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Abstract

equivalent from the standpoint of molecular evolution.

Background: Statistical models and methods that associate changes in the physicochemical properties of amino
acids with natural selection at the molecular level typically do not take into account the correlations between such
properties. We propose a Bayesian hierarchical regression model with a generalization of the Dirichlet process prior on
the distribution of the regression coefficients that describes the relationship between the changes in amino acid
distances and natural selection in protein-coding DNA sequence alignments.

Results: The Bayesian semiparametric approach is illustrated with simulated data and the abalone lysin sperm data.
Our method identifies groups of properties which, for this particular dataset, have a similar effect on evolution. The
model also provides nonparametric site-specific estimates for the strength of conservation of these properties.
Conclusions: The model described here is distinguished by its ability to handle a large number of amino acid

properties simultaneously, while taking into account that such data can be correlated. The multi-level clustering
ability of the model allows for appealing interpretations of the results in terms of properties that are roughly

Background

The structural and functional role of a codon in a gene
determines its ability to freely change. For example, non-
synonymous (amino acid altering) substitutions may not
be tolerated at certain codon sites due to strong neg-
ative selection, while at other sites some nonsynony-
mous substitutions may be allowed if they do not affect
key physicochemical properties associated with protein
function [1]. Thus, at such preferentially changing sites,
more frequent substitutions occur between physicochem-
ically similar amino acids (or codons which lead to those
amino acids) than dissimilar ones [2-4]. Methods which
use changes in physicochemical amino acid properties
have thus been proposed in the study of evolution. For
example, [5-7] use distances to calculate deviations from
neutrality for a particular amino acid property. Alterna-
tive approaches model the evolution of protein coding
sequences as continuous-time Markov chains with rate
matrices that distinguish between property-altering and
property-conserving mutations as in [8] and [9]. More
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recently, [10] proposed a Bayesian hierarchical regression
model that compares the observed amino acid distances
to the expected distances under neutrality for a given set
of amino acid properties and incorporates mixture pri-
ors for variable selection. The hierarchical mixture priors
enable the model in [10] to identify neutral, conserved and
radically changing sites, while automatically adjusting for
multiple comparisons and borrowing information across
properties and sites.

A common feature of all the methods listed above is the
implicit assumption that properties are independent from
each other in terms of their effect on evolution. A review
of the amino acid index database (available for example
at http://www.genome.jp/dbget/aaindex.html), which lists
more than 500 amino acid properties, shows that a large
number of them are highly correlated. Although the cor-
relations we observe in the data can be different from
those computed from the raw amino acid scores due to
the influence of factors such as codon bias, by ignoring
these correlations we are also ignoring the fact that cor-
related properties may affect a particular site in similar
ways. Hence, approaches that do not take into account
the correlations in the rates of mutations on different
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codons do not make use of key information about the rel-
ative importance of different physicochemical properties
on molecular evolution.

A natural way to account for correlations in the data
is by considering a factor structure, see for example [11].
However, selecting the number and order of the factors
can be a difficult task in this type of factor models. In
addition, the particular structure of the model in [11]
makes it difficult to incorporate the effect of the fac-
tors on regions that are very strongly conserved. This
paper extends the Bayesian hierarchical regression model
in [10] by placing a nonparametric prior on the dis-
tribution of the regression coefficients describing the
effect of properties on molecular evolution. The prior is
an extension of the well known Dirichlet process prior
[12,13] to model separately exchangeable arrays [14,15].
As in [10], the main goal of the model described in this
paper is to identify sites that are either strongly con-
served or radically changing. In order to account for
correlations across properties, our model clusters prop-
erties with similar effects on evolution, and within each
such group, clusters sites with similar regression coeffi-
cients and nonparametrically estimates their distribution.
In addition to accounting for correlations across proper-
ties, this structure allows us to dramatically reduce the
number of parameters in the model and generate inter-
pretable insights about molecular evolution at the codon
level.

Although the clusters of properties can in principle
be considered nuisance parameters that are of no direct
interest, in practice posterior inference on the cluster-
ing structure can provide interesting insights about the
molecular evolution process of a given gene. Indeed, as
will become clear in the following sections, our approach
incorporates the effect of amino acid usage bias. Hence,
any significant differences between the cluster structure
estimated from the observed protein-coding sequence
alignment and the correlation structure derived from the
raw distances between the properties in such cluster can
be interpreted a signal of extreme amino acid usage bias
in that particular region of the genome.

The rest of the paper is organized as follows. A brief
review of DP mixture models along with the details of
our model is provided in the Methods section. This
section also includes a review of some of the currently
available methods for characterizing molecular evolution
that take into account changes amino acid properties.
The model is then evaluated via simulation studies and
illustrated through a real data example. The simulated
and real data analyses, as well as comparisons between
the proposed semiparametric regression approach and
other methods, are presented in Results and discussion.
Finally, the Conclusions section provides our concluding
remarks.
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Methods

Dirichlet process mixture models

The Dirichlet process (DP) was formally introduced by
[12] as a prior probability model for random distributions
G. ADP(p, Gy) prior for G is characterized by two param-
eters, a positive scalar parameter p, and a parametric base
distribution (or centering distribution) Gg. p can be inter-
preted as the precision parameter, with larger values of p
resulting in realizations of G that are closer to the base
distribution Gy.

One of the most commonly used definitions of the DP
is its constructive definition [13], which characterizes DP
realizations as countable mixtures of point masses. Specif-
ically, a random distribution G generated from DP(p, Go)
is almost surely of the form

G() =) widy (),

=1

where 84,(-) denotes a point mass at ¢;. The locations ¢;
are ii.d. draws from Gy, while the corresponding weights
w; are generated using the following “stick-breaking”
mechanism. Let w; = v; and define w; = v; ]_[i;ll(l — V)
for! = 2,3,..., where {v; : [ = 1,2,...} are i.i.d. draws
from a Beta(1, p) distribution. Defining the weights in this
way ensures » o, w; = 1. Furthermore, the sequences
{vi:1=1,2,...}and {¢; : [ = 1,2,...} are independent.
The DP is most often used to model the distribution
of random effects in hierarchical models. In the sim-
plest case where no covariates are present, these models
reduce to nonparametric mixture models (e.g., [16-18]).
Assume that we have an independent sample of observa-

ind
tions y1,¥2, . . ., ¥» such that y;|6; g k(-; 0;), where k(-; 6;)
is a parametric density. Then, the DP mixture model
places a DP prior on 6; as

i.id.
016G " G,

Glp ~ DP(p,Go)

i=1,...,n

The almost sure discreteness of realizations of G from
the DP prior allows ties in 6;, making DP mixture mod-
els appealing in applications where clustering is expected.
The clustering nature is easier to see from the Pélya urn
characterization of the DP [19] which gives the induced
joint distribution for the 6;s, by marginalizing G over its
DP prior. Under that representation, we can write 6; = 9;,
where 0f,65,... is an independent and identically dis-
tributed sample from Gy and the indicators &1, .. ., &, are
discrete indicators sequentially generated with §&; = 1 and

i
i+p

P
i+p

k < max;j<;{§}

Pr(éi-}-l - k|0,5i: .. ~:$l) ==

k = maxj<;{&} + 1,
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where rf( = 25:1 I(§; = k) and
§=k

0 otherwise.

I =k =

One advantage of DP mixture models over other
approaches to clustering and classification is that they
allow us to automatically estimate the number of compo-
nents in the mixture. Indeed, from the Pélya urn repre-
sentation of the process it should be clear that, although
the number of potential mixture components is infinite,
the model implicitly places a prior on the number of com-
ponents that, for moderate values of p, favors the data
being generated by an effective number of components
K* = max;<,{&} < n.

The model

Our data consist of observed and expected amino acid
distances derived from a DNA sequence alignment, a
specific phylogeny, a stochastic model of sequence evolu-
tion, and a predetermined set of physicochemical amino
acid properties. In the analyses presented here, we dis-
regard uncertainty in the alignment/phylogeny/ancestral
sequence level since our main focus is the development
and implementation of models that allow us to make
inferences on the latent effects that several amino acid
properties may have on molecular evolution for a given
phylogeny and an underlying model of sequence evolu-
tion. Extensions of these analyses that take into account
these uncertainties are briefly described in Conclusions.
For further discussion on this issue, see also [10].

In order to calculate the observed distances, we first
infer the ancestral sequences under a specific substitution
model and a given phylogeny. In our applications, we use
PAML version 3.15 [20] and the codon substitution model
of [21], which accounts for the possibility of multiple sub-
stitutions at a given site. Nonsynonymous substitutions
are then counted by comparing DNA sequences between
two neighboring nodes in the phylogeny. The observed
mean distance, denoted as y;; for site i and property j, is
obtained as the mean absolute difference in the property
scores due to all nonsynonymous substitutions at site i.
Only those sites with at least one nonsynonymous change
from the ancestral level are retained for further analysis.

To compute the expected distances, note that each
codon can mutate to one of at most nine alternative
codons through a single nucleotide substitution [5], only
some of which are nonsynonymous (changes to stop
codons are ignored). Let Ny be the number of nonsyn-
onymous mutations possible through a single nucleotide
change, corresponding to a particular codon k (k =
1,...,61). Let D;{l ; be the absolute difference in property j
between nonsynonymous codon pairs at site i differing at
one codon position, where [ = 1,..., Ni. The frequency
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of codon k at a particular site i in the DNA sequence under
study is denoted by F;. Then, the expected mean distance
for a particular site i and a given property j is given by

61 i N~Nek i
L pi k=l Fie 212 D4y
xl;] - E — 61 FLN M
k=1+k*Vk

We consider a hierarchical regression model that relates
x;j to y;; and allows us to compare the expected and
observed distances at the codon level for several proper-
ties simultaneously with the following rationale. If a given
site i is neutral with respect to property j, then y;; ~ x;;. If
property j is conserved at site i, then y;; << x;; and finally,
if property j is radically changing at site i, then y;; >> x;}.

To construct our model, we first standardize the dis-
tances x;; and y;; by dividing them by the maximum
possible distance for each property. This enables us to
use priors with the same scale for all the regression coef-
ficients. Our regression model for the standardized dis-
tances yzj and x7, for sites i = 1,...,I and properties

iy’
j=1,...,], can be written as

2 .
N(ﬁi,szj’oi,j if ,31',]' =0

~ (1)
N(Bijl; 05/n)  if Bij #0,

* 2
yi,jmi,i’ Oij

where nlo is the observed number of nonsynonymous
changes at a particular site i and 8;; and ol.’zj are the regres-
sion coefficient and variance parameter associated with
site i and property j. The mixture model accounts for the
fact that some of the y;kjs can be equal to zero as some
nonsynonymous changes do not change the value of the
property being measured (e.g., Aspargine, Aspartic acid,
Glutamine, Glutamic acid all have the same hydropathy
score).

To complete the model, we need to describe a model
for the matrix of regression coefficients [ B;;]. There are a
number of possible models for this type of data which uti-
lize Bayesian nonparametric methods; some recent exam-
ples include the infinite relational model (IRM) [22,23],
the matrix stick breaking process (MSBP) [24], and the
nested infinite relational model (NIRM) [14,15].

In this paper we focus on the NIRM, which is con-
structed by partitioning the original matrix into groups
corresponding to entries with similar behavior. This is
done by generating partitions in one of the dimensions of
the matrix (say, rows) that are nested within clusters of
the other dimension (columns). This structure allows us
to identify groups of (typically correlated) properties with
similar pattern and then, within each such group, iden-
tify clusters of sites with similar values of $;; (Figure 1
provides a graphical representation of this idea). In our
setting, we take [0;]=[B;, Gfl-] and employ a NIRM to
generate a prior for [ 0;].
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Figure 1 Stylized representation of our model. Each sub table at the second level of clustering shares a common value for the regression
coefficient B;;. Rows correspond to properties, while columns correspond to sites.

More specifically, we denote by 8; = (0y,...,0y) the
vector of regression coefficients and the associated vari-
ances corresponding to property (column) j. To obtain
clusters for the properties, we assume that 6; ~ F, where

o0
F = Z 7'(](50; 2)
k=1

is a random distribution such that 7 = vg [ [, (1 — vs),
vk ~ Beta(l, p), and 0} ~ Hy. Indeed, the discrete nature
of F ensures that ties among the #; happen with non-zero
probability.

To obtain cluster-specific partitions for the sites (rows),
Hj (the joint distribution associated with all sites for a
given cluster of properties) has to be chosen carefully. In
particular, we write 8} = (Hik, e Q;k)/ for any specific
specific cluster of properties k and let

oo
9;]( ~ Z Wl,kS(/)]’k; (3)
=1

with wye = upr [ 1, {1 — vk}, urx ~ Beta(l, yx) for every
k, and ¢ are independently drawn from the baseline
measure Go /.

The baseline measure Gy is chosen to accommodate
the fact that some y;fjs can be zero, since some nonsyn-
onymous changes can keep the value of the property being

measured unchanged. Thus, Go x is a mixture with a
point mass at zero and a continuous density otherwise.
To allow for a more flexible model we assume that differ-
ent prior variances are associated with the y; s which are
zero and those yzjs that are different from zero, with the
specific form of Gy as below.

o1k = (Pri 192 I Gow ~ Gouk

with

Goik = Mig—oyp1 (V7)) + (1 — Dp(ducl97)p2 (D),
(4)

where p1(97) ~ Inv-Ga(ay, bi), p(¢1xl97) ~ Nk, 97/ Vo)
and pz(ﬁfk) ~ Inv-Ga(a}, b} ). Here ¢ and L?fk respec-
tively denote the unique values B;; and ofj can take,
whereas A is the prior probability that ¢;x has the value
zero (i.e., the properties associated with this cluster are
strongly conserved at this cluster of sites).

Note that our model implies that both sites and prop-
erties are exchangeable a priori. If no additional prior
information is available, this type of assumption seems
reasonable. However, a posteriori, it is possible to have
sites behave differently in different clusters.
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To complete the model we place hyperpriors on all
parameters of the resulting model. Conjugate priors are
chosen for ease of computation. ox denotes the mean
for the ¢;xs that are different from zero belonging to a
specific cluster of properties k and is assumed to have a
N(my, Cy) prior for all k. The DP concentration parame-
ters p and y are assumed to follow Ga(a,, b,) with mean
a,/b,, and Ga(a,, b,) with mean a, /b, for all k, respec-
tively. A, which is the prior probability for the point mass
at 0 in Gy, follows a Beta(ay, by). The specific choice of
hyperparameters is discussed later as part of each data
analysis. In general, we use Ga(1,1) priors for the DP
concentration parameters and a N(1, Cy) prior for oy to
correspond to our assumption of neutrality a priori for the
properties.

Related work

We compare results from our proposed method with
results from a few currently available methods that aim
to characterize molecular evolution while also taking
into account changes in amino acid properties, namely,
the regression model in [10], TreeSAAP [25], and
EvoRadical [9].

In [10], the first level of the model is the regres-
sion equation on y:fj as in equation (1), but it implicitly
assumes independence among properties and indepen-
dence among sites unlike our current model. The model
in [10] is suitable for use when a few mostly independent
amino acid properties are being analyzed whereas the new
semiparametric model is better suited to the analysis of a
large number of possibly correlated properties.

TreeSAAP uses the methods of [6] to classify nonsys-
nonymous substitutions into one of M categories, with
higher numbered categories corresponding to sites show-
ing radical changes and lower numbered categories used
for sites showing conserved changes for a given property.
For the analysis considered here, we used 8 categories
where categories 6, 7, and 8 corresponded to sites showing
radical changes, and categories 1 and 2 to sites showing
conserved changes. Nonsynonymous changes are inferred
from the ancestral reconstruction using the nucleotide
substitution models in baseml implemented in PAML.
We used a Bonferroni correction to correct for multiple
comparisons.

EvoRadical implements the models of [9], which
use partitions of amino acids to parameterize the
rates of property-conserving and property-altering codon
substitutions in a maximum likelihood framework.
The model considers three types of substitutions:
synonymous, property-conserving nonsynonymous and
property-altering nonsynonymous which is a slight
improvement from [8]. For analyses with multiple proper-
ties, one has to create different partitions for the different
properties and run EvoRadical for each property.
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Posterior simulation

Various algorithms exist for posterior inference of DP
mixtures - some of the most popular ones use (i) the Pélya
urn characterization to marginalize out the unknown dis-
tribution(s) [26,27], (ii) a truncation approximation to the
stick-breaking representation of the process which paves
the way for the use of methods employed in finite mixture
models [28,29], (iii) reversible jump MCMC or split-merge
methods [30,31]. Some other recent approaches have also
used variational methods [32] and slice samplers [33].

We use an extension of the finite mixture approxima-
tion discussed in [28] for its ease of implementation.
Truncating F at a sufficiently large K, we write F&) =
Zle TkSops with the weights 74 and locations 6, gener-
ated as described earlier in this Section. Next we introduce
configuration variables {£;} such that, for k = 1,...,K,
{j = kif and only if ; = ;. Similarly for G, we truncate
at a sufficient level L, and introduce another set of config-
uration variables {£; ¢} where & = [, with/ = 1,...,L,
if and only if 9:,( = ¢k Additional details about the
algorithm are provided in the Appendix.

To determine the truncation levels K and L, we follow
[29]. In particular, note that conditional on p (the DP con-
centration parameter), the tail probability ) p~ . 7x has
expectation {p/(1+ p) L Using prior guesses for p and
acceptable tolerance levels for the tail probability to be
small, one can then solve for the truncation level K. In our
analyses, we used K and L in the range of 25 to 35. These
values are in line with those used in other applications (for
example, see [34]).

Results and discussion

Empirical exploration via simulation studies

We present two simulation studies to check the perfor-
mance of the model under different scenarios. Additional
simulation scenarios that may be of interest are available
as an Additional file 1.

Simulation study 1

The setup for the first simulation is as follows. We gen-
erate values for the distinct regression coefficients (¢;x)
from a N(1, 0.25). The number of distinct regression coef-
ficients depends on the particular clustering structure
for the corresponding simulation. Once we obtain the
regression coefficients, we generate observations y;; from
N(¢l,kxi,j,a2 = 0.001). The x;;s are obtained from the
lysin data set described below with analyses for 32 prop-
erties, which implies ] = 32 and I = 94.

We fitted the model in The Model subsection to the y;’fjs
and ijs’ with the following modifications: (i) the NIRM
is imposed on B;;, so ¢ x = ¢k and (ii) ¢y ~ Go where
Go ~ N(a,7%). We used K = 25 and L = 25 for the
simulations. The MCMC algorithm was run with the fol-
lowing hyperpriors: p ~ Ga(1,1), yx ~ Ga(1,1) for all k,
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a ~ N(1,0.25). 62 ~ Inv-Ga(100,10) and 2 ~ Inv-
Ga(2,4) were chosen such that the prior means corre-
sponded to the true values for these hyperparameters.
Results are based on 15000 iterations, with the first 5000
discarded as burn-in. Convergence was assessed by run-
ning two chains where each chain was initialized by ran-
domly assigning the ;s to different partitions. Posterior
summaries based on the two chains were consistent with
each other.

In this scenario, we had four clusters for the columns,
each with differing number of groups, leading to twelve
distinct cluster combinations for the entire matrix of ;s
(Figure 2, left panel). Figure 3 shows the marginal proba-
bilities for any two columns (properties) of belonging to
the same cluster. The model correctly identifies that there
are 4 clusters for the columns and assigns each set of
columns to its corresponding cluster with no uncertainty.

Similar graphical summaries obtained for the structure
of rows within each cluster of columns show that the cor-
rect clustering structures for the rows, within each cluster
of columns, are inferred (see Figure 4). For this level, how-
ever, there is some uncertainty about the membership of
the clusters for a few rows. See, for example, the right
panel of Figure 4. Some rows in cluster 1 (in the lower left)
are sometimes being assigned to cluster 3 (top right). The
distinct values of ¢ used for these two clusters were 0.73
and 0.98, therefore, it does not seem unreasonable to see
some uncertainty in the assignment of clusters. Posterior
means of B; ;s agree closely with the true values as shown
in Figure 2.

This scenario corresponds to the type of situation we
expect on most real datasets: properties will cluster into
groups and, within each group of properties, clusters of

2.0 2 2.0
o
©
1.5 1.5
o |
<
- 1.0 - 1.0
o |
o
- 05 - 05
5 15 25 5 15 25
Figure 2 Image plots for true g8;; values (left panel) and posterior
means B; ;s (right panel).
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Figure 3 Marginal posterior probabilities of each pair of columns
belonging to the same cluster.

sites with similar responses can be clearly identified. Our
results suggest that, as expected, the model is capable
of identifying these multiple clusters with high accuracy
and therefore accurately estimate the value of the regres-
sion coeflicients. Other scenarios, including extreme cases
where all properties belong to a common cluster while
sites belong to one of several clusters, and cases where
each property has a different effect on amino acid rates are
available as Additional file 1.

80
1

40
1

20

20 40 60 80

Figure 4 Marginal posterior probabilities of each pair of rows
belonging to the same cluster for two different clusters of
columns.
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To investigate the effect of the truncation levels and the
priors on our model, we performed sensitivity analysis by
varying the truncation levels as well as the different hyper-
parameters. Increasing the truncation level to 35 did not
affect the results and the estimated posterior means of
the s showed close agreement with the true values. The
analyses was also fairly robust to the choice of the priors,
since varying the hyperparameters had almost no effect on
the results. Decreasing the prior variance of 2 makes the
results marginally better, i.e., posterior means of the g;;s,

,3,;]8, are slightly closer to the true values.

Simulation study 2 - data simulated from a biological model
In our second simulation study the model is evaluated
in the context of biological sequences generated from an
evolutionary model. In particular, a Markov model was
used to generate 20 sequences of 90 codons each. For the
first one-third of the sites (sites 1-30) we used transition
probabilities obtained from the codon-substitution model
of [21] with equal equilibrium probabilities for all 61
codons. For the second one-third of the sites (sites 31-60),
we modified the transition probability matrix from the
previous step by increasing the probabilities of transitions
between codons that have small distances for volume and
decreasing the probabilities of transitions between codons
that have large distances for volume - this was done to
encourage only those changes that conserve volume in
this part of the sequences. Finally, for the last one-third of
the sites (sites 61-90), we modified the original transition
probability to encourage radical changes in hydropathy.
Thus, we increased some transition probabilities between
codons that have very different hydropathy scores and
decreased a few of those that have similar hydropathy
scores. Note that, since the equilibrium probabilities are
either uniform or roughly uniform across all sites, the
correlation structure across properties is retained in the
expected distances, which simplifies the interpretation of
the results.

Once we obtained the sequences, we generated ances-
tral sequences using PAML, version 3.15, [20] and calcu-
lated observed and expected distances y;; and x;; for five
properties, namely, hydropathy (%), volume (M,), polar-
ity (p), isoelectric point (pH;) and partial specific volume
(V9). Of these, # and p are correlated and so are M,
and V°.

Our model was fitted with K = 25 and L = 25 as trun-
cation levels. The prior distributions were the same as the
ones used for our previous simulation. Results are based
on 15000 iterations, of which the first 5000 were burn-in.
There did not seem to be any obvious problems with con-
vergence, which was assessed by visual inspection of trace
plots of some of the parameters.

The analyses found that there were three clusters of
properties - the first cluster has properties # and p, the
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second cluster comprised of properties M, and V° and the
third cluster only had property pH; as shown in Figure 5.
Figure 6 shows the posterior means of ;s for represen-
tative properties of the three clusters in Figure 5. Sites 24,
65, 67, 71, 81, 82, and 89 have large posterior means B,'js
for cluster 1 (4 and p). These are also the same sites that
show up in the small cluster at the top right in Figure 7.
Specifically, Figure 7 shows how often any two sites in
cluster 1 are grouped together. The sites in the lower
left (16, 28, 46, 51) have small posterior means ,31',,'5 for
these properties (% and p) and are grouped together more
often. The big group of sites in the middle mostly seem
to have mean ﬁ,’,,-s around 1 while sites 81, 89, 71, and 65
have the largest 3,',,' values and very large probabilities of
being clustered together in cluster 1. Thus, the model suc-
cessfully identifies sites that have similar 8;; values in a
specific cluster and groups them together. Groups of sites
that change a property can also be identified for clusters
2 and 3 in Figure 5. In particular, for cluster 2 (M, and
V0), there is a big group of sites which conserve these
properties. Most of these sites are in the central one-third
portion (i.e., the portion that includes sites 31-60) which
were simulated under a transition probability matrix that
favors transitions that conserve volume. Finally, for cluster
3 (pH;) there is one large group of sites which conserve the
property and one group comprising sites 39 and 80 which
change the property greatly.

To better understand the performance of our method,
we also analyzed the sequences generated above with the
parametric regression model in [10], TreeSAAP [25], and

1
pH; 4
0.75
VO
My - 0.5
P
0.25
h
Lo

T T
h p My VO pHi

Figure 5 Marginal posterior probabilities of any two properties
being in the same cluster for the data simulated under a
biological model.
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Figure 6 Posterior means of B; ;s for the three clusters in Figure 5 for the simulated data under a biological model. The sites are sorted

according to the increasing value of posterior means.
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EvoRadical [9]. Table 1 lists the thirty sites with the
largest posterior means f; ;s for i1, and the thirty sites with
the smallest posterior means /§,',js for M, for the regres-
sion model of [10] and also for our new semiparametric
approach. Many of the same sites are identified by both
methods, however, our new method performs slightly bet-
ter than the regression model in [10]. In particular the new
method identifies two additional sites in the 61-90 region
as sites that change /.

Table 2 lists sites that TreeSAAP finds significant for
the different properties. All of the sites that TreeSAAP
finds significant are also identified by our methods. How-
ever, note that once we correct for multiple comparisons
in the TreeSAAP results, only one site (74) still remains
significant. We note that the hierarchical specification of
the priors in our models automatically accounts for mul-
tiple comparisons and no corrections are needed (see [10]
for more discussion on this).
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Figure 7 Marginal posterior probabilities of any two sites for the simulated data being grouped together in the first cluster in Figure 5.
The sites are sorted according to the increasing value of posterior means of g;;s.

Finally, we analyzed the sequences generated previously
with EvoRadical using two different partitions [8] - one
for p and the other for M,. We chose to run Evoradical
with p instead of 4, since a partition of the amino acids
for polarity was already available in [8]. Additionally, given
that /2 and p are correlated, we expect to see somewhat
similar results for these two properties.

Table 3 lists site-specific results from EvoRadical.
The sites listed have high posterior probabilities (> 0.95)
of being in the different site classes. This was the cri-
terion that was used to identify significant sites in [9].
The results presented here correspond to Model Al in
[9] which uses w for the nonsynonymous to synonymous
substitution rate ratio for codons encoding amino acids




Datta et al. BMC Bioinformatics 2012, 13:278
http://www.biomedcentral.com/1471-2105/13/278

Table 1 Comparing results between models in [10] and the
new semiparametric model, for the data simulated under a

biological model

Parametric Semiparametric
regression [10] regression
30 sites with largest 4,5,6,10,14, 18,1 4,5,14,18,19, 21,

posterior mean /§U for
h

56,7,91619 24 25 567916 18

30 sites with lowest 16, 18,
19, 24, 25, 26, 27,

posterior mean f;; for

M, 44,49, 51, 58, 59, 60, 28,31, 32, 34, 36,
61, 64, 65, 67, 79, 80, 38,49, 58,5960,
82,83, 85,88 61, 64, 65, 67, 79,

80, 83,84, 88

Sites marked in bold are the ones which are in the region of interest - for h this is
where radical changes were encouraged and for M, where small changes were
encouraged while generating the sequences. Underlined sites are identified by
both methods.

with properties in the same partition, and y measures the
nonsynonymous to synonymous substitution rate ratio
between codons for properties belonging to different par-
titions. While the sites listed for p somewhat match results
from the other methods, the results for M, are not in
agreement. This is probably due to the fact that parti-
tions are not always directly comparable with the amino
acid distances. For example, under the volume partition
of [8], both glycine and valine are small and glutamine is
large, while looking at the volume scores glycine is very
different from valine and glutamine. Thus, our models
would consider a change from glycine to valine as radi-
cal, whereas for the partition-based method of [9], there
would be no change. The fact that the user has to define
a property-specific partition in advance, as opposed to
directly working with the physicochemical distances, is
one of the disadvantages of partition-based methods.

lllustration with Lysin data
Our proposed model was applied to the sperm lysin data
set which consisted of cDNA from 25 abalone species with
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135 codons in each sequence [35]. Sites with alignment
gaps were removed from all sequences, which resulted
in 122 codons for the analysis presented here. The phy-
logeny of [35] and the codon substitution model M8 in
PAML, version 3.15, [20] was used to generate the ances-
tral sequences. The model M8 uses a discretized beta
distribution to model w values between zero and one
with probability po and allows for an additional positive
selection category with w > 1 and probability p;.

The lysin data was analyzed with the model in The
Model subsection with the 32 amino acid properties listed
in Table 4. A few of the properties were chosen because
of their functional importance. Some of the other prop-
erties have been previously used in analyses by [25]. Only
sites which showed at least one nonsynonymous change
were retained for the final analysis, which led to a data set
with 94 sites. We used K = 25 and L = 35 as truncation
levels for this data. The prior distributions with the fol-
lowing hyperparameters were used in the analysis. The DP
concentration parameters p and yx were assumed to fol-
low a Ga(1,1). A, the prior probability for ¢;x being 0, was
assumed to follow a Beta(2, 8) which implied that about
20% of the unique B;;s were expected to be 0 a priori. a,
and by, the hyperparameters for the prior of ﬁfk when
@1k is 0, were chosen as 2 and 100 which implied a prior
mean of 0.01. When ¢; is different from zero, a4} = 2
and b} = 10 control the prior for l?fk. Vo, the scale fac-

tor for ﬁlzk’ was fixed at the ratio of prior means of o2 and

riz (the variance terms in the regression model in [10] for
which we had used prior means of 0.1 and 0.01 respec-
tively). Finally, the s were assumed to follow a N(1, 0.25)
to conform to our prior assumption of neutrality for the
properties. Results are based on 20000 iterations, of which
the first 10000 were burn-in. Convergence was assessed by
visual inspection of trace plots of some of the parameters
and there did not seem to be any obvious problems with
convergence.

Figure 8 shows the marginal posterior probabilities of
any two properties being assigned to the same cluster.

Table 2 Sites identified as significant by TreeSAAP for the different properties for the simulation study based on a

biological model

Property Radically changing Radically changing Conserved (1.645) Conserved (3.695)
(1.645) (3.695)

h 5,59, 65, 67, 71, 74, 74 36,83 None
81, 82,89

p 21, 24, 37, 64, 65, 67, None 7,18,36,49, 55 None
71,74,75,81,82,89

M, 10, 33, 66 None 5,18,36,49 None

Vo 10,13,33,66 None 18,36 None

pH; 39,55,72 None 11,64,72 None

Values in parentheses denote the cut-off values for the z-test statistic. Sites marked in bold are in the region of interest.
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Table 3 Sites that have high posterior probabilities (> 0.95) of belonging to each site class for the different partitions for

EvoRadical for the simulated data

Property w=<1ly=1 w=<1ly>1 w>1y =<1 w>1y>1

p None None None 1,2,5,7,10,11,12,13, 14,18, 19, 20, 26, 27,
30, 32,33,34,36,37,42,43,47,53,57,59, 61,
62,63,64,66,67, 68, 69,72 ,73,74,75,77,
82,83, 86,87,88,90

M, None None None 2,7,9,18,19, 20, 22,27,31,32, 36, 38, 53, 55,

61,62,64,67,72,74,86

Sites marked in bold are in the region of interest.

There seem to be four mostly distinct clusters in the
properties in our list. The biggest cluster consists of 20
properties that are related to polarity and hydropathy. All
20 properties are assigned to this cluster with very high
probability. The next cluster is comprised of the properties
By, and c. There is also a fairly big cluster whose members
are related to volume (M,, VO, M,,, Cy, it). pzim, which is
correlated with p to some extent, is clustered with pH;
with which it shows a large correlation value (about 0.9).

Table 4 List of 32 amino acid properties used in the analysis

There is some uncertainty regarding the membership of
K and Ej,,, since both of them are assigned to the largest
cluster about 50% of the time, while Ej,,, is clustered with
properties related to volume to a lesser extent. pK is the
only property that is almost never clustered with other
properties.

Site specific results based on the posterior means
(denoted by ,éi,js), for one representative property each
from the four clusters in Figure 8 are shown in Figure 9.

AAindex acces- Property Symbol AAindex acces- Property Symbol

sion number (if sion number (if

available) available)

KYTJ820101 Hydropathy h * Helical contact area Ca

GRAR740103 Molecular volume My ZIMJ680104 Isoelectric point pH;

MANP780101 Surrounding hydrophobicity Hp 0O0BM770103 Long-range non-bonded E
energy

ZIMJ680103 Polarity(Zimmerman) Dzim * Mean rm.s. fluctuation dis- F
placement

CHOP780201 Alpha-helical tendencies Py FASG760101 Molecular weight My,

GRAR740102 Polarity(Grantham) p * Normalized consensus Hne
hydrophobicity

PONP800108 Average number of surround- N COHE430101 Partial specific volume Vo

ing residues

* Power to be at the C-terminal o WOEC730101 Polar requirement P,

GRAR740101 Composition c * Power to be at the middle am
of alpha-helix

* Compressibility KO * Power to be at the N- an
terminal

FAUJ880113 Equilibrium constant (ioniza- pK’ MCMT640101 Refractive index n

tion of COOH)

CHOP780202 Beta-structure tendencies Pg OO0BM770102 Short and medium range Esm
non-bonded energy

ZIMJ680102 Bulkiness B PONP800107 Solvent accessible reduc- Ra
tion ratio

* Buriedness B, * Thermodynamic  transfer H;
hydrophobicity

* Chromatographic index Re OOBM770101 Total non-bonded energy Et

CHAM830101 Coil tendencies Pc CHOP780101 Turn tendencies P

Properties marked by  are from [36].
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The sites are sorted according to the increasing value of
mean f§; ;j for each image. Sites on the far right radically
change properties in each group. For example, most of
the sites that appear on the far right, like sites 15, 16, 21,
75, 82, 99 and 126, for cluster 1 (represented by /) have
Bi,j values of 1.2-1.4. There seem to be more sites radically
changing properties in cluster 1 than in clusters 2 (rep-
resented by c) or 3 (represented by M,). The first three
clusters also have a fairly large number of sites with mean

/§,-  between 0 and 1. This is different from what we see
for cluster 4 (represented by piy,), which corresponds to
properties p;,,; and pH;. A large number of sites in cluster
4 strongly conserve the properties (e.g., sites 35, 43, 49,
51, 64,114, 117, 121), as is evident by the very small mean
3,',,'5 for sites in the far left, unlike in the other clusters.
Figure 10 shows the posterior summaries of 8;;s differ-
ent from zero for sites 82, 99, 120 and 127 for properties
belonging to different clusters. Of these, sites 120 and 127
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Pzim —

according to the increasing value of posterior means.

Figure 9 Posterior means ﬁi,,-s for the four clusters (denoted by representative properties) in Figure 8 for lysin. The sites are sorted

were found to be under positive selection by PAML, while
sites 82, 99 and 127 were identified as radically changing
some of the properties by the regression model in [10].
The sites show different behavior for the different proper-
ties, for example, site 82 shows radical changes for /1, while
it conserves M,. We can also see similarities in the pos-
terior summaries across sites. For example, for property
pK! sites 82, 120 and 127 have similar values for g; j- One
of the advantages of using the semiparametric approach is
that we can identify groups of sites that either conserve or
radically change a set of similar amino acid properties. For
example, sites 122 and 127 both seem to be altering the
amino acid properties in the first large cluster of proper-
ties related to p and s. However, sites 122 and 127 have a

very different behavior in cluster 4 related to p,i,: site 122
strongly conserves properties in this cluster while site 127
radically changes them.

Table 5 lists sites that are highly conserved with pos-
terior mean ﬁi,js less than 0.4 for the different clusters.
The largest number of highly conserved sites appears in
cluster 4, which includes properties pi, and pH;, in agree-
ment with Figure 9. Some of these sites like 35, 51, 111
and 117 also conserve properties in clusters 2 and 3. A
number of them, such as sites 28, 35, 58, 66, 94, 104, 117,
and 128 are also identified as sites under negative selec-
tion by methods that take into account the relative rate of
nonsynonymous to synonymous rate ratio, such as those
implemented in PAML [20]. In order to determine which
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Figure 10 Posterior summaries of g; ;s different from zero for sites 82, 99, 120 and 127 in lysin data. The first 4 properties on the x-axis
belong to 4 different clusters and the next 2 do not belong to any specific cluster all the time. The vertical lines are 90% posterior intervals of the g;;s
that are different from 0, the medians (filled circles) and the 25" and 75 percentiles (stars) are highlighted.

sites are under positive and negative selection by PAML,
we follow an approach similar to that used by [35] in the
analysis of the lysin data. In particular, [35] found that
PAML model M8, which supports positive selection, is the
model that better fits the lysin data. Therefore, we clas-
sified sites as negatively selected if the estimated w was
smaller than 0.3 and if Pr(w > 1|data) < 0.5 using PAML
model M8. Results comparing sites conserving or radically
changing a small group of properties with sites inferred to
be under positive or negative selection by PAML was also
presented in [10].

The results are fairly robust to the choice of different
hyperparameter values. Note that the scale factor for ﬂfk
ultimately affects the variation in the §;; values, and it is
advisable to choose it so that the prior variance for the
unique B; s is not too large.

Table 5 Strongly conserved sites (,é,-j < 0.4) for lysin data
for different clusters

Cluster Site number
1 96
2and3 22,28,35,51,111,117,128

11,17,18,19, 24, 25,27, 29, 33,35,42,43,47,49, 51,
4 53,58, 64,66, 68,69,71,73,79,81, 88,94, 96, 98, 100,
101,104,105, 110,111, 114,115,117,121,122,129,131

Conclusions
In this paper, we present a Bayesian hierarchical regres-
sion model with a nested infinite relational model on the
regression coefficients. The model is capable of identi-
fying sites which show radical or conserved amino acid
changes. The (almost sure) discreteness of the DP realiza-
tions induces clustering at the level of properties which is
analogous to the factor model in [11], with the advantage
being that the nonparametric method automatically deter-
mines the appropriate number of clusters. The multi-level
clustering ability of the NIRM also induces clustering at
the level of sites and allows us to capture skewness and
heterogeneity in the distribution of the random effects
distribution associated with each cluster of properties.
The main advantage of the models we have described is
their ability to simultaneously handle multiple properties
with potentially correlated effects on molecular evolution.
Our simulations suggest that our models are flexible but
robust, being capable of dealing with a range of situations
including those where properties are perfectly correlated,
as well as those where all properties are uncorrelated.
Our semiparametric regression models also work well,
particularly in comparison with the regression model in
[10], TreeSAAP and EvoRadical, when applied to DNA
sequence data generated from an evolutionary model. In
addition, the analysis of the lysin data suggests that the
model leads to reasonable results.
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The NIRM that is the basis of our model defines a sepa-
rately exchangeable prior on matrices. This means that the
prior is invariant to the order in which properties and sites
are included. This is due to the fact that the rows as well
as the columns of the parameter of interest are indepen-
dent draws from a DP. From the point of view of modeling
multiple properties, this is a highly desirable property.
However, assuming that DNA sites are exchangeable can
be questionable. Although this is a potential limitation of
our model, we should note that the assumption of inde-
pendence across sites (which is a stronger assumption
than exchangeability) underlies all the methods discussed
in the Background section. If information about the 3-
dimensional structure of the encoded protein or other
sequence specific information that can guide the con-
struction of the dependence model is available, our model
could be easily extended to account for this feature. In the
absence of such information, exchangeability across DNA
sites seems to be a reasonable prior assumption. Indeed,
in contrast to the most common independence assump-
tion, our exchangeability assumption allows us to explain
correlations at the level of sites.

In our applications, we have used codon substitu-
tion models for reconstructing ancestral sequences as
we wished to compare our methods to other methods
for detecting selective sites that also use codon substi-
tution models, such as those implemented in PAML and
EvoRadical. However, it is possible to perform the pro-
posed Bayesian semiparametric analyses using amino acid
substitution models instead of codon substitution mod-
els. Note that the substitution model is only used in the
calculation of the observed distances. First, we infer the
ancestral sequences under a specific substitution model
and a given phylogeny. We then compute the observed
distances for a given property and a given site as the
mean absolute difference in property scores due to all
nonsynonymous substitutions at that site, where the non-
synonymous substitutions are counted by comparing the
DNA sequences between two neighboring nodes in the
phylogeny. The reconstructed ancestral sequences, and
therefore the observed distances in our model, may differ
under different substitution models, but the method can
be implemented under any substitution model, including
amino acid substitution models. The gain in execution
time from using amino acid substitution models instead
of codon-based ones could potentially be significant if the
uncertainty in the alignment/phylogeny/ancestral level is
taken into account.

Finally, it is important to note that the “observed” dis-
tances are not really directly observed, but are instead
constructed from ancestral sequences and, therefore, sub-
ject to error. A simple way to account for this addi-
tional level of uncertainty is to modify the computation
of expected distances by incorporating the ideas of [37].
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This approach was previously employed in [10], with little
impact on the final results.

Appendix: details about the Gibbs sampler
The truncations and the introduction of the configuration
variables imply that (2) and (3) can be written as

K L

Gil{m} ~ Zﬂk(se; Eikl{wii}y ~ Z Wik8g; (5)

k=1 =1

with ¢;x ~ Goi and 7 and wy being the appropriate
stick breaking weights. Writing the model as in (5) helps
in obtaining the forms of the full conditionals as below.

The column indicators ¢; for j = 1,...,J are sampled
from a multinomial distribution with probabilities

L
PG =kl--)=q o<y [] mNOHlbus 070,
I=1 {isg;x=1}

where 97 is 0% if ¢ix = 0 or is 9} /n? if ¢y is dif-
ferent from zero. my is sampled in two parts: first, by
generating vi from a Beta(l + my, p + Zf:kﬂ my) for
k=1,...,K —1andvg = 1, where my is the number of
columns assigned to cluster k and then, by constructing
k= vic [To=) (1 = vs).

Fori=1,...,]and k = 1,...,K, the indicators &; are
also sampled from a multinomial with probabilities of the
form

P =1--)=plroc [] wiaNOjjlduexi;, 07).
{:5j=k}

The updated weights w; ; are sampled in a manner similar
to the 7y, i.e., uyx are generated from a Beta(1 + ny4, i +
Zf:lﬂ ny) forl = 1,...,L — 1 and u;x = 1, where njx
is the number of B;;s assigned to atom / of cluster k and
then, by constructing wyx = u;x ]_[i;ll(l — Upf).

Following [18], the DP concentration parameters p and
yx are sampled in two steps by introducing auxiliary
variables 77 and n,. First, sample n; from

p(nlp,---) =Beta(p +1,))
and then p from

a, + n? -1
ap+ni —1+](b, —log(n))
x Ga(a, + ng, b, —log(n1))

J(b, —log(m1))
ap+ny —1+]J(b, —log(n))

x Ga(a, +n; —1,b, —log(n1)),

pplny,---) =
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where #} is the number of unique column indicators ¢;.
Similarly, foreachk =1,...,K,

pm2lvi, - --) = Beta(yx + 1, D),
a, + m;k -1
p(vilnz,---) = wiE o — 1+ (b, —10g(m)
x Ga(a, + mg‘yk, b, —log(12))

1(by, —log(12))
a, +m;k —1+1(b, —

log(2))
- |°9(712)),

where m* K is the number of unique row indicators &; ¢, for
a specific cluster of columns .

To sample the unique ¢ = (P4 19 )s given in (4), we
introduce a set of indicator variables l/fl,k which take the
value 1 when ¢ is different from zero. Forl = 1,...,L
and k =1,...,K, ¥, 0 k and ¢« are jointly sampled in
the following way - ¥k is sampled by integrating out ¢y x
and 1? from its full conditional, 19] « is sampled condi-
tlonal on Yix and @i is sampled conditional on both the
corresponding v, x and L?l,k, ie.,

POk 0 bkl ) =p@ixl - PO Wi+
x p(Drr|¥ii ﬂfk, o)

with the individual expressions obtained as follows.
First, let Q) = {(i,)) : &i;; = 1, = k}. Then,

x Ga(ay, +m§k—1,b

Pkl -+) oA / HN@ 10,970 | 1G@ i lac, bo)d(®7)

lk

+1-2 / f [Nt 07 /n0)
)

x N(@ il 97/ VOGO lat, b )d (0 d(0F,).

= 1 -1 )
IG +ai, | 7— + O1scale if Yu =0
2 by

I*]* -1
IG 2 + a:’ I:b* + oy, scule:l if‘//l,k =1,

POV ) =

where I*/* = 3", Vg =15=k) and the update terms are
*2 2 O #2
. Yij a; Vo Vi
given by o1 scate = ) % and 03 5cate = kT > ’211 -
QY QY
Lk Lk
(DthOJFZ ,, noyl*/ac;‘])2
2(v0+2 ,n P
0 if Y5,=0
2 :
P@uilVip V) = .
’ N(my, Cyp) if Y =1,

2

D
and Cy = e S—
) ¢ = V0+Z L, nox*2

2

aVo+) i./' noyl*.‘/.x?‘j

0,42
V0+Z ll nixij

where my = (
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The full conditional of A is given by

-) ~ Beta(ay + Z Ly =0} b + Z Ly =1}
Lk Lk

P

Finally, for k = ., K, the full conditional of «y is

given by
plagl---) ~ N(@mg, Cy)
where
1
Cr =
Vi
Le 5 B
{Lyp=1} "Lk
and
* x| m Voduk
my,= Cot TZ + —a
(L =1} Vi
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