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Abstract

Background: Effective encoding of residue contact information is crucial for protein structure prediction since it
has a unique role to capture long-range residue interactions compared to other commonly used scoring terms. The
residue contact information can be incorporated in structure prediction in several different ways: It can be
incorporated as statistical potentials or it can be also used as constraints in ab initio structure prediction. To seek
the most effective definition of residue contacts for template-based protein structure prediction, we evaluated 45
different contact definitions, varying bases of contacts and distance cutoffs, in terms of their ability to identify
proteins of the same fold.

Results: We found that overall the residue contact pattern can distinguish protein folds best when contacts are
defined for residue pairs whose Cβ atoms are at 7.0 Å or closer to each other. Lower fold recognition accuracy was
observed when inaccurate threading alignments were used to identify common residue contacts between protein
pairs. In the case of threading, alignment accuracy strongly influences the fraction of common contacts identified
among proteins of the same fold, which eventually affects the fold recognition accuracy. The largest deterioration
of the fold recognition was observed for β-class proteins when the threading methods were used because the
average alignment accuracy was worst for this fold class. When results of fold recognition were examined for
individual proteins, we found that the effective contact definition depends on the fold of the proteins. A larger
distance cutoff is often advantageous for capturing spatial arrangement of the secondary structures which are not
physically in contact. For capturing contacts between neighboring β strands, considering the distance between Cα
atoms is better than the Cβ−based distance because the side-chain of interacting residues on β strands sometimes
point to opposite directions.

Conclusion: Residue contacts defined by Cβ−Cβ distance of 7.0 Å work best overall among tested to identify
proteins of the same fold. We also found that effective contact definitions differ from fold to fold, suggesting that
using different residue contact definition specific for each template will lead to improvement of the performance of
threading.
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Background
The tertiary structure of proteins provides crucial infor-
mation for understanding molecular mechanisms of bio-
logical functions. Protein structures also serve as a
platform for various branches of biotechnology, includ-
ing drug design [1,2] and protein engineering [3-5].
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Although protein structures have been solved by experi-
ments at an increasing rate, a flood of new sequences
have been determined even more rapidly due to the ad-
vance of sequencing technologies [6,7]. Taking advantage
of the enlarging database of experimentally solved pro-
tein structures [8], it is expected that computational
structure prediction methods, especially template-based
methods, will play a more significant role in providing
structure of newly sequenced proteins [9-12]. However,
computing accurate structure models is still not always
possible especially when template structures available do
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:dkihara@purdue.edu
http://creativecommons.org/licenses/by/2.0


Yuan et al. BMC Bioinformatics 2012, 13:292 Page 2 of 13
http://www.biomedcentral.com/1471-2105/13/292
not share significant sequence similarity to a target se-
quence [13]. Template-based structure prediction meth-
ods usually employ structure-based scoring terms
together with sequence matching terms to enhance
structure recognition and alignment accuracy [14-18].
Structure-based terms used include secondary structure
prediction [19], main-chain angle propensity [20], burial/
exposure status [19], residue depth [15], and the number
of residue contacts [16] for each amino acid. These
structure-based terms are commonly derived from sta-
tistics of structural properties observed in representative
structures (knowledge-based statistical potentials).
Among various structure-based terms, residue-residue
contact potentials [21-23] are unique in that they cap-
ture long-range interactions in a protein structure [24].
A proper encoding of residue contact information is cru-
cial for structure prediction because in principle, a full
distance map or a residue contact map has sufficient in-
formation for reconstructing the tertiary structure of a
protein [25]. It has been also shown that a certain frac-
tion of errors or missing contacts are tolerated for mod-
eling the native structure of proteins [26-28]. When
contact information is used as constraints in an “ab
initio” structure prediction method, even very sparse in-
formation of residue contacts, for example, a contact for
every eight residues in a protein sequence is sufficient to
reconstruct the native structure [29]. Correct identifica-
tion of residue contacts is also important for template-
based structure prediction since contact maps are usually
well conserved between proteins of the same fold even
at a very low sequence identity [30]. There are two strat-
egies of using residue contact information for structure
prediction. One is to predict residue contact from a
protein sequence [31-37] and use them as constraints
or as an additional scoring term in a structure predic-
tion procedure [38]. The other approach is to employ a
knowledge-based statistical residue contact potential to
take into account general propensity of residue inter-
actions. Various types of contact potentials have been
proposed and applied for protein structure prediction
[21-23,39,40]. They share the same principle but vary
in details of their designs. For example, they differ in
the definition of residue contacts, the reference state,
whether or not to consider dependency to the distance
and orientation. There are also contact potentials that
consider more than two residues that are in contact
[41,42]. Here, we examined various definitions of residue
contacts to identify the most effective definitions in the
context of fold recognition. In contrast to the previous
works that evaluated contact maps in terms of the ac-
curacy of protein structure reconstruction [26-28], we
examine definitions of residue contacts that can effect-
ively distinguish proteins of the same fold from those of
the other folds. Thus, information contained in residue
contacts that are specific to each protein fold is
evaluated in purely a practical scenario of the fold
recognition.
Concretely, we prepared 45 different contact defini-

tions that consist of combinations of three different con-
tacting atoms, i.e. Cα, Cβ, and heavy atoms with 15
distance cutoffs. Using the 45 different contact defini-
tions, we examined how well contact maps defined by
each definition can distinguish proteins of the same fold
from others. The similarity of contact maps of two pro-
teins is defined as the fraction of the common contacts
between the two proteins, where equivalent residues are
identified either by structural superimposition or a
threading method. The purpose of using threading
methods is to simulate the actual situation of threading
where an alignment between a query sequence and a
template structure is not always accurate. We found that
7.5/7.0 Å, 7.0/6.5 Å, and 4.5/5.0 Å perform best for the
distance cutoff of contact definition using Cα, Cβ, and
heavy atoms, respectively, for identifying protein pairs of
the same fold. These cutoffs worked consistently well
when threading-based alignments were used for identify-
ing equivalent residues in protein pairs. On average,
contact maps effectively distinguish proteins of the same
fold from others when contacting residue pairs occupy
4.1 – 6.9% of the whole contact maps. We also found
that effective contact definitions differ from fold to fold,
suggesting that using different residue contact definition
specific for each template will lead to improvement of
threading performance.

Results
Structural retrieval performance using different contact
definitions
In Figure 1 we show structural retrieval performance by
considering the fraction of common contacts (FCC) of
protein pairs, which is computed using 45 different resi-
due contact definitions. For a protein fold, protein pairs
within the same fold and across different folds were
ranked according to their FCC values, with which ROC
curves were plotted. To identify equivalent residues be-
tween proteins, we used TM-align [43], a structural
superimposition program (Figures 1A, 1D, 1G), as well
as two threading methods, HHpred [44] (Figures 1B, 1E,
1H) and SUPRB [12] (Figures 1C, 1F, 1I). The 45 differ-
ent contact definitions consist of 15 distance cutoffs
(4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 10.0, 12.0, 15.0, 20.0,
30.0, 50.0, and 100.0 Å) for distances between Cα-Cα,
Cβ–Cβ, and heavy atoms of residue pairs.
When equivalent residues between structure pairs

were correctly identified by structural alignments (TM-
align) and thus FCC was accurately computed, distant
cutoffs of 7.5 Å, 7.0 Å, and 4.5 Å showed best discrimin-
ation between within- and across-fold pairs for the Cα-



Figure 1 ROC curves of structure pair retrieval on the fold level dataset. To determine corresponding residues in protein pairs, TM-align
(the left column), HHpred (the middle column), and SUPRB (the right column) were used. Three different bases for residue contact definitions are
used, the Cα-Cα distance (the first row), the Cβ-Cβ distance (the second row), and the heavy atom distance (the third row). A, ROC curves using
TM-align alignments and the Cα-Cα distance for contact definition. 15 different distance cutoffs were used, namely, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5,
8.0, 10.0, 12.0, 15.0, 20.0, 30.0, 50.0, and 100.0 Å to define contacts. B, HHpred alignments and the Cα-Cα distance were used. C, SUPRB alignments
and the Cα-Cα distance were used. D, ROC curves using TM-align alignments and the Cβ-Cβ distance for contact definition. The same 15
different distance thresholds as used for the Cα-Cα distance cutoffs were used. E, HHpred alignments and the Cβ-Cβ distance were used. F,
SUPRB alignments and the Cβ-Cβ distance were used. G, ROC curves using TM-align alignments and the heavy atom distance for contact
definition. The same 15 different distance thresholds as used for the Cα-Cα distance cutoffs were used. H, HHpred alignments and the heavy
atom distance were used. I, SUPRB alignments and the heavy atom distance were used.
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Cα (Figure 1A), the Cβ-Cβ (Figure 1D), and the heavy
atom (Figure 1G) distances, respectively. Area Under
Curve (AUC) for them were 0.908, 0.909, and 0.905, re-
spectively. The other similar cutoffs showed slightly worse
but comparable AUC: for the Cα-Cα distance, both 6.5
and 7.0 Å obtained AUC of 0.907. For the Cβ-Cβ, 6.5 and
7.5 Å showed 0.907 and 0.904 AUC, respectively. For the
heavy atom distance, 5.0 Å showed 0.903 AUC. Proteins
in the same fold become less distinguishable when smaller
or larger distance cutoffs were used for residue contact
patterns. For the Cα-Cα or the Cβ-Cβ distances, AUC of
ROC curves quickly decreased when the 12 Å or larger
cutoff was used, reaching to the random retrieval at 20 Å
or higher. Using a smaller cutoff, 4.5 Å, also deteriorated
the retrieval since contact maps became too sparse (on
average only 1.61% or 0.33% of residue pairs in a protein
were defined as in contact for the Cα-Cα and the Cβ-Cβ
distances, respectively). Using the heavy atom distance,
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the 4.5 Å cutoff had the highest AUC value. The average
occupancy of contact maps with the heavy atom distance
of 4.5 Å is 6.71%. This value is comparable to those of
the best contact cutoffs for the Cα-Cα distance 8 Å and
for the Cβ-Cβ distance 6.5 Å, which are 6.89% and 4.10%,
respectively. Later we will investigate the relationship of
the occupancy of contact maps and the AUC values more
thoroughly. The AUC values by best performing defini-
tions are summarized in Table 1. In terms of the AUC, Cβ
7.0 Å achieved the highest value (0.909), although best
performing cutoffs for Cα and Cβ showed similar values
(~0.91) (Table 1).

Structure retrieval with common contacts when threading
alignments were used
The middle and the right column in Figure 1 show
structure retrieval results obtained when the threading
methods, HHpred (Figures 1B, 1E, 1H) and SUPRB
(Figures 1C, 1F, 1I), were used to correspond residues of
protein pairs to compare contact maps. The purpose of
employing the threading methods is to introduce realis-
tic errors in alignments of protein pairs, which are
expected in actual threading process. Overall, lower
AUC values were observed when threading methods
were used relative to the cases when structural align-
ments were used (i.e. the left column in Figure 1) for
identifying equivalent residues. This deterioration of
AUC values is due to the inaccuracy in the threading
alignments. As shown in Figure 2, the alignment accur-
acy (more precisely, the fraction of residues in a query
protein that are correctly aligned to a template) and the
FCC values correlate with each other for proteins of the
same fold. The Pearson’s correlation coefficients for
HHpred (Figure 2A) and SUPRB (Figure 2B) are 0.686
and 0.478, respectively. Thus, the more accurate the
alignment is for a protein pair in the same fold, the
higher FCC is obtained, which will be better distin-
guished from the background distribution of FCC of
proteins of different folds. ROC curves for HHpred (the
middle column in Figure 1) showed higher AUCs than
those of SUPRB (right column). This is also explained by
the higher alignment accuracy by HHpred than SUPRB.
As shown in Figure 3, in most of the cases, alignments
by HHpred are more accurate than those by SUPRB.
The average accuracy of alignments of proteins in the
Table 1 AUC values of the best contact cutoff values for
the three alignment methods

TM-align HHpred SUPRB

Cα 6.5/7.0Å 0.907/0.907 0.843/0.835 0.718/0.712

Cβ 6.5/7.0Å 0.907/0.909 0.847/0.847 0.717/0.720

Heavy atom 4.5/5.0 Å 0.905/0.903 0.836/0.838 0.713/0.713

The AUC value of the ROC curves of the best contact distance cutoffs for the
Cα-Cα, the Cβ-Cβ, and the heavy atom distance.
same fold by HHpred and SUPRB is 20.38% (36.60%)
and 7.93% (20.27%), respectively. In the parentheses, ac-
curacy was shown when residues aligned within two
residues from the correct position are counted as accur-
ate. For 58.12% of the alignments, HHpred results were
more accurate than SUPRB. When the accuracy calcula-
tion is relaxed to ±2 residues, 70.03% of the alignments
by HHpred results were more accurate. Turning our at-
tention back to Figure 1, the best performing distance
cutoffs for HHpred (the middle column) and SUPRB
(the right column) are consistent with those found for
the structural alignments. In all the cases, 6.5/7.0/7.5/8.0
Å, 6.0/6.5/7.0Å, 4.5/5.0Å showed the largest AUC for
the Cα-Cα, the Cβ-Cβ, and the heavy atom distances. A
qualitative difference of the ROC curves for HHpred/
SUPRB is that larger distance cutoffs performed well at a
similar level as the best performing distance cutoff com-
pared with the ROC curves for TM-align (structural
alignments). For example, the 12 Å cutoff for the Cα-Cα
and the Cβ-Cβ distance performed similarly to the 6.5 Å
cutoff in the case of HHpred/SUPRB, which was not
observed for TM-align. Also, the heavy atom distance
4.5 Å performed clearly better than 6.5 Å in TM-align
alignments, but quite similarly in the two threading
methods. This is because residue contacts identified
under a strict definition tend to be easily missed when
incorrect alignments by threading methods are used. On
the other hand, contact patterns defined with a larger
distance cutoff are more tolerant to residue shifts in
threading alignments. The same analysis of structure
recognition was performed on the superfamily dataset,
which gave consistent results (Additional file 1). Since
they gave quite similar results, below we will only dis-
cuss the results obtained for the fold level dataset.
Contact map occupancy
Apparently, contact maps lose fold-specific information
if residue contacts are defined with a too short or a too
long distance cutoff because maps become too sparse or
dense with contacts. To examine how the occupancy of
contact map affects the fold retrieval accuracy, we plot-
ted the average AUC values relative to the occupancy of
contact maps computed using different distance cutoffs
for three different contact bases and the three alignment
methods (Figure 4). The occupancy (the x-axis) of a con-
tact map is defined as the fraction of residue pairs in
contact among all the pairs of residues in the map. For
each combination of a contact base and an alignment
method, the highest AUC was observed when the occu-
pancy is at 4.10% to 6.89%. The average AUC slowly
drops as the fraction of residue contacts further
increases and reaches to random retrieval level when
30-40% of residue pairs are defined as in contact.



Figure 2 Correlation between alignment accuracy and the fraction of common contacts (FCC). The Cβ-Cβ distance with cutoff 6.5Å was
used to define residue contact since it demonstrated one of the best fold recognition accuracies. For each pair of proteins of the same fold, the
FCC is plotted relative to the alignment sensitivity, which is defined as the fraction of the correctly aligned residue pairs by A, HHpred; B, SUPRB;
among the residue pairs aligned in the correct alignment by TM-Align.
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Structural retrieval evaluated with TM-score
We have also evaluated the retrieval performance in
terms of the structural similarity of the top ranked pro-
tein pairs. In Figure 5, the best TM-score of protein
pairs up to certain ranks are plotted using the contact
maps of a subset of residue contact definitions as Figure 1
(4.5, 6.5, 8.0, 10.0 12.0, 15.0, 20.0, 30.0, 50.0, 100.0 Å for
the Cα-Cα, the Cβ-Cβ, and the heavy atom distance).
The relative performance of each distance cutoff is essen-
tially consistent with the ROC curves in Figure 1. Using
6.5 Å and 8 Å for the Cα-Cα and the Cβ-Cβ distance
and 4.5 Å for the heavy atom distance retrieved struc-
turally similar protein pairs at higher ranks than the
other distant cutoffs. Using distance cutoffs of 15 Å,
Figure 3 Comparison of the alignment sensitivity by HHpred and SUP
residue pair by HHpred/SUPRB is counted as correct if the pair is also align
correct if it is within two residue shift from an aligned pair in the TM-align
15 Å, 12 Å or larger for the Cα-Cα, the Cβ-Cβ, and
the heavy atom distance did not yield protein pairs with
significant structural similarity (TM-score > 0.5 [45])
within the earlier half of the ranks in the retrieval.

Fold recognition using residue contacts of different
sequence separation ranges
In Figure 6, fold recognition was performed using resi-
due contacts with different sequence separation ranges,
contacting residue pairs that are separated by 5–10 resi-
dues on the sequence, 11–23, and over 23 residues apart.
The contact definition of Cβ-Cβ, 6.5 Å was used, since it
was one of the best performing definitions for the three
alignment methods. Interestingly, the largest AUC value
RB. Protein pairs of the same fold were used. A, an aligned
ed in the alignment by TM-align. B, an aligned pair is considered as
alignment.



Figure 4 The average AUC values of structure pair retrieval
relative to the average occupancy of contact maps.
Combinations of the three alignment methods and the three bases
of residue contacts were examined. The fold level dataset was used.
The occupancy of a contact maps is defined by the fraction of the
residue pairs in contact under a residue contact definition among all
the residue pairs in a protein. For each contact base, the average
contact map occupancy and the AUC values are plotted using the
ten distance cutoff values.
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was achieved by using >23 contacts, consistently for
TM-Align, HHpred, and SUPRB alignments. AUC values
for 5–10, 11–23, and >23 were 0.707, 0.754, and 0.875.
This result indicates that long-range contacts are more
informative for distinguishing folds.

Fold recognition with relaxed contact matching
We further examined fold recognition with a relaxed def-
inition of common contacts. A pair of residue contacts in
two proteins are considered as common when they occur
within ±1 residues to each other in a given structural
alignment. Although the results do not differ much from
those by the original definition of common contacts,
“blurring” contacts made fold recognition slightly worse
for all three types of alignments. For TM-align align-
ments, AUC decreased from 0.907 to 0.888, from 0.847
to 0.837 for the HHpred alignments and from 0.717 to
0.699 for the SUPRB alignments. The AUC values are for
the contact definition of Cβ-Cβ 6.5 Å.

Fold recognition for different structural classes
Next, we examine the structure retrieval performance
using FCC on four major fold classes separately, all-
α class, all-β class, α/β class, and α + β class in the fold
dataset (Figure 7). There are 41, 41, 45, and 55 folds in
each class, respectively. We used the contact definition
of 6.5Å for the Cβ-Cβ distance, since it is one of the best
performing definitions in the previous experiments in
Figures 1 and 5. Figure 7 shows that the structure re-
trieval performance varies for different fold class. When
TM-align was used (Figure 7A), folds in the α/β, and the
β class are better distinguished than those in the α+β
and the α class. However, trend is different for retrieval
using FCC computed with the two threading methods,
HHpred (Figure 7B) and SUPRB (Figure 7C). Among the
four classes, the all-β class performed worst. Since we
found that the retrieval results for the threading meth-
ods are largely affected by their alignment accuracy
(Figures 1, 2, 3), in Figure 8 we examined the alignment
accuracy by HHpred (Figure 8A) and SUPRB (Figure 8B)
for the four fold classes. It is found that, consistent to
the retrieval results in Figure 7, all-β proteins show the
lowest alignment accuracy by both HHpred and SUPRB.
Moreover, the overall order of the accuracies for the four
fold classes is consistent with the structure retrieval per-
formance shown in Figure 7. Thus, it is confirmed that
the retrieval accuracy of fold classes reflects the align-
ment accuracy of proteins in each classes. Figure 9
shows four examples of poorly recognized folds using
FCC computed with the threading methods. The Cβ-Cβ
distance 6.5 Å was used for the contact threshold. The
first three pairs (Figures 9A, B, C) are from the all-β
class while the last one is from the α/β class. Proteins in
the first example (Figure 9A) have the immunoglobulin-
like β-sandwich fold, which have two layers of β-sheets.
The query (2h7wB) contains eight β strands and the
template (1ifrA) has nine. TM-align aligned the two-
layer structure correctly yielding an alignment with an
RMSD of 4.21 Å for 72 residues, which corresponds to
67.3% and 63.7% of the length of 2h7wB and 1ifrA, re-
spectively. The RMSD was computed by the LGA pro-
gram [46]. On the other hand, the two threading
methods shifted alignment at the N-terminal region
(Figure 9A illustrates misalignments of HHpred and
SUPRB), which resulted in RMSDs of 13.54 Å and 15.96
Å by HHpred and SUPRB, respectively. The FCC values
by TM-align, HHpred, and SUPRB are 45. 8%, 2.2%, and
0.0%, respectively. The second example (Figure 9B) is
proteins of the glycosyl hydrolase-fold. TM-align pro-
duced an alignment with a 3.15 Å RMSD and FCC of
50.0%, while the RMSDs of HHpred and SUPRB align-
ments are 12.16 Å and 12.29 Å with FCC of 38.8% and
13.8%, respectively. The third example (Figure 9C) is a
protein pair of the “Common fold of diphtheria toxin/
transcription factors/cytochrome f” fold, which have nine
β strands forming two layers. TM-align captured the
overall folds correctly with an RMSD of 3.10 Å and a
FCC of 74.1%. On the other hand, HHpred and SUPRB
misaligned the protein pair mainly at the first half of the
proteins. This alignment error caused worse RMSDs of
5.79 Å and 16.74 Å and FCC values of 44.2%, and 9.9%,
respectively. The last example is a protein pair in the



Figure 5 The best TM-score observed among the top ranked protein pairs. Protein pairs in the fold level dataset was ranked by their FCC and
for each pair (of a query and a template) the structural similarity of the structural models of the query inferred by the alignment was compared with
the native structure of the query using TM-align. At each rank in the x-axis, the best TM-score was plotted. For protein pairs with equal FCC, TM-scores
are averaged among the pairs. To determine corresponding residues in protein pairs, TM-align (the left column), HHpred (the middle column), and
SUPRB (the right column) were used. Three different bases for residue contact definitions are used, the Cα-Cα distance (the first row), the Cβ-Cβ
distance (the second row), and the heavy atom distance (the third row). The panels are ordered in the same way as Figure 1.
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α/β class (Figure 9D), the preATP-grasp domain fold.
The structures of the proteins have a similar α/β/α three
layer core. TM-align aligned each layer from the two pro-
teins yielding an RMSD of 2.81 Å and FCC of 62.5%.
However, HHpred and SUPRB shifted the whole align-
ment, resulting in RMSDs of 11.89 Å and 13.24 Å, and
FCCs of 34.3% and 2.7%, respectively. These examples il-
lustrate that the threading methods’ frequent mistakes of
shifting β strands in their alignments, leading to failure
of detecting conserved contact pattern of the proteins.

Best contact definitions for individual folds
Up to this point, we examined the fold retrieval perform-
ance of the various contact definitions averaged over all
folds in the dataset. In this section, we investigate best
contact definitions for individual protein folds. Different
folds hold different conserved contact patterns. Thus, resi-
due contact definitions that achieve the best fold recogni-
tion for a certain fold may be different from the 7.0 Å Cβ-
Cβ distance that works best on average. For each fold, we
selected a definition with the largest AUC value in the fold
retrieval among 30 different definitions. If more than one
definition has the same AUC value, then all of them are
counted. A fold was not counted if its largest AUC is less
than 0.7. Figure 10 shows the distributions of best per-
forming contact definitions for folds for TM-align,
HHpred, and SUPRB. When structure alignment by TM-
align was used (Figure 10A), 6.5 Å Cβ-Cβ distance worked
best in 72 out of 201 cases (35.8%). 6.5 Å Cα-Cα distance
came to the second (best for 34 folds) and 4.5 Å heavy



Figure 6 ROC curves using residue contacts of different sequence separations. Residue contacts defined by the Cβ-Cβ distance 6.5Å are
binned to 5–10, 11–23, and >23 and each of them are used for fold recognition separately. >3 is the result using all the residue contacts (as
done for the other figures, short range contacts with 1 to 2 residue separation are not considered). A, TM-align, B, HHpred, and C, SUPRB.
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atom distance was the third (best for 28 folds). When
HHpred was used for alignments (Figure 10B), larger dis-
tances that did not appear for TM-align (Figure 10A), i.e.
10 Å, 12 Å, and 15 Å for the Cβ-Cβ distance, performed
best for some folds. For SUPRB (Figure 10C), the distribu-
tion of the contact definitions is very different from that
of TM-align. Counts are more evenly distributed for dif-
ferent distance cutoffs. The largest counts were observed
for the Cα-Cα distance 6.5 Å (23 cases; 16.0%), and the
second and the third were the Cβ-Cβ distance 6.5 Å
(18 cases) and the heavy atom distance 6.5 Å (17 cases).
Why does the overall best definition not work well for
some folds? Figure 11 illustrates when structures are bet-
ter recognized by a contact definition that is different from
the Cβ-Cβ distance 6.5Å. The first example, 1h6wA, has a
loosely packed C-terminal region (Figure 11A). The best
contact definition for this fold is the Cβ-Cβ distance of 20
Figure 7 ROC curves using TM-align, HHpred, and SUPRB for four diff
definition of the Cβ-Cβ distance 6.5Å was used. A, TM-align. AUC values fo
HHpred. AUC values for the four classes are 0.871, 0.767, 0.904, and 0.808, r
the four classes, respectively.
Å when using TM-align. Such a large cutoff produces a
contact map that contains all contacts from the definition
of the Cβ-Cβ distance 6.5 Å and additionally captures
neighboring residues in the C-terminus, as shown in the
contact map. Although these “contacts” identified by the
large distance cutoff are not physical interactions, charac-
teristic structural information can be captured, which con-
tributes for more accurate recognition of this fold. For the
second example, 1gyoB, the best contact definition was
found to be 12 Å for the Cα-Cα distance. As shown is
Figure 11B, this definition covers all the contacts identified
with the definition of Cβ-Cβ distance 6.5 Å as well as im-
portant interaction between α helices and β strands
(e.g. contacts in red). The latter two examples show the
difference of fold recognition abilities by the Cα-Cα dis-
tance 6.5 Å and the Cβ-Cβ distance 6.5 Å. The Cα-Cα dis-
tance of 6.5 Å had the second largest count for TM-align
erent fold classes (α, β, α/β, and α+β). The residue contact
r α, β, α/β and α+β are 0.876, 0.931, 0.945, and 0.866, respectively. B,
espectively. C, SUPRB. AUC values are 0.802, 0.629, 0.745, and 0.679 for



Figure 8 Cumulative fraction of the alignment sensitivity for different fold class. Alignments were computed using A, HHpred; and B,
SUPRB. Protein pairs of the same fold were used. Alignment sensitivity was averaged over protein pairs of the same fold and the fraction of folds
that have average alignment sensitivity above each cutoff was plotted.

Yuan et al. BMC Bioinformatics 2012, 13:292 Page 9 of 13
http://www.biomedcentral.com/1471-2105/13/292
(Figure 10A) and HHpred (Figure 10B) and the largest
count for SUPRB (Figure 10C). Figure 11C shows a struc-
ture of intein-encoded homing endonuclease PI-PfuI,
ldq3A. The AUC value using the Cα-Cα distance 6.5 Å for
this fold was 0.848 while it was significantly worse, 0.601,
with the Cβ-Cβ distance of 6.5 Å when TM-align was
used for the structure alignment. Contacts shown in red
in the map are for residue pairs between three β strands
(shown by red lines in the structure), which are detected
only by using the Cα-Cα distance 6.5 Å. As illustrated by
contacting residue pairs shown in magenta in the struc-
ture figure, these contacts are not detected by the Cβ-Cβ
distance 6.5 Å because the side-chains are placed in op-
posite directions. In contrast, the Cβ-Cβ distance 6.5 Å
performed better for capturing residue contacts between
α helices for 1ogkE (Figure 11D). AUC using the Cβ-Cβ
distance 6.5 Å and the Cα-Cα distance 6.5 Å for structural
alignments were 0.97 and 0.92, respectively. Contacts col-
ored in red in both the structure and the contact map are
those which are captured uniquely by the Cβ-Cβ distance
6.5 Å but not Cα-Cα distance 6.5 Å because they are too
far for the latter.

Discussion
In this work, we tested thirty different residue contact
definitions in the context of fold recognition. To investi-
gate the pure ability of contact patterns for distinguish-
ing folds, we introduced the fraction of common
contacts (FCC) of protein pairs and examined how well
FCC computed with different definitions select proteins
of the same fold from the rest of the protein pairs of dif-
ferent folds. To examine how much incorrect alignments
in threading affect the fold recognition accuracy, we also
used two threading methods, HHpred and SUPRB, to
determine corresponding residues of proteins. We found
that overall, the Cβ-Cβ distance 7.0 Å works best for
identifying proteins of the same fold consistently for
structural alignments and threading alignments. A quali-
tative difference between the threading alignments and
structural alignments is that the former prefer larger dis-
tance cutoffs for defining contacts because they are
more tolerant to misalignments (Figure 10). In the case
of threading, alignment accuracy strongly influences the
fraction of common contacts identified among proteins
of the same fold (Figure 2), which eventually affects fold
recognition accuracy (Figures 1, 5). It turned out that
threading alignment accuracy is relatively poorer for all-
β proteins (Figure 8), and thus those proteins have lower
fold recognition accuracy (Figure 7). Finally, we found
that the effective contact definition to identify folds
depends on the folds (Figure 10). A larger distance cutoff
is advantageous for capturing spatial arrangement of the
secondary structures of a fold, which are not physically
in contact. For capturing contacts between neighboring
β strands, considering Cα atoms is better than Cβ, be-
cause sometimes the side-chains point to opposite direc-
tions (Figure 11C). The results of this work suggest two
potential directions of implementing residue contacts for
improving fold recognition. Since a larger distance cutoff
is effective in capturing local topology of proteins,
employing a “long-distance” interaction potential for
residues that are 6.5 Å to 12 Å apart may improve rec-
ognition accuracy. The long-distance interaction poten-
tial may be used as a scoring term in threading together
with a regular contact potential (e.g. for contacts defined
within 4.5 Å between heavy atoms). Another idea is to
use different fold-specific contact definitions (Figures 10,
11) for each structure in a template database.

Conclusions
This study focused on seeking effective inter-residue
contact definitions for template-based protein structure



Figure 9 Examples of structure pairs that are not correctly aligned by HHpred and/or SUPRB. For each example, the structure pairs are
colored to indicate corresponding secondary structures in a structural alignment by TM-align on the top panel. On the bottom panel, aligned
secondary structures by HHpred and SUPRB are shown by red (HHpred) and blue (SUPRB) arrows. The secondary structures of the same color on
the top and the bottom panel correspond to each other. Arrows indicate β strands while boxes are α helices. Note that the length of the lines
does not reflect the actual size of the proteins (two proteins do not necessarily have the same length). A, left, 2h7wB (query), right 1ifrA
(template). TM-score (RMSD) of the predicted structure of the query inferred from the HHpred/SUPRB alignments are 0.346 (4.20 Å) and 0.290
(4.09 Å), respectively. B, Left, 1xsiC (query), right, 2c8nA (template). TM-score (RMSD) of the structure models using HHpred/SUPRB alignments are
0.410 (2.83 Å) and 0.269 (3.45 Å), respectively. C, Left, 1amxA (query), right, 1ayoA (template). TM-score (RMSD) of the structure models using
HHpred/SUPRB alignments are 0.591 (3.50 Å) and 0.589 (3.30 Å), respectively. D, Left, 1uc8_B (query), right, 1auvA (template). TM-score (RMSD) of
the structure models using HHpred/SUPRB alignments are 0.438 (2.91 Å) and 0.416 (2.62 Å), respectively.
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prediction. Residue contacts defined by Cβ−Cβ distance
of 7.0 Å work best overall among tested to identify pro-
teins of the same fold. We also found that effective con-
tact definitions differ from fold to fold, suggesting that
using different residue contact definition specific for
each template will lead to improvement of the perform-
ance of threading.

Methods
Dataset of domain structures of globular proteins
Two sets of domain structures of globular proteins were
selected according to the SCOP database (release 1.73)
[48], one for representative protein folds and another
one for representative superfamilies. We selected protein
folds that have at least three superfamilies, from each of
which one domain structure was selected. Entries were
discarded if their PDB files contain only Cα traces. In
total, 194 folds were selected. The numbers of structures
in each fold range from 3 to 110. In total, there are 2167
structures in the fold dataset. Similarly, a dataset of 250
representative superfamilies that contains a total of 1672
structures were selected. Each superfamily in the dataset
contains at least three families, from each of which one
structure was selected. In the following part, we will



Figure 10 Distribution of contact definitions for individual folds
that give the largest AUC values. A, TM-align, B, HHpred, and C,
SUPRB. Folds are discarded if even the best contact definition has an
AUC value less than 0.7. Among the thirty contact definitions
examined, thirteen definitions are discarded which had zero counts
for all the three alignment methods.
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explain the experiment procedure on the fold dataset
and readers should be aware that the same procedure
was performed on the superfamily dataset.
Construction of contact maps
For each structure in the datasets, we constructed contact
maps using thirty different contact definitions: three con-
tact bases to consider for an amino acid residue, i.e. Cα,
Cβ (Cα atom is used for glycine), and heavy atoms from
two residues, with 15 distance cutoffs for each (4.5, 5.0,
5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 10.0, 12.0, 15.0, 20.0, 30.0, 50.0,
and 100.0 Å). To eliminate obvious contacts from neigh-
boring residues, we only considered contacts between
amino acid residues that are at least three residues apart
in the primary sequence.

Common contacts between two protein structures
The aim of this work is to examine how well residue
contacts determined by each of thirty definitions can
distinguish proteins of the same fold from the others. To
identify common contacts between two protein struc-
tures (more precisely, contact maps of the two protein
structures), we need an alignment of the two proteins to
identify structurally equivalent residues between them.
Alignments were obtained using three methods, TM-
align [43], HHpred [44], and SUPRB [12]. TM-align is a
structure alignment method, which aligns two tertiary
structures using a dynamic programming algorithm and
computes the root mean square deviation (RMSD). We
consider structural alignments calculated by TM-align as
the golden standard of the alignments. The latter two
methods, HHpred and SUPRB, are threading methods.
For a pair of proteins, the sequence of one of them is
threaded (aligned) on the other protein structure. The
purpose of using the threading methods is to introduce
realistic errors that can happen in the alignment process
of threading. HHpred uses a hidden Markov model that
characterizes proteins with sequence profiles and pre-
dicted secondary structures [44]. SUPRB is a threading
method that uses a composite scoring function with se-
quence profile, solvent accessibility, secondary structure
matching, main chain angle preference, and a residue
contact potential term. In this experiment we deleted
the contact potential term from the scoring function.
Given contact maps of two proteins and an alignment
(either by TM-align, HHPred, or SUPRB), the fraction of
common contacts (FCC) was computed as follows: Sup-
pose residues ai and aj in protein A (the query) are
aligned with residues bm and bn in another protein B
(the template), respectively. If the (ai , aj) pair and the
(bm, bn) pair are in contact within each protein respect-
ively, then we count them as a common contact between
the two proteins. Finally, the FCC for the query protein
is computed as the number of residues in the query that
are involved in at least one common contact relative to
the number of aligned residues. FCC ranges from 0 to 1.

Identification of proteins of the same fold/superfamily by
fraction of common contacts
For a group of proteins of the same fold, FCC was com-
puted for each pair of them. As a reference, we took one
protein from each fold (thus 194 proteins in total) and
computed FCC between the selected protein of the fold
and the other proteins from different folds. The difference
between FCC values of proteins within the same fold and
those across different folds reflects the ability of fold rec-
ognition by a certain definition of residue contacts. For a



Figure 11 Examples of folds that are better recognized by a contact definition different from the Cβ-Cβ distance 6.5Å. For each
example, the tertiary structure and a contact map are presented. Contact maps are generated using CMView [47]. The chain color, blue to red,
shows the orientation of the chain from the N- to the C-terminus. A, 1h6wA. In the contact maps, black are contacts detected by both the Cβ-Cβ
6.5 Å and the Cβ-Cβ 20 Å definitions; green and red are contacts dentified only by the latter definition. Contacts in red in the map correspond to
the residue pairs connected by red lines in the structure. B, 1gyoA. Black are contacts detected by both the Cβ-Cβ 6.5 Å and the Cα-Cα 12 Å;
green and red are contacts identified only by the latter definition. C, 1dq3A. Black are identified by both the Cβ-Cβ 6.5Å and the Cα-Cα 6.5Å; red
and green contacts are identified only by the latter definition. Two residues in magenta in the structure are in contact using the definition of the
Cα-Cα 6.5 Å but not by the Cβ-Cβ 6.5 Å. D, 1ogkE. Black are those which identified by both the Cβ-Cβ 6.5 Å and the Cα-Cα 6.5 Å. On the other
hand, contacts in purple and red are detected only by the former definition. Contacts in green are unique to the latter definition.
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fold group, we sorted protein pairs of the same fold and
those from different folds by their FCC and computed the
receiver operator characteristic (ROC) curve. For each
contact definition, an average ROC curve was computed
by averaging the true positive values of all the folds at the
same false positive rate.

Additional file

Additional file 1: ROC curves of structure pair retrieval on the
superfamily dataset. To determine corresponding residues in protein
pairs, TM-align (the left column), HHpred (the middle column), and
SUPRB (the right column) were used. Three different bases for residue
contact definitions are used, the Cα-Cα (the first row), the Cβ-Cβ distance
(the second row), and the heavy atom distance (the third row). The
panels are ordered in the same way as in Figure 1.
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