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Abstract

Background: Next generation sequencing technologies often require numerous primer designs that require good
target coverage that can be financially costly. We aimed to develop a system that would implement primer reuse
to design degenerate primers that could be designed around SNPs, thus find the fewest necessary primers and the
lowest cost whilst maintaining an acceptable coverage and provide a cost effective solution. We have implemented
Metropolis-Hastings Markov Chain Monte Carlo for optimizing primer reuse. We call it the Markov Chain Monte
Carlo Optimized Degenerate Primer Reuse (MCMC-ODPR) algorithm.

Results: After repeating the program 1020 times to assess the variance, an average of 17.14% fewer primers were
found to be necessary using MCMC-ODPR for an equivalent coverage without implementing primer reuse. The
algorithm was able to reuse primers up to five times. We compared MCMC-ODPR with single sequence primer
design programs Primer3 and Primer-BLAST and achieved a lower primer cost per amplicon base covered of 0.21
and 0.19 and 0.18 primer nucleotides on three separate gene sequences, respectively. With multiple sequences,
MCMC-ODPR achieved a lower cost per base covered of 0.19 than programs BatchPrimer3 and PAMPS, which
achieved 0.25 and 0.64 primer nucleotides, respectively.

Conclusions: MCMC-ODPR is a useful tool for designing primers at various melting temperatures at good target
coverage. By combining degeneracy with optimal primer reuse the user may increase coverage of sequences
amplified by the designed primers at significantly lower costs. Our analyses showed that overall MCMC-ODPR
outperformed the other primer-design programs in our study in terms of cost per covered base.
Background
Next generation sequencing technology has led to the
frequent application of deep sequencing projects, and
the use of systems that require a large number of oligo-
nuceotide primers for PCR. The design of a high number
of primers is a challenge logistically both in terms of
achieving good coverage of target regions and in terms
of cost. Although there are a number of primer design
programs available, utilizing them for high throughput
design can be difficult and financially costly. We aimed
to produce a system in which a large number of primers
could be designed cost effectively by using the fewest ne-
cessary primers, hence the lowest cost, at multiple prim-
ing sites where possible whilst maintaining an acceptable
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reproduction in any medium, provided the or
level of coverage, and avoiding degeneracy in amplicon
targets which overlap in the same regions.
In designing our program we compared our approaches

and performance with several other available programs;
Primer3 [1], Batchprimer3 [2], Primer-BLAST [3] and
PAMPS [4]. The core algorithm for the first three of these
programs is that of Primer3. The Primer3 algorithm takes
into account the primer size, melting temperature (Tm),
GC content, and concentration of monovalent and diva-
lent cations within the PCR reaction mixture, a selection
of salt correction formulae and different parameters for
simulating the thermodynamics of primer hybridization.
Potential primers are then checked by using a mispriming
repeat library from the human, rodent or Drosophila gen-
omes, allowing interspersed repeats or other sequence
regions to be avoided as primer annealing locations.
Primer-BLAST utilizes the Primer3 algorithm and the
BLAST local alignment search tool [5] to ensure only
unique primer pairs are selected, thus preventing primers
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becoming designed around undesired targets such as
introns. These two programs output a range of primer
pair possibilities for single DNA sequences, but they are
not designed for high throughput primer design. The need
for high throughput primer design was recognized by You
et al. [2], who produced BatchPrimer3 in which multiple
sequences can be input for primer selection, but only one
primer pair per input sequence is produced.
Minimizing the cost of a primer design can be achieved

by (i) designing degenerate primers able to anneal to a
number of related target sequences and (ii) implementing
primer reuse utilizing primers that bind to conserved loci
that are repeated. Although degeneracy allows for amplifi-
cation of greater numbers of related sequences, the more
degenerate primers are the less specific amplicons will be.
Therefore achieving an optimal degree of degeneracy is
important to obtaining a suitable trade-off between the
number of related sequences amplified and the specificity
of these amplicons. A number of variants exist for tackling
this problem and achieving a good trade-off for the speci-
ficity and sensitivity. The Maximum Coverage Degenerate
Primer Design (MCDPD) approach as used in HYDEN [6]
tries to identify a primer of length l and a maximum
degeneracy dmax that covers a maximum number of
sequences, each of length l. The Minimum Degeneracy
Degenerate Primer Design (MDDPD) attempts to find a
primer of length l and a minimum degeneracy dmin that
can cover all input sequences with a length equal to or
greater than l. The Minimum Primers Degenerate Pri-
mer Design (MPDPD) attempts to find the fewest num-
ber of primers of length l and a maximum degeneracy
of dmax for a set of sequences, so that each sequence is
covered by at least one primer. Whereas this approach
has the constraint that all input sequences have the
same length as the primers and may be inadequate in
practice, the Multiple Degenerate Primer Design
(MDPD) allows the input sequences to have different
lengths of greater than lmin and attempts to identify pri-
mers of length at least lmin and degeneracy dmax, allow-
ing each sequence to be covered by at least one primer.
This was the approach taken by MIPS [7] and PAMPS
[4]. PAMPS is a heuristic, high throughput algorithm
which designs degenerate primers through a process of
consecutive ad hoc pairwise alignments [4]. This pro-
gram has been shown to outperform other degenerate
primer design systems such as HYDEN and MIPS in
terms of computational time.
Algorithms for implementing primer reuse have also

been developed: Doi and Imai have described a heuristic
algorithm for greedy primer design within multiplex
PCR, which attempts to minimize the cost of primers
required for multiplex PCR and SNP genotyping [8].
MuPlex is another heuristic algorithm designed for
multiplex PCR, which uses a graph based approach to
assign the largest number of non-conflicting primers
into the fewest ‘cliques’ that can be assigned to multiplex
PCR tubes [9]. Lui and Carson have utilized a simulated
annealing optimization to maximize primer reuse, which
exhaustively searches primer space and aims to converge
upon the optimal cost solution [10]. Despite individual cost
benefits from either optimization of primer reuse, or auto-
mated design of degenerate primers, combining the two
techniques is likely to offer additional cost advantages.
Optimizing primer design to make use of degeneracy

and multiplexing has been referred to as the Multiple
Degenerate Primer Selection Problem (MDPSP), and
variants have been shown to be NP-complete. Previous
approaches to MDPSP, such as those undertaken by
Balla et al [11] have shown that primer coverage and
cost can be improved through approximate (heuristic)
greedy algorithms. Jabado et al. provide a heuristic algo-
rithm for degeneracy, Greene SCPrimer [12]. In this
method phylogenetic trees are constructed from mul-
tiple sequence alignments to identify candidate primers,
which are used by a greedy set covering problem (SCP)
solving algorithm to determine the minimum set of de-
generate primers that may amplify all members of the
alignment, so combining degeneracy with primer reuse.
Although heuristic approaches generally outperform glo-
bal optimizations in computation time, the reverse can
potentially be true in quality of output. Given that
optimization of large multiplexed primer design is not
generally time-critical, a global optimization approach
seems appropriate.
In order to improve on greedy approaches to MDPSP

we present here an algorithm that takes a Markov Chain
Monte Carlo (MCMC) approach, which allows sampling
through primer parameter space using a probability dis-
tribution of acceptance of iterative primer designs. Pri-
mers are weighted according to their degree of reuse
provided their degeneracy is kept below a user-defined
threshold. We have implemented a Metropolis-Hastings
algorithm, in which new proposals (e.g. the cost of a pri-
mer design) are accepted if they provide a more optimal
solution to the current proposal, with the system tending
to revert probabilistically, to the current state if the new
proposal is more costly. We call the algorithm the Markov
Chain Monte Carlo Optimized Degenerate Primer Reuse
(MCMC-ODPR) algorithm. We show that the MCMC-
ODPR program outperforms Primer3, Primer-BLAST,
BatchPrimer3, and PAMPS in terms of cost and in terms
of sequence coverage.

Implementation
The main goal of MCMC-ODPR is to optimize the cost
of a design by introducing degeneracy into primers and
stochastically searching the cost landscape. The goal is
to find the fewest necessary primers (lowest cost), whilst
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maintaining an acceptable coverage throughout all input
target sequences. We define the cost as the number of
nucleotides present in a set of primers identified in a se-
quence set and define the coverage as the number of
base pairs within the sequences that will be amplified by
the primers identified for the set. We summarize the
two aforementioned statistics as cost per covered bases
which is defined as cost / coverage. For a given set of
target sequences S, and a set of primer design con-
straints C, there are typically either 0 or very many pos-
sible designs D, each constituting a set of overlapping
primer pairs, which can potentially amplify S in a multi-
plexed PCR reaction. Typical design constraints include
the melting temperature, Tm; the maximum and mini-
mum primer pair length, Lmax, and Lmin; and the maximal
desired degeneracy, dmax. We aim to optimize D|(S,C).
The full list of constraints that the primers belonging to
the optimized design must satisfy are listed below:

1. The GC content of the primers must be taken into
account. Due to the stronger intermolecular forces
between the guanine and cytosine nucleotides, Tm is
highly dependent on this, which in turn has
implications for how well primers hybridize to
template sequences and for specificity of amplicons.

2. Primers should be minimally degenerate with a
limited number of degenerate nucleotides per primer.

3. The forward and reverse pair of primers must not
allow amplification of a target that exceeds the
desired target length.

4. The primers should ideally be used multiple times, to
keep the financial cost down. However, primer pairs
should also be unique, otherwise the specificity of the
targets will be reduced.

5. Primers should not be designed that will hybridize to
the target between a forward and reverse primer of
an already established amplicon, unless this will
lower the cost of the overall design.

6. Primers should not be designed which are
complementary to other primers, i.e. form dimers
with other primers.

7. Primers should not be designed which are likely to
self-hybridize and form hairpin structures.

For a primer i of length li we assume:

costi α li ð1Þ
Therefore, for a primer set design D, targeting sequences

S that contain k distinct primers we assume:

costD α
Xk

i¼1
li ð2Þ

We attempt to minimize costD by allowing degeneracy
in i and by sampling possible designs within design
constraints using an MCMC sampler. Greedy approaches
to minimizing costD in a primer set design for multiple
target sequences will result in a final costD which depends
in part on which of the target sequences is chosen first, to
begin the design, and on which position within each se-
quence the primer design is begun for that sequence. We
sample from uniform prior distributions on both of these
parameters. We also allow our sampler to vary the pos-
ition of individual primers within the design, and the de-
generacy of individual bases within each primer within the
chosen degeneracy limit, both also with uniform priors.
Our sampler allows each of these parameters to vary, ini-
tially preferring to sample from the earlier of the four
parameters and increasingly preferring to sample from the
latter.

Program input
For ease of use inputs to MCMC-ODPR are specified in
a simple text document, which is then read into the pro-
gram, Table 1. The input data to the program are three
sets of nucleotide sequences in FASTA format. The first
FASTA file contains genomic background sequences,
which could be the whole genome, a large EST or GSS
set, and will be searched using the BLAST local align-
ment search tool to asses the redundancy of possible pri-
mers and the uniqueness of forward and reverse primer
pairs. The two remaining files provide MCMC-ODPR
with the sequences to amplify and with SNP marker in-
formation respectively. The ‘sequences to amplify’ file
contains a representative gene sequences (consensus se-
quence) for each entry while the SNP marker informa-
tion file contains the same sequences with all collated
SNPs for that gene, known as the exceptions sequences.
Depending on the availability of SNP information, not
all consensus sequences need be present in the excep-
tions sequence file, however. A small program has been
included in the MCMC-ODPR package, EXCEP-
TIONS_GENERATOR, which on taking a FASTA file of
all variants of sequences of genes to be amplified, will
automatically generate the consensus and exceptions
files. In the absence of SNP information, no exceptions
file is necessary.

MCMC-ODPR primer preparation stages
MCMC-ODPR initially goes through three stages of
valid primer enumeration. Firstly, it searches all input
consensus sequences for all possible primers meeting de-
sign constraints, whilst iterating through the input range
of melting temperatures. At the second stage primer-
dimers are removed and the redundancy of primers and
uniqueness of primer pairs is assessed. Primers that
have the propensity to self hybridize are subsequently
removed. Primers are weighted according to their re-
dundancy, with more highly weighted primers being



Table 1 Input file parameters for MCMC-ODPR

Input parameter Default value

Genome file for BLAST searching hv_mRNA_PUT.fas

Max degeneracy (base pairs) 3

Minumum melting temperature (centigrade) 50

Maximum melting temperature (centigrade) 60

Minimum amplicon length (base pairs) 50

Maximum amplicon length (base pairs) 250

Initial overlap (base pairs) 0

Number of optimisations 10000

Maximum gap between sequences (base pairs) 10

Save interim optimizations? 0

Verbose output? 0

Cost tolerance 0

Output file name mcmc_odpr_results.out

Restart from previous run? 0

Probability of removing redundant primer pairs 0

Proportion of iterations to be considered as `early' 0

Weight greedy methods according to optimization? 1

Remove non-reusable primers from initial design? 0

Proportion of failed weight check proposals to accept (heating) 0.2

The parameters that may be input by the user into the MCMC-ODPR parameter file are in the left-most column. If the user chooses not to enter one of these
parameters, then the default value on the right-most column will be used.
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preferred later in the optimization. In the third stage,
for all remaining accepted primers, MCMC-ODPR re-
cursively generates all possible degenerate primers to
the input target level of degeneracy and tests whether
they match other primers in the data set, to reassess
their redundancy. In order to restrict a lack of specifi-
city in the targets of the designed primers, the degree
of degeneracy and redundancy must be limited, how-
ever. In the case of redundancy a high cut-off value
allowing large redundancy values could favor primers
being designed from low complexity or microsatellite
regions of the target genes. A cut-off of three S or W
degenerate bases yielding 23 potential priming sites for
degeneracy and a maximum redundancy of 10 are the
default values in MCMC-ODPR; these can be changed
by the user. After these initial stages, the Metropolis
Hastings MCMC optimization begins.

MCMC-ODPR degenerate primer design
When designing degenerate primers, it is important to
maintain a degree of specificity within the primers by
limiting the number of degenerate nucleotides per pri-
mer, otherwise designed primers will likely hybridize to
numerous loci on the target sequence; generating highly
unspecific amplicons and reducing the scope for primer
reuse and cost effectiveness. Furthermore, if primer Tm

is constrained, the possible combinations of degenerate
loci that are permitted within a design must also be con-
strained to avoid generation of degenerate primers with
variant Tm. For instance, a primer having one degenerate
position allowing an A or a C (IUPAC code M) would
generate two primers with different Tm values, which is
inappropriate if primers are being designed for a specific
Tm. For our purposes, therefore, the degree of possible
degeneracy per primer is limited with primers having
lower degeneracy, yet higher redundancy being more
highly weighted for each proposal. Degenerate oligonu-
cleotides which are permitted in our primer designs are
W (bases A and T) and S (bases G and C). Take P to be
the set of all possible primers extracted from the candi-
date gene set. A degeneracy threshold α is implemented
and represents the maximum proportion of degenerate
nucleotides within the primer. MCMC-ODPR then itera-
tively generalizes through all possible degenerate varia-
tions of the primers within P, whilst not contravening α.
This exhaustive set is then searched during the greedy
MCMC algorithms described below.

MCMC-ODPR Greedy primer selection method
The primer cost optimization itself consists of three dif-
ferent greedy proposal generating methods that are pro-
gressively applied more frequently in succession. The
first covers all input gene sequences by randomly select-
ing genes progressively and then picks primers from a
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random seeded position within the sequence, building
amplicon targets from that seed in a periodicity which
matches a user defined size range by randomly selecting
amplicon sizes within that range to look for subsequent
primer positions. This process is repeated, with the sub-
sequent primer set being selected if the global cost is
lowered. In this process primer loci may be ‘swapped’,
with more reusable primers being accepted over less re-
usable primers. The second method (per-gene refine-
ment) repeats the seeding process for each gene
individually having accepted the global primer arrange-
ment from the first step. The final greedy method
adjusts final primer positions by repositioning each pri-
mer randomly. Again, if each primer adjustment results
in a cost reduction, the adjustment is accepted. To allow
the algorithm to converge upon a solution, it is desirable
to allow a transition from optimizations that greatly
affect a design to more ‘fine tuning’ optimizations.
Therefore these methods may be weighted according to
how many iterations within the optimization have
passed: with the first greedy method being weighted for
within the first third of all iterations, the second within
the second third of optimizations and the third within
the last third. These methods are stochastically chosen,
however, hence all three greedy methods can still be
chosen randomly by the algorithm at any time, allowing
primer set design space to be sampled in different ways.

Proportion of accepted failed proposals and proportions
of ‘hot’ chains
The primer cost sample space may be visualized as a land-
scape, with various local cost minima and the global
minima. The Metropolis-Hastings algorithm takes a solu-
tion proposal and then assesses whether this current pro-
posal is more optimal than previous proposals. If this is
the case, the Markov chain is allowed to continue stepping
through the landscape. Otherwise the algorithm reverts
back to a previous state. An initial random cost, C is pro-
posed. At each iteration the cost associated with the new
proposal, C’ is compared to C, with δS = C’-C. Unless δS
is negative, the proposal is accepted with a probability
proportional to e-δSH; where the heating H is a user input
variable (see Table 1). The heating variable is defined as
the proportion of primers that have failed their redun-
dancy/weight check proposals that may be accepted,
allowing chains to escape local minima and allowing effi-
cient convergence. A variable specifying the proportion of
optimizations to consider as ‘young’ is also input to allow
convergence to be estimated in mature chains, as an alter-
native to specifying a fixed number of iterations.

Tuning parameters and convergence
The parameter INITIAL_OVERLAP allows the user to
build ‘slack’ into the initial proposal, allowing for a more
extensive exploration of the cost landscape before the
proposed solution tends towards being trapped in a local
optimum. If larger values of INITIAL_OVERLAP are
used, the initial proposal becomes more expensive be-
cause more primer pairs are used to cover the target
sequences, but by initially proposing a more expensive de-
sign there is more scope for the algorithm to explore the
cost landscape by changing the positions of individual
primer pairs, whilst still satisfying the maximum ampli-
con length constraint. The parameter PROB_REMOVE_
REDUNDANT constrains the rate at which this initial
slack is removed from the design in cases where two
neighboring primer pairs have changed position to the ex-
tent that the pairs become nested.
Currently the algorithm only aims to optimize cost,

and not coverage. Because of this, as the design begins
to approach an optimum cost for a given coverage, it
will then likely allow coverage to reduce in order to fur-
ther minimize the cost by removing one or more primer
pairs from the design, for instance, and leaving the cor-
responding sequence uncovered.

MCMC-ODPR output
The output of MCMC-ODPR is a single text file, con-
taining an enumeration of all primers designed at each
input Tm, the selected degenerate primers, the number
of covered bases and the final cost in nucleotides.

Results and discussion
MCMC-ODPR overall performance
By observing the final cost results of the primer design
every 1000 iterations and running MCMC-ODPR for a
maximum of 10,000 iterations, we explored the effect of
the number of MCMC iterations on the cost, Figure 1.
Primers were designed with Tm = 60 degrees centigrade,
and with an amplicon length between 50 and 250 bp.
The algorithm was repeated 100 times and the final cost
was recorded every 1000 iterations from 1000 – 10,000
iterations, to assess the variance in the convergence. A
small set of 30 barley FASTA gene sequences were input
into MCMC-ODPR due to the extra computational costs
incurred by running the algorithm for these many runs
(totaling at 1000 runs). Unlike heuristic approaches to
primer design which calculates a set of primers, MCMC
converges upon a stationary distribution giving the opti-
mal primer set, through random chain mixing. We
would therefore expect a degree of variance amongst
repeated runs. Exact convergence can be difficult to
measure with MCMC and a number of different diag-
nostic approaches have been suggested to allow this
measurement to be made (for a review, see [13]). The
samples drawn from a MCMC sampler will diverge from
the prior distribution and approximate to the stationary
distribution as the time taken tends to infinity, therefore



10780

10800

10820

10840

10860

10880

10900

10920

10940

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
o

st

Number of iterations

Figure 1 Cost results of MCMC-ODPR over 10,000 optimizations. The program was run 1000 times, with the first 100 being run to 1000
iterations, the second 100 run to 2000 iterations and so on until 10,000 iterations was reached. A dataset of 30 FASTA sequences was input, with
no SNP processing specified and a melting temperature of 60 degrees centigrade only.

Kitchen et al. BMC Bioinformatics 2012, 13:287 Page 6 of 10
http://www.biomedcentral.com/1471-2105/13/287
the bias arising from these samples that is not represen-
tative of the prior distribution can be a measure of con-
vergence to the stationary distribution. Furthermore, as
the Markov chains converge there will be an increasing
correlation between samples and the variance can there-
fore be another measure. These measures of conver-
gence can be assessed graphically or quantitatively and
some of the underlying diagnostic tools are applicable
from one MCMC variant (such as Gibbs sampling or
Metropolis-Hastings) to many. However, ultimately slow
chain mixing can confound any diagnostic as the station-
ary distribution is always unknown. For our purposes,
however, we were interested in validating our approach by
observing a decrease in cost over time, therefore we
observed the cost in the designed primers over a large
number of iterations. An overall trend can be seen that as
the number of iterations increases, the total cost decreases
and the variance is small. However, the improvement in
cost was slow after 10,000 iterations so we carried out all
our analyses using this iteration number in this study.
Table 2 The variance in the number of primers obtained from

Redundancy Frequency of redundancy
value when maximum

Number of

5x 14 14

4x 867 881

3x 130 1005

2x 9 1020

1x 0 1020

The algorithm was repeated 1020 times with a small subset of 30 sequences. The m
recorded and when no primers were obtained at a certain level of redundancy, a ze
redundancy summed to 1020. Column 2 gives the number of frequency of primers
numbers were greater than none. The average number of primers identified by the
To effectively assess the variance in the cost, coverage
and the degree of redundancy achieved after 10,000
iterations, the MCMC-ODPR algorithm was run 1020
times. An average cost per covered base over the 1020
samples was 0.16 nucleotides with a standard error of
5.95x10-5 nucleotides. We analyzed the degree of redun-
dancy that we obtained from the 1020 runs in Table 2.
The vast majority of runs achieved 4x coverage, with the
maximum degree of redundancy at 5x and the lowest re-
dundancy at 2x. We also assessed the variance in the
number of primers identified at each level of redundancy
over the 1020 runs, Table 2. Standard errors were calcu-
lated for the number of primers at each degree of redun-
dancy and it was clear that the variance was low. By
multiplying the average number of identified primers in
Table 2 by their degree of redundancy and then sum-
ming over these values, we arrive at a value of 654.84
primers required to obtain the same coverage when no
redundancy is used. With redundancy, only 542.63 pri-
mers are needed (Table 2), a reduction of 17.14%.
1–5x redundancy

primers > 0 Average number of
primers identified

Standard error

0.01 0

1.28 0.03

4.39 0.05

99.54 0.1

437.41 0.22

aximum achieved redundancy obtained by MCMC-ODPR in each run was
ro was added as an observation, ensuring observations at all levels of
found at each level of redundancy throughout all 1020 runs when their
algorithm each run and the standard error is presented.
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MCMC-ODPR performance over a temperature range
The MCMC-ODPR algorithm enumerates through the
input Tm range and designs primer sets for each
temperature, which allows inspection of the trade off be-
tween coverage and primer cost over the Tm range. A
set of 247 FASTA sequences was input into MCMC-
ODPR, and primers were recursively designed from a
Tm range of 50 - 70°C. The optimization was run for
10,000 iterations at each temperature enumeration, with
a target amplicon length range between 50 and 250 bp.
For each sequence we see a gradual increase in primer
cost as Tm is raised: suggesting MCMC-ODPR’s ability
to effectively design reusable primers is constrained due
to the rarity of suitable priming sites as Tm increases,
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Figure 3 Coverage of the designed primers over a Tm range. The data
SNP processing and 10,000 optimization iterations. The percentage sequen
range.
Figure 2. The global coverage of sequences in our data-
set by our designed primers was also calculated as a
function of Tm, Figure 3. Unsurprisingly, the coverage
decreased as melting temperature was increased again
due to the increasing constraint on suitable priming sites
for the required Tm.
To observe the effect of a range of Tm on primer re-

use, the number of primers for each level of redundancy
at each Tm was plotted, Figure 4. It is clear that a higher
degree of reusability is achievable at lower melting tem-
peratures with the majority of reusable primers having
2x redundancy. Two primers that were reusable over 10
times were found at a Tm of 50 with one more found at
a Tm of 56. We therefore suggest to users of MCMC-
60 62 64 66 68 70
ure (degrees centigrade)

set of 247 FASTA sequences were input into MCMC-ODPR with no
ce coverage of target amplicons is plotted over a melting temperature
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ODPR, that when possible, designing primers at slightly
lower temperatures than ‘standard’ may make a large dif-
ference to cutting costs.

Performance comparison of MCMC-ODPR with other
primer design software
Comparison with other primer design software Primer 3
and PRIMER-BLAST
We compared MCMC-ODPR with primer design pro-
grams Primer3, Primer-BLAST, BatchPrimer3 and PAMPS.
For primer design from single input sequences MCMC-
ODPR was compared to Primer3, Primer-BLAST, and
for multiple input sequences BatchPrimer3 and PAMPS.
Tm = 60 was used for the design of primers from MCMC-
ODPR, with 10,000 iterations. All of the programs we
compared with MCMC-ODPR produced many more pri-
mers than would be required to amplify the target regions,
with many amplicon targets occurring in the same area.
Table 3 Performance of primer design software for single seq

Program Size of gene
(bp)

Number of prime
in design

Dehydrin 9 Primer3 1000 4(18)

Primer-BLAST 1000 6(12)

MCMC-ODPR 1000 9(10)

Beta-amylase 1 Primer3 3733 10(66)

Primer-BLAST 3733 14(36)

MCMC-ODPR 3733 34(34)

C-repeat binding
factor 3 like protein

Primer3 1515 8(26)

Primer-BLAST 1515 6(14)

MCMC-ODPR 1515 14(14)

MCMC was input with one sequence corresponding to one gene (first column) and
as a comparison of performance. MCMC-ODPR performs less optimally with one seq
Primer-BLAST in all examples but one.
Total number of primer sites identified shown in parentheses.
Consequently, the total primer cost was noted, but the
outputs were processed with a script such that non-
overlapping primer pairs were selected that represented
the maximum coverage of the target gene sequences.

Primer3 and PRIMER-BLAST for single input sequences
The Primer3 algorithm has been implemented in a num-
ber of other primer prediction programs, including
BatchPrimer3 and Primer-BLAST. Primer3 and Primer-
BLAST may only process one FASTA sequence at a
time, therefore, the three barley gene sequences were
randomly selected from our list of 247 barley genes and
input into all three programs. Comparisons were made
on the basis of the cost of designed primers in nucleo-
tides, and the sequence coverage obtained from using
these primers (Table 3). For the comparison of both pro-
grams with MCMC-ODPR the default parameters on
the website were used, with a range of Tm of 57 to 63
uence input

rs Cost
(nucleotides)

Coverage
(bp)

Percentage
coverage

Cost per covered base
(nucleotides)

80 401 40.1 0.2

116 527 52.7 0.22

197 958 95.8 0.21

160 691 18.51 0.23

334 998 26.73 0.33

682 3636 97.4 0.19

160 487 32.15 0.33

120 473 31.22 0.25

274 1500 99.01 0.18

run for 10,000 iterations. The cost per bases covered in nucleotides was used
uence, yet was able to outperform single sequence programs Primer3 and



Table 4 Performance of primer design software for multiple sequence input

Program Number of primers
designed

Cost
(nucleotides)

Coverage
(bp)

Percentage
coverage

Cost per covered base
(nucleotides)

Execution time
(minutes)*

MCMC-ODPR 1521(1786) 30103 162196 77.37 0.19 637

BatchPrimer3 372(1153) 15427 62292 29.71 0.25 2.98

PAMPS 1205(13598) 25284 39240 18.72 0.64 5.19

MCMC-ODPR was run with 184 sequences for 10,000 iterations with the cost per bases covered and runtime was used as a comparison statistic for performance.
MCMC_ODPR outperformed multiple sequence input programs BatchPrimer3 and PAMPS in terms of cost per bases covered, yet was clearly slower in terms of
runtime.
Total number of primer sites identified shown in parentheses.
* MCMC-ODPR Execution was performed on a 2.26 GHz Intel

W Core™ 2 Duo MacBook running Mac OS X version 10.6.8 with 2 GB RAM. Execution time for
BatchPrimer 3 was provided by the BatchPrimer3 web server (primer design server 1) found at http://probes.pw.usda.gov/batchprimer3/. Execution for PAMPS was
performed on a 2.31 GHz AMD Phenomtm 8650 Triple-Core Processor PC running Windows XP with 3.5 GB of RAM.

Table 5 MCMC_ODPR execution time with different
numbers of sequences input

Number of input sequences Execution time (minutes)

184 637

100 343.34

30 228.9

Execution time was measured when 184, 100 and 30 sequences were input
into the program. Execution was performed on a on a 2.26 GHz Intel

W Core™ 2
Duo MacBook running Mac OS X version 10.6.8 with 2 GB RAM.
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degrees centigrade (60 optimum) with no allowed dif-
ference in Tm and primer lengths of 18-27 nucleotides
(20 optimum). Both programs allow the user to specify
the number of primer sequences returned, therefore the
same number of primers as designed by MCMC-ODPR
was selected. The PCR product size input into Primer3,
Primer-BLAST and MCMC-ODPR was a minimum of
50 and a maximum of 250 base pairs. For the specificity
check that Primer-BLAST performs to eliminate unspe-
cific primer pairs the Hordeum vulgare non-redundant
database was chosen for BLAST searching.
Primer3 designed 9 to 33 primer pairs per input se-

quence, from which 4 to 10 primers were selected to
provide optimal coverage without overlap, Table 3.
MCMC-ODPR achieved a lower cost per unit coverage
than Primer 3 in all sequences except Dehydrin 9, where
Primer 3 achieved a value of 0.2 compared with MCMC-
ODPR, which achieved a value of 0.21. Primer-BLAST
designed the number of primers specified in each case
(12, 36 and 14), from which an optimal subset 6 to 14
was selected. The resulting cost of primer for the cover-
age achieved was consistently lower in MCMC-ODPR.
Furthermore the amount of target sequence that was
covered by the PCR systems designed by MCMC-ODPR
was over 95% in all cases, whereas the maximum cover-
age achieved by Primer3 and Primer-BLAST was 40.1%
and 52.7%, respectively.

Comparison with multiple sequence input programs:
BatchPrimer3 and PAMPS The same underlying algo-
rithm as Primer 3 was compared with MCMC-ODPR
with multiple sequences using BatchPrimer3, and the
comparison with PAMPS allowed us to compare the
capability of MCMC-ODPR to design reusable degener-
ate primers in terms of cost. A subset of 184 sequences
was used from our list of 247 genes because of a limita-
tion in PAMPS, which is restricted to sequences of 2000
base pairs or less. All sequences over 2000 base pairs
were therefore removed. This subset was used for all
three programs. BatchPrimer3 was used with the same
default values for melting temperature and product size
as with Primer3. BatchPrimer3 allows the user to input
the desired number of primers to be returned per se-
quence, therefore for this value we chose the highest
number of primers returned for all sequences by
MCMC-ODPR, which was 10 primers. The analysis was
performed first with allowing no difference in Tm be-
tween primer pairs for the BatchPrimer3 algorithm, as
no difference in Tm is permissible with MCMC-ODPR,
and then allowing the default Tm difference of 10
degrees centigrade between pairs. When no Tm differ-
ence was input to Batchprimer3 the sequence coverage
of BatchPrimer3 was 29.7% with the total sequence
coverage of MCMC-ODPR at a Tm of 60 degrees centi-
grade being 77.4% (Table 4). The cost of the primers
designed by Batchprimer3 was 15,427 nucleotides, ap-
proximately half the cost of 30,103 nucleotides yielded
by MCMC-ODPR, however, the coverage yielded was
just over one third of that achieved with MCMC-ODPR.
MCMC-ODPR achieved a lower cost per unit coverage
than BatchPrimer3 of 0.19 compared with 0.25. When a
maximum difference of ten degrees centigrade was
allowed between primers for BatchPrimer3 it achieved a
sequence coverage of 39.6% at a cost of 13,462 nucleo-
tides, yielding a cost per coverage of 0.16 (not shown).
Despite the lower cost of BatchPrimer3 in this case,
MCMC-ODPR still achieved a greater sequence coverage
and summary cost per unit coverage value close to that of
BatchPrimer3 with the added constraint that MCMC-
ODPR only designed primers with no difference in Tm.
PAMPS designs degenerate primers according to ad-

hoc pairwise alignments. The output of PAMPS is a list

http://probes.pw.usda.gov/batchprimer3/
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of degenerate primers consisting of a range of Tm with
no information on which sequence its primers have been
generated from. A script was therefore written to match
the primers generated by PAMPS to our sequence data-
set, keeping the same amplicon length constraints as
above and only choosing primers with Tm = 60 degrees
centigrade.
PAMPS designed 1205 primers that gave maximal

coverage, which was comparable to the number generated
by MCMC-ODPR at 1521 primers. PAMPS achieved the
lowest coverage of 18.72% of the input sequences with a
cost of 25,284 nucleotides. MCMC-ODPR outperformed
PAMPS in terms of cost per unit coverage, with this value
being calculated to be 0.64 for PAMPS.
From the execution times given in Table 4 it is clear

that MCMC-ODPR is by far the slowest of the three
compared programs. From Table 5 we see a dramatic de-
crease in the execution time when the number of input
sequences is reduced, which shows that the primer space
is highly influential towards execution time. MCMC-
ODPR has not been optimized for speed and we recom-
mend that users who require fast primer design should
consider alternative programs, such as the comparison
programs used in this study.
Conclusions
MCMC-ODPR is a useful addition to the suite of primer
design programs available in particular reducing costs
through improved solutions to the MDPSP. The bench
tests carried out in this study show that MCMC-ODPR
consistently produced the lowest cost primer design all
cases but two, but even then the slightly higher cost
achieved a much larger coverage. Consequently, MCMC-
ODPR was the most economically efficient primer design
in all cases. The comparisons with other software show
that by combining degeneracy with optimal primer reuse
the user may increase the coverage of the sequences
obtained by the designed primers at significantly lower
costs. MCMC-ODPR’s enumeration through an input
temperature range will allow the user to observe the
trade off between Tm and the suitability of the se-
quence space for invoking reuse. However, as MCMC-
ODPR is an optimization technique that utilizes the
Metropolis-Hastings algorithm for optimizing primer
reuse, it is intrinsically slow when compared to heuris-
tic algorithms, and may possibly require a number of
hours for multiple sequences, especially if a range of
Tm has been input.
Availability and requirements
Project name: MCMC-ODPR
Project home page [permissions have been granted

for open (anonymous) access]: http://www2.warwick.
ac.uk/fac/sci/lifesci/research/archaeobotany/downloads/
MCMC_ODPR
Operating system(s): MacOSX
Programming language: Perl, Java
License: GNU General Public License (GNU-GPL)
Any restrictions to use by non-academics: none.
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