oligomer-
ization or other mechanisms may be more relevant [41].
As explained in the Background section, we have cho-

sen to estimate flexibility using Normal Mode Analysis
(NMA). When applying NMA, calculated low-frequency
modes reflect large collective oscillations of the pro-
tein structure and high-frequency modes reflect small
local fluctuations [39]. Even though for most cases it has
been shown that low-frequency normal modes are better
descriptors of allosteric effects [42], we made no a priori
assumption on the set of normal modes that would be
more appropriate to detect an allosteric effect upon lig-
and binding for the ample protein set studied here. Thus,
we decided to explore this parameter by using different
ranges of normal modes, as described in the Methods
section.
We used the calculated normal modes to predict

B-factors [39], as this is a standard quantity for the esti-
mation of protein flexibility [38]. Briefly, NMA calcula-
tions were performed for proteins in our data set both
in the presence and absence of the allosteric ligand. For
each protein, Cα B-factors derived from both conditions
were compared and considered to be significantly dif-
ferent if the Wilcoxon-Mann-Whitney test returned a
p-value < 0.05.
The results are displayed in Figure 1 and show that for

the majority of the data set protein flexibility is signif-
icantly affected by the presence of the allosteric ligand.
For most cases the effect was only observed when low-
frequency normal modes were considered, as expected
[35]. However, there are exceptions like the ribonucleotide
reductase from Thermotoga maritima ([PDB:1XJF]), for
which the allosteric effect has been described to be related
to the local stabilization of three loops in the structure
[4,17] and was captured only by high-frequency normal
modes in our calculations.

Effect of ligand representation on the NMA results
We performed a second experiment to measure how dif-
ferent the results from this approach would be if we used
a simplified molecular representation instead of the full-
atom ligand, given the fact that knowledge on the ligand
structure may not always be available. Moreover, a pre-
dictive approach that does not require information on
the ligand molecule has a much larger field of application
(e.g. structural genomics) paving the way for the discovery
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Figure 1 Ligand simulation. Identification of changes in flexibility upon ligand binding when using different ligand representations. Normal-mode
range X-Y corresponds to the initial X modes being skipped and the next Y modes being taken into account.

of novel and pharmacologically interesting allosteric sites.
Another interesting possibility that would open up is the
detection of serendipitous allosteric sites, which despite
having no natural ligand effectively become an allosteric
site given the presence of an appropriate ‘opportunistic’
ligand [1].
We tested two representations of ligands: a single

dummy atom located at the ligand geometric center and a
set of 6 dummy atoms located at the vertices of an octa-
hedron around the geometric center, as explained in the
Methods section.
Figure 1 shows that for most cases the single dummy

atom at the ligand geometric center is not able to trigger
a significant change in flexibility during the simulations,
while the octahedron exerts an effect much closer to that
of the full-atom ligand. From a methodological point of
view, simulating ligands in a simplified form allowed us to
perform control experiments which are described below.

Predicting ligand-binding pockets and selection of normal
mode range
To further develop a predictive approach, we used the
LIGSITEcs program [43] to predict the putative ligand-
binding sites on the protein structure. Different programs
are available for this task with very good performance
in general as shown in recent reviews [44-46]. We chose
LIGSITEcs because pockets are predicted based only on
the shape of the protein surface; programs incorporating
more parameters (e.g. evolutionary conservation, drugga-
bility) could have improved but also biased our results.
We predicted the location of up to 8 ligand-binding

pockets per protein and performed NMA to check if any
of the predicted pockets had a significant effect upon pro-
tein flexibility when occupied by a small-molecule ligand,
as described in the Methods section.
A pocket that presents no ligand (i.e. appears empty

in the original structure) may nevertheless display a

significant change in overall flexibility if occupied by a lig-
and representation when performing the normal-modes
calculation. It would be wrong to consider this directly an
error, since native ligands may exist that bind this pocket
even if there is none present in the particular experimental
structure under study. A few examples are mentioned in
the next section, where we found pockets that affect pro-
tein flexibility and, although they are indeed not allosteric
sites, they are active sites or other biologically relevant
sites. Nevertheless, to guide the definition of the model
we needed an error propensity estimate for the different
parameters tested, i.e. range of normal modes and ligand
molecular representation. If all pockets predicted on the
protein surface would be found to affect significantly the
flexibility, the corresponding parameters would be render-
ing the method too sensitive (low specificity) and prone
to present false positives. Based on this argument, we
estimated error propensity (ep) for each range of nor-
mal modes and the two ligand representations using the
following ad hoc equation:

ep = p7 + p8 + 1
p1 + p2 + 1

(1)

where px is the number of cases in which x pockets were
predicted to be significantly affecting the overall protein
flexibility. Note that this equation does not formally stand
for an error but simply gives an idea of the likelihood of
having false positives. The results are displayed in Figure 2
and show that the octahedron representation, combined
with the lowest frequency normal modes, leads to a higher
specificity (lower number of pockets significantly affect-
ing overall dynamics) than the single dummy atom at the
geometric center. We then decided to continue our work
using the octahedron representation of ligands together
with normal modes in the range 6-20.
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Figure 2 Error propensity estimation. Ratios between the number of cases with 1 or 2 significant pockets and the number of cases with 7 or 8
significant pockets. Normal-mode range X-Y corresponds to the initial X modes being skipped and the next Y modes being taken into account.

Overall performance when predicting allosteric sites
At the time of this writing, no large-scale study attempt-
ing the prediction of the allosteric-site location in known
allosteric proteins has been published. Recent work
by Demerdash and coworkers aimed at predicting the
residues involved in the propagation of allosteric sig-
nals within a protein structure for a set of 16 different
proteins [26]. Quite distinctly, our method follows a drug-
discovery oriented approach where the intention is to pin-
point specific protein pockets that present a high potential
for affecting biological function. From that perspective
our method is comparable to the one developed by Ming
and Wall for finding functional sites, as it exploits NMA
to assess the differences in flexibility between ligand-
bound and unbound states of a protein [33,47]. However,
their approach differs from ours in multiple major points,
including the sampling of protein sites, the parametriza-
tion of probes and of their interaction with the protein and
the approach by which the perturbation of protein dynam-
ics is assessed. The method described in this paper is also
similar to the approach recently published by Mitternacht
and coworkers, where they measured the ‘binding lever-
age’, or ability of a binding site to couple to the intrinsic
motions of a protein, on a set of 15 allosteric proteins [35].
In this context, any pocket with a biological regulatory

role would be suited for the analysis, but we chose to
focus on allosteric sites since these are possibly the most
interesting, albeit complex, regulatory sites to approach.
Starting from a data set containing 91 proteins, we mea-
sured the rate of success of our approach to identify
allosteric sites as follows. First, we discarded a total of 33
proteins for which no single LIGSITEcs predicted pocket
matched the allosteric site, leaving a total of 58 cases to
work with (63,7%). The rational for discarding these pro-
teins is that the present analysis is not concerned with
the ability of a specific program to detect a cavity but

with the ability of our approach to identify the cavity,
among those detected, that corresponds to the allosteric
site. Indeed, it has been previously observed that not all
allosteric sites are predicted to be potential ligand-binding
cavities by common algorithms [35]. There can be differ-
ent reasons for this, for example the allosteric site may be
deeply buried in the protein, may display a planar shape or
be located at the interface of subunits, making it difficult
for the pocket-prediction algorithm to detect its presence.
A total of 464 pockets were predicted on the surface of

the 58 proteins (8 per protein). The chance of randomly
selecting an allosteric site is low, given that only 13% of
these pockets (one per protein) matched the location of
an allosteric site (i.e. its center less than 5 Å away from
the allosteric ligand; if more than one pocket matched the
ligand position within this cut-off, the closest was cho-
sen). After performing the analysis of normal modes, 117
pockets display a significant effect on the overall pro-
tein flexilibity upon ligand binding (set F in Table 1). The
chance of success (positive predictive value) more than
doubles with the incorporation of this analysis, with 27%
of these 117 pockets matching an allosteric site. Further-
more, we integrated these results with our previous work
on protein-pocket conservation by selecting pockets that
display at least 50% structural conservation, as defined
previously [23]. Interestingly, considering protein conser-
vation alone (set S in Table 1) results in a slightly lower
positive predictive value than considering only flexibil-
ity. While the two measures show the same specificity,
using the effect on flexibility as criterion leads to a slightly
higher sensitivity than using the structural-conservation
feature. The double-filtered set, combining the effect on
flexibility with a high structural conservation (set FS),
contains only 36 pockets, of which 15 (42%) match an
allosteric site (Table 1). This represents a nearly four times
larger positive predictive value than ‘random’ selection
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Table 1 Prediction results on protein allosteric sites

Set TP+FP TP FP FN Sensitivity Specificity Accuracy PPV

Total 464 58 406 0 1.00 0.00 0.13 0.13

F 117 32 85 26 0.55 0.79 0.76 0.27

S 108 24 84 34 0.41 0.79 0.75 0.22

FS 36 15 21 43 0.26 0.95 0.86 0.42

c123 174 44 130 14 0.76 0.68 0.69 0.25

c123F 74 29 45 29 0.50 0.89 0.84 0.39

c123S 55 22 33 36 0.38 0.92 0.85 0.40

c123FS 30 14 16 44 0.24 0.96 0.87 0.47

c1 58 26 32 32 0.45 0.92 0.86 0.45

c1F 42 22 20 36 0.38 0.95 0.88 0.52

c1S 25 15 10 43 0.26 0.98 0.89 0.60

c1FS 20 13 7 45 0.22 0.98 0.89 0.65

Results on this table refer to the subset of 58 proteins for which LIGSITEcs was able to predict a ligand-binding pocket in the position of the allosteric site. TP: true
positive; TN: true negative; FP: false positive; FN: false negative; PPV: positive predictive value. Sensitivity: TP/(TP+FN); specificity: TN/(TN+FP); accuracy:
(TP+TN)/(TP+FN+TN+FP); PPV or precision: TP/(TP+FP). The total number of pockets considered, predicted by LIGSITEcs , is 464 (8 per protein). F corresponds to sets
including a change in flexibility as selection criterion; S corresponds to sets including high structural conservation as selection criterion; c123 refers to sets considering
only the three largest pockets predicted by LIGSITEcs ; c1 refers to sets considering only the largest predicted pocket.

within the 464 identified cavities, at the expense of reduc-
ing further the sensitivity of the approach, i.e. decreasing
drastically the number of false positives but increasing
also the number of false negatives.
However, it will not be common to select up to

eight pockets per protein as potential allosteric sites. A
researcher working on a particular protein without a
priori knowledge on its regulatory mechanism will proba-
bly keep the first three largest pockets predicted by default
[43] or, as Thornton and coworkers explain for the case of
active sites [21], the largest pocket will usually be the best
bet. In those two scenarios, the tendency shown for the
complete set of predicted pockets is conserved (Table 1).
When keeping the first 3 pockets (set c123), the chance
to match an allosteric site (positive predictive value) goes
from 25% to 39% when using the flexibility criterion and
up to 47% when incorporating structural conservation as
well. Out of the 58 allosteric sites, however, 14 are not
found within the c123 set. Likewise, when selecting only
the first and largest pocket, the inital success rate goes
from 45% to 52% when considering the effect on flexibility
upon binding (set c1F) and to 65% when structural con-
servation is also required. Note that between sets FS and
c1FS the number of false positives decreases by three-fold,
while only two additional false negatives are added.
We considered only allosteric sites as desirable matches.

However, other pockets with biological functions were
matched by our criteria, as described further below
on a few particular examples. The performance of this
approach might be improvable using other pocket pre-
diction programs or a combination of them. However,
performance of pocket prediction methods does not vary

largely, as shown by a recent large-scale comparison [45].
Our study represents the largest test to date (58 non-
redundant proteins in complex with their corresponding
small-molecule allosteric ligands) proving the concept
that changes in overall flexibility upon ligand binding are
relevant identifiers for some allosteric sites, and these
effects can be captured in many cases with the simple
approach described here. In addition, we further show
(see also [23]) that evaluation of the structural conserva-
tion of the candidate pockets may contribute as much to
the identification of the allosteric site.

Biological examples
As mentioned in the Background section, allostery can
work through many different mechanisms. Thus, we con-
sider it important, besides the overall results presented
above, to explain the results for a few proteins in more
detail. The following section should help to better illus-
trate the relevance of incorporating a flexibility measure
when studying allosteric systems and predicting the loca-
tion of allosteric sites.

Glyceraldehyde 3-phosphate dehydrogenase
Aldehyde dehydrogenases (ALDH) are found across all
kingdoms of life. They play a vital role in multiple cel-
lular processes, including glycolysis, detoxification and
embryogenic development. A distinct family within the
ALDH superfamily consists of the non-phosphorylating
glyceraldehyde-3-phosphate dehydrogenases (GAPN),
which catalyze the phosphate-independent irreversible
oxidation of glyceraldehyde 3-phosphate (GAP) to 3-
phosphoglycerate using NAD(P) as a cosubstrate. Unlike
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other proteins in the GAPN family, the enzyme of the
hyperthermophilic Archaeum Thermoproteus tenax
(Tt-GAPN) is regulated by a set of inhibitors (NADH,
NADP(H) and ATP) and activators (AMP, ADP, glucose
1-phosphate and fructose 6-phosphate (F6P)) which
decrease or increase, respectively, the affinity for NAD.
This suggests that Tt-GAPN plays a crucial role in
regulating the carbohydrate catabolism in T. tenax [48].
All different activators bind to the same allosteric site,

which is locatedmore than 20 Å away from both the active
site and the cosubstrate-binding site of any monomer of
the tetramer [49]. The activator binding site is located at
the interface between the tetramerization domain and the
cosubstrate binding/catalytic domains. It is also observed
that the allosteric ligands are in direct contact with 3
or even four monomers in the protein complex, indicat-
ing a role in the stabilization of the complex. This role
probably combines with the detected effect on flexibility
to influence enzyme kinetics, as no large conformational
change is observed when comparing the ligand-bound
and ligand-free structures besides a rearrangement of the
tetramerization domain with respect to the cosubstrate
binding/catalytic domain [49].
In our analysis, PKT5 (the fifth largest pocket predicted)

matched the location of the allosteric effector F6P, as
shown in Figure 3. When a ligand was simulated occupy-
ing this pocket, using the octahedron representation, the

Figure 3 Glyceraldehyde 3-phosphate dehydrogenase. Predicted
pockets and ligands on Thermoproteus tenax glyceraldehyde
3-phosphate dehydrogenase (TtGAPN). Only a single protein
monomer is shown ([PDB:1UXR]). NADPH at the active site and
activator fructose-6-phosphate (F6P) at the allosteric site are shown in
‘sticks’ representation, while residues in red correspond to the CSA
[21] active site annotations. Predicted pockets (geometric centers) are
shown in ‘spheres’ representation, the pocket in orange color
affected protein flexibility significantly according to our simulations,
while yellow did not.

overall flexibility of the protein was significantly affected
on all ranges including the lowest frequency modes
(p-value <= 0.001). No other pocket presented the same
behaviour (Figure 3), not even the largest pocket (PKT1),
which matches the position of cofactor NADP. Given the
‘hinge-like’ position of the activator binding site and the
variety of ligands that it can accomodate, we consider this
case a good example to speculate that the actual posi-
tion of the ligand in the structure plays a major role in its
effect on the protein activity, beyond the particular chem-
ical properties of the ligand itself that may be important
for binding.

PDK1 kinase
PDK1 kinase is a key regulator of AGC kinases, which
play crucial roles in physiological processes relevant to
metabolism, growth, proliferation and survival [50]. This
protein is regulated allosterically by the binding of a
phosphopeptide which Biondi and coworkers managed to
mimic with a low-molecular-weight activator [51] and fur-
ther solved the structure of the complex [52]. As shown in
Figure 4, the largest pocket (PKT1) matches the binding
site of ATP. In our analysis, PKT1 affected protein flexibil-
ity significantly onmost normal-mode ranges. The second
largest pocket predicted (PKT2) matches the location of
the allosteric activator (PS48) at the HM/PIF binding site.
According to the analysis, based on the lowest-frequency
normal modes (6-5 range) PKT2 significantly affects over-
all protein flexibility if occupied by a ligand.
Another predicted pocket (PKT7), appears to signif-

icantly affect protein flexibility on most normal-mode
ranges when occupied during the NMA. This pocket

Figure 4 PDK1 kinase. Predicted pockets and ligands on PDK1
kinase ([PDB:3HRF]). Ligands (ATP, allosteric effector PS48) and the
modified residue phosphoserine (SEP) are shown in ‘sticks’
representation, residues in red correspond to the CSA [21] active site
annotations. Predicted pockets (geometric centers) are shown in
‘spheres’ representation, orange pockets affected protein flexibility
significantly according to our simulations, but yellow did not.
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is not occupied by any ligand in the original structure
([PDB:3HRF]), but it does match the position of a phos-
phoserine (SEP) in the activation loop of PDK1, as shown
in Figure 4. Also in this pocket, residue THR226 is con-
sidered a crucial element of the allosteric mechanism of
this protein, given that mutation of this residue inhibits
activation without inhibiting binding [52]. These results
indicate that stabilization of this protein region would
have an effect on the overall flexibility of the protein,
linking it to a regulatory function which correlates with
what has been observed previously based on deuterium
exchange and other experimental procedures [52]. The
other 5 pockets predicted on this structure were not found
to significantly affect protein flexibility.

HIV reverse transcriptase
Non-nucleoside reverse transcriptase inhibitors (NNR-
TIs) are key elements of the so-called HAART (Highly
Active Antiretroviral Therapy) multi-drug treatments
against HIV-1 infection. However, rapid mutation of HIV-
1 compromises the efficacy and durability of HAART.
This high mutation rate fuels the need to discover novel
agents with better activity profiles against HIV-1 reverse
transcriptase (RT) and its most common mutants. In this
context, Anthony and coworkers have developed sub-
stituted tetrahydroquinolines which are potent allosteric
inhibitors of HIV-1 RT and some of its key mutants [53].
In our normal-mode analysis the two significant pockets

matched the position of the allosteric ligands, as dis-
played in Figure 5. The allosteric site is located in a
‘hinge-like’ position between domains, a position which
has even been exploited for the engineering of regula-
tory sites as well [54]. A ligand bound in this position

Figure 5 HIV reverse transcriptase. Predicted pockets and ligands
on HIV reverse transcriptase ([PDB:3I0R]). Compound RT3 at the
allosteric site is shown in ‘sticks’ representation, while residues in red
correspond to the CSA [21] active site annotations. Predicted pockets
(geometric centers) are shown in ‘spheres’ representation, the pocket
in orange color affected protein flexibility significantly according to
our simulations, while yellow did not.

would easily perturb the low frequency modes of vibra-
tion of the protein, thus affecting its overall flexibility and
subsequently altering protein function. All other pock-
ets predicted on this structure were found not to affect
protein flexibility significantly, meaning that a hypotheti-
cal blind drug-design approach focused on the significant
pockets from the NMA would have been successful. This
is an excellent example showing that the combination of
pocket prediction and NMA may pinpoint the location
of the allosteric/regulatory site based solely on structural
data.

L-lactate dehydrogenase
When glycolysis takes place under anaerobic conditions,
pyruvate is reduced to L-lactate, a reaction that is cat-
alyzed by L-lactate dehydrogenase (LDH). In contrast
to their mammalian counterparts, some bacterial LDHs
display allosteric regulation by fructose 1,6-bisphosphate
(FBP) [55]. Iwata and co-workers solved the structure of
Bifidobacterium longum LDH in both active (R) and inac-
tive (T) states, co-crystallized with the allosteric activator
[56]. A significant difference can be observed between the
B-factors of both structures, suggesting an overall change
in flexibility being part of the allosteric mechanism.
We mentioned this protein in our previous work [23],

where we found the allosteric site to be structurally con-
served although no signal of sequence conservation was
found. In the current analysis, the only pocket that per-
turbed the overall flexibility of LDH when we simulated
the presence of a ligand was the second largest pocket
(PKT2), which is also the one closest to the allosteric site,
as displayed in Figure 6. We did not consider this case
as a ‘match’ in the large-scale results shown in Table 1
because the pocket geometric center is 6.6 Å away from
the allosteric ligand, thus failing the pre-defined thresh-
old of 5 Å. However, after visual inspection we considered
this case relevant because the ligand is occupying the same
large pocket, even if it is not located precisely at the pocket
center defined by LIGSITEcs.
No other pocket on this protein displayed an effect

related to flexibility according to our calculations when
considering the normal mode range 6-20, not even those
pockets matching the location of the active site or other
ligands.
Given that animal LDHs are not regulated allosteri-

cally, this protein/pocket could be an excellent target for
antimicrobial compounds. To further explore this idea,
we analyzed the human LDH homolog ([PDB:1I10]) as
well, which shows a sequence identity of 37.7% and a local
RMSD of 1.04 Å according to the SUPERPOSE web server
[57] when compared to Bifidobacterium longum LDH.
On the human protein, which is not regulated alloster-
ically, the pocket equivalent to the allosteric site in the
bacterial homolog did not produce a significant effect on
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Figure 6 L-lactate dehydrogenase. Predicted pockets and ligands
on L-lactate dehydrogenase ([PDB:1LTH]). Fructose-1,6-bisphosphate
(FBP) at the allosteric site is shown in ‘sticks’ representation as well as
NAD which is colored blue, while residues in red correspond to the
CSA [21] active site annotations. Predicted pockets (geometric
centers) are shown in ‘spheres’ representation, the pocket in orange
color affected protein flexibility significantly according to our
simulations, while yellow did not.

flexibility according to our calculations. It is remarkable
that a coarse approximation such as this (based on Cαs
and NMA) is able to distinguish that the presence of the
allosteric ligand has a significant effect on the bacterial
protein flexibility but not on its human homolog.

Conclusions
In this article we have proposed a very simple approach
exploiting changes in protein flexibility upon ligand bind-
ing to predict the presence and location of allosteric sites.
We tested the methodology on a non-redundant set of 58
proteins achieving in the best case a success rate (positive
predictive value) of 65%, with a sensitivity of 0.22. Further-
more, we analyzed four cases inmore detail, revealing how
the coarse-grained approach described here is able to cap-
ture the effect triggered by the allosteric ligand, matching
the current literature. The structural analysis proposed
here could help medicinal chemists and other researchers
on their way through the promising field of allosteric-drug
design.

Methods
To ensure that the quality and nature of the selected struc-
tural data was appropriate to our study, we discarded
structures with a resolution lower than 3 Å or with a
G-Factor lower than -1, as calculated by PROCHECK
[58]. We conservatively defined a non-redundant data set
to avoid possible bias in the results that may arise from

overrepresentation of any protein family [40]. Cluster-
ing was performed with the BLASTCLUST program [59]
using a threshold of 30% sequence identity, which grouped
the 213 initial entries into 91 groups. We then selected
the highest resolution structure of each group as its rep-
resentative and defined a non-redundant data set which
contained a total of 91 distinct allosteric proteins, for
which the structure and location of both the allosteric site
and ligand were known.
Normal mode analysis (NMA) was performed on the

protein crystallographic structures with and without a
probe ligand, in its three different representations (full
atom, octahedron and geometric center, see below). The
simplified ligand representations (octahedron and geo-
metric center) were alternatively placed in each of the
eight predicted pockets. The NMA was based on the
implementation of Sanejouand and coworkers [39,60]
using the programs PDBMAT and DIAGRTB. The calcu-
lation involves the diagonalization of the mass-weighted
Hessian (H) of the potential energy function V . Following
Tirion’s Elastic Network Model [61], the potential energy
V is simply described as a set of harmonic springs of equal
strength k linking every pair of Cα atoms with a distance
smaller than Rc in the crystallographic structure:

V =
∑

r0ij<Rc
i<j

k(rij − r0ij)
2 (2)

where r0ij is the Euclidean distance between atoms i and j
in the crystallographic structure and Rc and k were given
in this study the values 10 Å and 1 Kcal mol−1 Å−2,
respectively. Note that this energy function was designed
in such a way that it does not require energy minimization
of the X-ray structure prior to the normal-mode calcu-
lation since the X-ray structure is the minimum of the
function. Although this method uses very gross approxi-
mations (reduction to Cα atoms, extremely simple energy
function, no solvent), it has proven to perform surpris-
ingly well in front of both more complex approximations
and experimental data (B-factors) [39,60,62].
The eigenvectors and eigenvalues of H correspond

to the normal modes, characterizing the direction and
amplitude of the vibrational motion, and frequencies of
vibration, respectively. They can be used to calculate
mean-square displacements of the atomic cartesian coor-
dinates x (

〈
x2

〉
) as:

〈
x2i

〉 = KBT
mi

nv∑

j=1

a2ij
w2
j

(3)

where xi is the coordinate i, mi the corresponding mass,
KB Boltzmann’s constant, T the temperature, nv the num-
ber of modes considered, wj/2π the frequency of normal
mode j and aij the coordinate i of normal mode j. The
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resulting mean-square radial displacements of atom posi-
tions

〈
r2

〉
can in turn be used to estimate atomic B-factors

as:

B = 8π2

3
〈
r2

〉
(4)

Low-frequency modes reflect large collective or delo-
calized motions in the protein structure, while high-
frequency modes reflect small vibrations in localized
regions. We estimated B-factors for the ligand-bound and
unbound protein structures using different ranges of nor-
mal modes to explore this variable. Ranges were named
using two numbers X-Y: Starting from the low frequency
modes, X is the number of modes that are skipped and Y is
the number of normal modes that are taken into account.
The first six normal modes, with zero frequency, are of no
interest as they represent rigid-body translation and rota-
tion. The ranges tested were: 6-5, 6-10, 6-20, 6-50, 6-94,
11-10, 16-10, 26-10, 56-10, 90-10, 16-84, 26-74, 56-44 and
96-4.
We prepared protein coordinate files for NMA as

follows: (1) Protein chains in direct contact with the
allosteric ligand (i.e. multiple residues within 3.0 Å) were
selected and atoms belonging to other chains ormolecules
in the structure were removed. (2) The LIGSITEcs pro-
gram [43] was used to predict up to 8 pockets per struc-
ture. (3) After pocket prediction, protein structures were
parsed to keep Cα atoms only.
We took the first 100 normalmodes for each protein and

ligand representation: apo, the Cα only ‘apo’ protein crys-
tallographic structure (allosteric ligand is not present);
ligand, same protein structure as in ‘apo’ but including the
allosteric ligand (or a simplified molecular representation)
in the allosteric site; PKTX, same protein structure as in
‘apo’ plus a simplified molecular representation of a ligand
occupying the predicted pocket number X (1 to 8).
In the last case, the molecular representation of the

ligand was located at the pocket geometric center, as
predicted by LIGSITEcs.
The ligand molecule during NMA was simulated in dif-

ferent ways: full atom, all atoms in the ligand molecule
are included in the calculation; geometric center, a sin-
gle dummy atom located at the ligand-pocket geometric
center is considered; octahedron, the ligand’s presence is
simulated by a dummy atom positioned at the geometric
center and six extra dummy atoms located at 4 Å distance
from the center on both sides of each axis (i.e. forming the
vertices of a regular octahedron).
For each protein-ligand pair, calculated B-factors for the

Cα protein atoms of the apo structure were compared to
those obtained for the same atoms in the configurations
including real or simulated ligands to test for significant
changes in flexibility using the Wilcoxon-Mann-Whitney

test. Differences with a p-value < 0.05 were considered
significant.
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