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Abstract

easily transformed to useful quality scores.

Background: 454 pyrosequencing is a commonly used massively parallel DNA sequencing technology with a wide
variety of application fields such as epigenetics, metagenomics and transcriptomics. A well-known problem of this
platform is its sensitivity to base-calling insertion and deletion errors, particularly in the presence of long
homopolymers. In addition, the base-call quality scores are not informative with respect to whether an insertion or a
deletion error is more likely. Surprisingly, not much effort has been devoted to the development of improved
base-calling methods and more intuitive quality scores for this platform.

Results: We present HPCall, a 454 base-calling method based on a weighted Hurdle Poisson model. HPCall uses a
probabilistic framework to call the homopolymer lengths in the sequence by modeling well-known 454 noise
predictors. Base-calling quality is assessed based on estimated probabilities for each homopolymer length, which are

Conclusions: Using a reference data set of the Escherichia coli K-12 strain, we show that HPCall produces superior
quality scores that are very informative towards possible insertion and deletion errors, while maintaining a
base-calling accuracy that is better than the current one. Given the generality of the framework, HPCall has the
potential to also adapt to other homopolymer-sensitive sequencing technologies.

Background

A first step in the analysis of next-generation sequenc-
ing (NGS) data is the transformation of the measured
intensity signals to a sequence of nucleotides. This pro-
cess, referred to as base-calling, is an important task, as
systematic base-calling errors may mislead downstream
analysis [1], e.g. in genome assembly and sequence map-
ping. More accurate base-calling and more reliable base-
calling quality scores result in a better distinction between
sequencing errors and true polymorphisms between the
base-called reads and a reference sequence. This is an
essential merit in the detection of single nucleotide poly-
morphisms (SNPs) or sequence variants [2-4]. A myriad
of applications such as the characterization of HIV muta-
tion spectra [5], the detection of somatic mutations in
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cancer [6], and the identification of operational taxonomic
units in metagenomics [7] have the potential to benefit
from improved base-calling and more informative quality
scores.

The 454 Life Sciences system is based on the
sequencing-by-synthesis principle. In each flow of the
sequencing process, light produced by a pyrosequencing
reaction is emitted if one or more identical nucleotides
are incorporated into the DNA template. The addition
of each of the 4 possible nucleotide solutions A, C, G
or T occurs in a fixed and known order. Hence, 454
base-calling is a matter of discerning the number of incor-
porated nucleotides or homopolymer length (HPL) of a
known nucleotide type from the measured intensity sig-
nal in each flow [8]. Consequently, the principal sources
of 454 sequencing errors are insertion and deletion errors
(indels). These are more frequent in sequences containing
long homopolymers [9,10], because the increase of inten-
sity signal when more nucleotides are incoporated, atten-
uates at higher HPLs. This makes it harder to discriminate
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between subsequent homopolymer lengths, resulting in
an inflation of undercalls or overcalls as the HPL increases
(Additional file 1: Figure S1).

In the default 454 sequencing pipeline the raw intensi-
ties are preprocessed to flowgram values by correcting for
the major error sources. These include spatial and read-
specific effects such as the abundance of long homopoly-
mers in a read [8,11]. This preprocessing eliminates much
obscuring noise, but removes some useful information as
well (Figure 1). In the next step the base-calling takes
place, where, roughly speaking, the flowgram values are
rounded to the nearest integer. Subsequently, a quality
score is assigned to each called base. Quality score calcu-
lation in current 454 base-calling is solely based on the
flowgram values without considering information from
the preprocessing step [11]. An alternative method for
quality score assignment has been proposed that focuses
on the distribution of observed flowgram values for every
possible HPL [4], but it does not account for additional
error sources. A common feature is that such methods
are designed as a next step in the pipeline after the base-
calling is finished. Hence, the base-calling uncertainties
inherent to the base-calling model or algorithm are not
directly utilized in the construction of the quality scores.
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A second shortcoming of the current base-callers is that
they only produce quality scores in the Phred format [12].
Phred scores can be interpreted in terms of the prob-
ability that the called base is not an overcall. Although
well-known and widely used, they provide a measure for
the quality of the base-call, but they lack additional infor-
mation on whether there is an undercall or an overcall,
and on how likely it is for other HPLs to be the correct
call, instead of the HPL being called. This feature is par-
ticularly essential in 454 pyrosequencing. An example of
overcalls of reference sequences with HPLref 3 shows that
the distributions of 454 quality scores are nearly identical
for the called bases associated with position 2, 3 and 4 in
the homopolymer run (HPL 2, 3 and 4) (Figure 2). Hence,
these quality scores do not give any insight into whether
it is more likely to have an undercall or an overcall,
given that a base-calling error was made. This information
would, however, be very useful in downstream tasks such
as sequence alignment and sequence variant calling. Quite
some methods have recently been proposed that consider
quality scores to increase accuracies in these downstream
analyses, e.g. [13-15]. By adding more detailed informa-
tion about the probabilities of having an undercall or
overcall, these methods could be improved even further.
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Figure 1 The effect of preprocessing raw intensities. Raw intensities and flowgram values versus cycle number for a typical read, illustrating the
effect of preprocessing. The colors represent the reference HPL. The preprocessing of raw intensities to flowgram values removes much noise.
However, the raw intensities still contain additional information that can be used in the base-calling.
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Figure 2 Distribution of quality scores by 454 native base-caller
at HPLref 3 overcall. The empirical cumulative distribution functions
of 454 quality scores assigned to bases associated with HPL 2, 3 and 4
in case of an overcall for sequences with reference HPLref 3. The
distributions are nearly identical, implying that no insight is provided
by the 454 quality scores about whether an undercall or an overcall is

more likely, given that a base-calling error was made.

For these reasons we have developed HPCall, a gen-
eral probabilistic framework that seamlessly integrates the
base-calling with more informative quality score assign-
ment. HPCall is based on the classification of the calls
in groups representing the possible HPLs. To this end, a
statistical model for count data is used that predicts the
HPL in each sequencing cycle as a function of a number
of explanatory variables. A particular property of the 454
pyrosequencing process is the high abundance of back-
ground intensities (HPL 0). Whenever a nucleotide flow
does not match the nucleotide at the interrogated posi-
tion of the DNA template, no nucleotide is incorporated
and no sequencing reaction takes place. The resulting
light intensity mainly reflects background optical noise.
Consequently, there are more zero counts than expected
for a Poisson distribution. Hurdle Poisson regression
models [16] are one way to deal with these excess
Zeros.

For each possible HPL, the model produces an esti-
mated probability that this HPL is truly present in the
DNA sequence at the interrogated position. The called
HPL is then the HPL with the largest estimated prob-
ability. The calculation of these probabilities allows the
simultaneous construction of quality scores. These scores
directly reflect the base-calling’s uncertainties and provide
information about potential undercall or overcall errors.
In the model we combine information of flowgrams and
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earlier-stage raw intensities. By including the raw inten-
sities we employ the additional information otherwise
removed by the preprocessing (Figure 1), both for the
base-calling and for the calculation of the quality scores.
However, they are not strictly necessary for the method to
provide valid results.

Methods

Sequencing data

To assess the base-calling accuracies, DNA of the refer-
ence K-12 strain MG1655 of the bacterium Escherichia
coli was sequenced at the NXTGNT sequencing center,
using shotgun sequencing with Titanium reagents. Results
are presented for a random subset of 15000 out of the
635979 produced reads. The reads in the standard 454
pipeline were produced using software version 2.3.

Base-calling pipeline

Before running the Hurdle Poisson base-calling model a
preliminary data preparation step is performed in HPCall.
In this step several raw data files are merged to create a
data set that can be used for calibration of the model, if
needed, and for subsequent base-calling. After the base-
calling three output files are created: (a) the base-called
reads, (b) the associated Phred-like quality scores, and (c)
a file with the base-calling probabilities by HPL. A visu-
alization of the base-calling pipeline, including a more
detailed description, can be found in the Additional file
(Additional file 2: Figure S2).

Weighted Hurdle Poisson model

Model specification

Let N, be the number of nucleotides b that are
incorporated in cycle ¢, with b € B = {A,C,T,G} and
¢ = 1,...,L, where L represents the total number of
cycles in the sequencing experiment. Note that one cycle
consists of 4 flows of nucleotide solutions added in fixed
order. The base-calling problem is treated as a classifi-
cation problem, where Nj, is the class indicator. Based
on the observed input information on the raw intensi-
ties and flowgram values, the flows are assigned to one of
these classes. If there are only two possible classes, this
is often done by logistic regression. Here, we use Poisson
regression, because multiple HPLs have to be classified.
Furthermore, these models also allow for extrapolation to
larger HPLs. To model the excess zeros in the data we
consider Hurdle Poisson models. They are mixture mod-
els with a binomial component that distinguishes between
zero counts and positive counts, and a zero-truncated
Poisson component which models the positive counts,
conditional on having a non-zero count. Because 454 data
show considerable underdispersion after truncation, i.e.
the variance is smaller than the mean, a weighted Poisson
component [17] is adopted in the model to cope with this.
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The following Hurdle Poisson model is considered:

ifny, =0
ifnpe =1,2,3,...
1)

where the probability Pr{N. = ny} is conditional on
the observed raw intensities and flowgram values, and
fzrwp is the density of a zero-truncated weighted Poisson
distribution which is given by

fWP (Mpe; Ape, 0)
1 — fwp(0; Ape, 6)

with fiyp denoting the density of the weighted Poisson
distribution,

P {N } { 1-—- The
F'UNpe = Hpej =
¢ ¢ The fzTWP (Mpes Apes )

Jzrwp = fornmp. =1,2,3,..., (2)

Mpc

Whehpe!

Wiy, € be e
Swp(pe; Ape, 0) = ————— (3)
In (3), {Wnbc} denotes a set of weights, A, > 0

and the normalizing constant is given by W, =

0 eiAbC}‘ZfCW"bc ; ;
> =0 —r - We use exponential weights w,,
similar to the ones proposed in [17],

Wy, = e 0000 With 6 > 0. (4)

By considering a positive 0 the underdispersion in the
count data can be modeled properly.

The nucleotide- and cycle-specific parameters 7, in the
binomial component and Aj. in the Poisson component
are modeled with several predictors. We allow the predic-
tor effects to be nonlinearly associated with the HPL by
considering generalized additive models (GAM) [18]. In
particular,

k
logit(tse) = Bobe + Y _fi(jbc), )
j=1
!
10g(hbe) = Yobe + Y GWjbe), (©6)
j=1

with the f; and g; being smooth functions of the corre-
sponding predictor variables x;j,. and yjc, respectively.
Details about the smooth functions are provided in the
Additional file 3. Note that the predictor variables in (5)
and (6) can be specified separately. In this paper we pro-
pose that the following information is used in either or
both of the 2 submodels:

o flowgram values in the current flow;

® log, raw intensities in the current flow with or
without a read-specific normalization;

e the cumulative sum of flowgram values and logy raw
intensities up to the current flow; this allows for
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modeling a cycle-specific effect and recognizes the
abundance of homopolymers in the preceding flows;
¢ flowgram values of 1, 4 and/or 8 flows before and/or
after the current flow; this corrects for
homopolymers in preceding and subsequent flows.

Parameter estimation or model training

The model parameters are estimated by maximum likeli-
hood. This is done by using an iteratively reweighted least
squares procedure [19] for both submodels. Efficient fit-
ting of the model is conducted by the R-package VGAM
[20].

The estimation of the model parameters is based on
the use of a representative training data set generated
from a reference DNA sequencing experiment. The cor-
responding reference HPLs are the class indicators in the
classification model. For the E. coli reference run we ran-
domly selected 1000 reads to fit the base-calling model.
The remaining 14000 reads in the subset were used for
assessing the performance of the base-calling method.

Base-calling and quality score construction

In flow bc, HPCall calls the HPL #,,. for which f’{Nm =
pe|%j,ber Yjpe} is maximal. These probabilities are obtained
by plugging the estimated parameters from submodels
(5) and (6) into model (1). They are also very useful
quality scores because they provide a direct probabilis-
tic interpretation to the base-calling uncertainties and
give insight into potential undercall or overcall errors.
Moreover, they can also be used for the construction
of Phred scores in a similar fashion as the traditional
454 quality scores: it is a quality score that reflects
the probability that the called base is not an overcall.
In particular, the Phred-like quality score of the k-th
called base in a homopolymer stretch (k > 0) is thus
given by: QSovercal = —10 10g10(22‘;c:k P{Np. =
Mpel%j ber Yjpe})- Since we can obtain the probabilities for
all possible HPLs, we can also calculate an alternative
quality score that reflects the probability that the called
base is not an undercall. This is given by QS undercall =
—10  log;o(YXh, —oPINbe = mpeljpe Yjseh)- Using
QSk overcall and QSk undercall @ New quality score is calcu-
lated: QSgHpcan = Idir X mMin(QSkundercall, QSk,overcall)
with Igiy = —1 if QSkundercall < QSk,overcan and Igir = 1
if QSkundercall > QSk.overcall- The sign of QSg Hpcan thus
indicates whether an undercall or an overcall is more
likely.

Performance evaluation

The performance of HPCall is compared with that of
the native 454 base-caller and of Pyrobayes [4] based on
the E. coli reference run. The Phred-like quality scores
produced by the different base-callers are compared to
‘observed’ quality scores. The latter are computed by
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grouping all the bases with an equal quality score together,
and computing for each group the proportion of overcalls.
An observed quality score is calculated as QSobserved =
—10 log;y(observed overcall error rate). High HPCall
quality scores are trimmed to 40, just like it is done by the
native 454 base-caller. Further, the proportions of high-
quality bases for the different base-callers are compared.
Next, we illustrate the added value of the HPCall base-
calling probabilities and the new quality scores QStpcall-

The raw base-calling accuracy is assessed to give insight
into the base- and read-level error rates. For HPCall the
reproducibility of this accuracy is evaluated based on 10
random training data sets. Subsequently, an indel and
SNP-analysis is conducted using variant detection soft-
ware. We use both ssaha2 [21] and subread [22] (http://
sourceforge.net/projects/subread/) to map the base-called
reads to the reference sequence and ssahaSNP [23] to
compute the number of sequence variants, both SNPs and
indels. False positive calls are determined by comparing
the base-calls to the E. coli K-12 strain reference genome.
Finally, the computational performance for the different
methods is compared.

Results

Quality scores and base-calling probabilities

HPCall provides estimated probabilities that a certain
HPL is present given the values of all the input vari-
ables in the model. These probabilities are thus the most
direct way to quantify the base-calling uncertainty. In
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addition, they can also be used to compute Phred-like
quality scores as generated by the native 454 base-caller
and by Pyrobayes. The quality score assignment of the
different base-callers is assessed by comparing the pre-
dicted quality score with the observed quality score for
the E. coli data set. Both for HPCall and for the native 454
base-caller the predicted quality scores seem to reflect the
observed quality quite well, and the quality score assign-
ment seems equally good (Figure 3A). For Pyrobayes the
performance is clearly worse, as predicted high quality
scores overestimate the true quality of the base-calls. We
also observe that HPCall generates more high quality
scores than the other two base-callers (Figure 3B). As an
illustration, HPCall assigns to 95% of the called bases a
quality score of 30 or more, whereas this cumulative base
fraction is only 82% for the native 454 base-caller and 54%
for Pyrobayes.

In the introduction we have argued that the 454 quality
scores do not give any insight into whether it is more
likely that a possible undercall or overcall was made
(Figure 2). Using the same example of overcalls for refer-
ence sequences with HPLref 3, the HPCall quality scores
QSovercall Clearly indicate that overcalls are more likely
(Figure 4) in this situation. This can be seen from the
large quality scores associated with HPL 2 and HPL 3,
whereas HPL 4 gives smaller quality scores. A similar
picture is seen for the undercalls of reference sequences
with HPLref 3, based on QSundercall (Additional file 4:
Figure S3). Note that this plot can not be made for 454
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HPCall and the native 454 base-caller have an equally accurate quality score assignment, whereas Pyrobayes performs clearly worse. (B) Cumulative
proportion of called bases versus the assigned quality score. HPCall assigns more high quality scores than the other base-callers; the left figure
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Figure 4 Distribution of HPCall quality scores at HPLref3
overcall. The empirical cumulative distribution function of HPCall
quality scores QSgvercall assigned to bases associated with HPL 2, 3
and 4 for sequences with reference HPLref 3. The quality scores
associated with HPL 2 and HPL 3 are generally large, whereas HPL 4
gives smaller quality scores. HPCall clearly indicates that overcalls are
more likely in this situation, whereas this insight is not provided by
the native 454 quality scores.

quality scores. Plots with respect to the combined HPCall
quality score QSypcan reveal that the sign of these quality
scores provides additional information about whether an
undercall or an overcall is more likely (Additional file 5:
Figure S4).

As mentioned before, the Phred-like HPCall quality
scores are based on estimated probabilities of being the
correct call. Hence, these probabilities are also very useful
to assess the base-calling quality. Their distribution for the
example of reference sequences with HPLref 3 shows that
undercalls and overcalls are associated with larger base-
calling uncertainties than correct calls (Figure 5). In case
of a correct call almost all probabilities at HPL 3 are very
close to 1, whereas the cumulative sum of probabilities
below HPL 3 in case of an undercall and above HPL 3 in
case of an overcall are more evenly distributed between
0.5 and 1. In case of a miscall the estimated probability at
the reference HPL very often is second largest. Moreover,
the miscalled maximal probability and the probability at
the reference HPL nearly always sum to a value close to 1
(Additional file 6: Figure S5).

The merit of having the base-calling probabilities at our
disposal is further demonstrated by examining indels that
are flagged in sequence variant detection (see also fur-
ther). In the first example (Table 1) an undercall with
respect to the reference sequence AAAAA is called by
both HPCall and the native 454 base-caller. The native 454
base-caller assigns a quality score of 22 to the fourth A
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in the homopolymer sequence. This score of 22 does not
indicate whether it is more likely that the fourth called
A is a potential under- or overcall. Either way, there is
no fifth quality score available to provide more informa-
tion about a possible fifth A to be called. For HPCall we
have the additional information that the estimated prob-
ability that there should be five A’s called is 0.17. This
indicates that a miscall for this flow would almost cer-
tainly be an undercall. This is confirmed by the negative
sign of QSypcan = —8 for this example. It is obvious
that mapping algorithms that take this additional infor-
mation into account will be able to more reliably map the
base-called reads to the reference sequence. A very similar
situation is observed in the case of an overcall (Table 2).
A homopolymer stretch AA is considered in the reference
sequence, but is called as AAA by both base-callers. Again,
the quality score of 23 given by the native 454 base-caller
for the third A does not give an indication of the probabil-
ity of having an undercall or an overcall, given that there
is a miscall. HPCall on the other hand does provide this
information. Since the estimated probability of HPL 2 is
0.29, an overcall seems much more likely than an under-
call. Also here this is confirmed by the positive sign of
QShpcan = 5. Finally, an example of the special situation is
considered where no base is called while there is one in the
reference sequence (Table 3). Because the native 454 base-
caller only produces a quality score for every called base,
there is no quality score provided in this situation. Hence,
there is no indication of the uncertainty of not having a
call in the current flow. HPCall estimates the probability of
having HPL 0 at 0.75, and of having HPL 1 at 0.25, with an
associated QSypcay of —6, indicating that it is not unlikely
that there should be one base called instead of none.

Prediction accuracy

The prediction accuracy of HPCall is examined for the
E. coli data and compared with the performance of the
native 454 base-caller and Pyrobayes. Based on the 14000
evaluation reads in the E. coli reference run, an overall
decrease of 35% of the percentage of base-calling errors
is observed for HPCall as compared to the native 454
base-caller (Figure 6). The lower number of base-calling
errors is consistent throughout the whole range of HPLs,
with peaks at HPL 4 (-55%) and HPL 6 (-50%). A plot
of the absolute number of base-calling errors is shown
in the Additional file (Additional file 7: Figure S6). These
results are based on using information from both the raw
intensities and the flowgram values. If only flowgram val-
ues are used, the prediction accuracy is slightly smaller
but still larger as compared to the competing base-callers
(Additional file 8: Table S1). Sensitivity analysis indicates
that HPCall prediction accuracies are very stable across
different training data sets (Additional file 9: Figure S7).
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and (C) cumulative sum of probabilities above HPL 3. In each panel the cumulative distribution functions are plotted separately in case of an
undercall, correct call or overcall. The distributions of probabilities clearly indicate larger base-calling uncertainties in case of an undercall or overcall.

Read-wise assessment and sequence variant analysis

The reads produced by HPCall are mapped to the ref-
erence sequence using ssaha2 and subread. In the map-
ping of the HPCall reads the traditional quality scores
produced by HPCall without sign information are used.
The read-wise error rate is compared to the native 454
base-caller (Additional file 10: Table S2). For this data
set mapping percentages of 99.47% (ssaha2) and 99.43%
(subread) are obtained. 66% (ssaha2) to 69% (subread) of
the reads produced by HPCall map perfectly to the ref-
erence genome of the E. coli K-12 strain, whereas this
is only the case for 56% (ssaha2) to 60% (subread) of
the reads produced by the native 454 base-caller. This

evidently leads to a higher percentage of 454 reads with at
least one mismatch to the reference genome as compared
to reads generated by HPCall. The mapping location of
the reads produced by HPCall and those produced by
the native 454 base-caller differed by more than 10 bp
for only 2 reads. The good performance of HPCall was
confirmed by a read-wise assessment on data of a 454
amplicon resequencing experiment of the human TP53
gene. More details can be found in the Additional file 11.
Sequence variants of the mapped reads are detected by the
ssahaSNP program (Additional file 10: Table S3). A reduc-
tion of the number of sequence variants with 40% is
obtained when using HPCall as compared to the native
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Table 1 Base-calling probabilities example 1: undercall
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Table 3 Base-calling probabilities example 3: 0-1 undercall

reference sequence: AAAAA

reference sequence: T

native 454: AAAA native 454: -
gs 2 gs3 qs 4 gs5 qs 6 qs0 gs1 Qs 2 ags3 qs4
QS454 28 22 22 - - QSa54 - - - - -
HPCall: AAAA HPCall: -
HPL 2 HPL 3 HPL 4 HPL5 HPL6 HPLO HPL 1 HPL 2 HPL 3 HPL 4
P{Npe = npc} <1E-15 74E-9 0.83 0.17 63E-11  PNnc = npe) 0.75 0.25 2.9E-8 <1E-15 <1E-15
QShpcall 0 0 -8 1 0 QShpcal -6 1 0 0 0

The estimated probability for HPL 5 (0.17) and the associated QSypcay (-8)
provided by HPCall clearly indicate the possibility of having an undercall with
respect to the reference sequence, whereas this information is lacking in the
quality scores of the native 454 base-caller.

454 base-caller. The decrease is observed both for indels
and for SNPs.

Computational performance

The performance of HPCall was tested using a represen-
tative 454 dataset containing 198,347 sequences. Both the
native 454 basecaller and Pyrobayes processed the dataset
in approximately 4h, while the base-calling by HPCall
was conducted in approximately 6.5h. Both Pyrobayes and
HPCall had comparable memory footprints of less than
1GB. HPCall used 3.5GB hard disk space to store the
preprocessed data before actual basecalling took place.
The computational performance was measured on a 2x6
Core Intel Xeon X7460, 2.66 GHz Processors GNU/Linux
server system with 128 GB RAM.

Software package

The HPCall pipeline contains three modules. The first is
a preprocessing module that stores all required data in a
SQL database. The second module performs the actual
base-calling by means of the R package VGAM. All base-
calls, HPCall probabilities and quality scores are postpro-
cessed in the final module to produce the final output files.

Table 2 Base-calling probabilities example 2: overcall

reference sequence: AA

native 454: AAA

gs 1 Qs 2 qs3 as 4 as 5
QS454 22 22 23 - -
HPCall: AAA
HPL 1 HPL 2 HPL 3 HPL 4 HPL5
P{Nne = N} 1.7E-10 0.29 0.71 3E9 <1E-15
QStpcall 0 -1 5 0 0

Base-calling probabilities example 2: overcall. HPCall gives a probability for HPL
3 0f 0.29 and an associated QSypc) Of 5. This indicates that it is not unlikely that
the fourth called A is an overcall. This information can not be extracted from the
quality scores of the native 454 base-caller.

Because there is no base called by the native 454 base-caller, also no quality
score is provided. HPCall on the other hand generates probabilities for HPL 0
(0.75) and HPL 1 (0.25) and an associated QSupcay at HPL 0 of -6, indicating that
an undercall is not unlikely.

The HPCall software and manual are available at https://
sourceforge.net/projects/hpcall/.

Discussion

One of the main contributions of HPCall is that the
base-calling and quality score assignment are seamlessly
integrated and occur simultaneously, instead of in two
separate steps. For a given cycle and nucleotide, the
probability of being the correct HPL is estimated for
each possible HPL based on different noise predictors,
and the call corresponds to the HPL with the maximum
probability. In this way the extent of the maximal prob-
ability provides direct information about the base-calling
uncertainty and can thus be used as a measure for the
base-calling quality. Moreover, in the case of a miscall the
second largest probability indicates whether an undercall
or an overcall is more likely. This information is impor-
tant for the downstream analysis of sequencing data,
but it is completely lacking from traditional Phred-like
quality scores produced by current 454 base-callers. The
distributions of maximum base-calling probabilities in
case of a miscall are more evenly distributed between 0.5
and 1 than in the case of a correct call where it is very
often nearly 1. This suggests that relatively small maxi-
mum probabilities are often associated with miscalls and
therefore should raise caution.

Because they are commonly used in the analysis of
NGS experiments, HPCall also calculates Phred-like qual-
ity scores, based on the base-calling probabilities. These
can be used in the same way as 454 quality scores. They
are related to the probability of not having an overcall.
These ‘overcall’ quality scores appear to compete well with
the 454 quality scores, while the Pyrobayes quality scores
perform clearly worse. At the same time, however, HPCall
produces considerably more high-quality scores. Since we
have all possible base-calling probabilities at our disposal,
we can also calculate alternative quality scores based on
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the probability of not having an undercall. Subsequently,
a summarizing Phred-like quality score is constructed by
determining which of these two quality scores has the
smallest value at the base-called HPL and this informa-
tion is coded by the sign of the quality score (minus for
undercall, plus for overcall). This new quality score now
also contains information about the direction of a pos-
sible miscall. Quality-aware sequence aligners may use
these scores to provide more reliable mapping results.
We further illustrate the use of the HPCall base-calling
probabilities and the Phred-like HPCall quality scores for
assessing indels in sequence variant detection. In each
sequencing flow, the native 454 base-caller produces qual-
ity scores for each called base, i.e. for a homopolymer of
length 3, also 3 quality scores are provided. These quality
scores are not informative to discriminate between poten-
tial undercalls or overcalls. Furthermore, in the situation
that 0 bases are called instead of 1, no quality scores are
provided by the other base-callers. Hence, no information
is given about the probability that indeed 0 bases should
have been called. In contrast, HPCall clearly indicates
which type of miscall - undercall or overcall - is possibly
to be expected in these examples, by means of the second
highest base-calling probability and the sign of the HPCall
quality score.

Besides the added value of the base-calling probabilities
and quality scores, the prediction accuracy of HPCall sur-
passes that of the native 454 base-caller and of Pyrobayes.
Based on our E. coli data we detect a 35% reduction of
base-calling errors as compared to the current 454 base-
caller. This reduction is quite stable throughout the whole
HPL range. This number is based on a model that uses
not only information from the preprocessed flowgram

values, but also from the earlier-stage raw intensities to
call the HPL in each flow of the sequencing process. If only
information of flowgram values is used, the reduction of
base-calling errors is still there, but it is smaller. Hence,
although preprocessing raw intensities to flowgram values
in a separate step prior to base-calling has the merit of
reducing the spatial, read-specific and background optical
noise in the data to a large extent, it also seems to remove
crucial information for the base-calling task itself. The
lower number of base-calling errors is also reflected in the
lower number of detected indels and SNPs after mapping
the base-called reads to the E. coli reference sequence.
The beneficial performance of HPCall was confirmed on
a 454 amplicon resequencing experiment of the human
TP53 gene. When HPCall is run using the model trained
on the E. coli data set the base-calling accuracy slightly
decreases (see Additional file 12). For optimal results, it is
therefore recommended to retrain the model for different
experiments. For calibration of the base-caller the asso-
ciated HPLs of a reference sequence are used to fit the
model. A possible way to implement this is by adding plas-
mids to the sequencing experiment. The 454 sequencer
uses control reads containing varying HPLs for recalibrat-
ing its native base-caller. Hence, these control reads would
be very valuable for this purpose. Up to now, however, the
454 software does not allow to extract the flowgram val-
ues associated with these reads. The larger accuracy and
creation of the more informative quality scores by HPCall
comes at the cost of an additional computing time that is
in the same order as the time for native 454 base-calling.
Based on the E. coli data, the accuracy performance of
HPCall is stable across different training data sets used to
fit the model.
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While HPCall was primarily developed for base-calling
of 454 data, it has the potential to be used for other
homopolymer-sensitive sequencing platforms as well, e.g.
the PGM sequencer of Ion Torrent. Within the broad
framework of the Hurdle Poisson model the algorithms
to train the model remain unchanged. This also means
that similar informative quality scores can be produced for
other platforms. Only the explanatory variables used to
predict the HPL will be specific for each platform, e.g. the
nucleotide flow order of the Ion PGM sequencer is differ-
ent from the 454 sequencer. Although it was not the main
focus of this research, a first test with PGM 314 E. coli
reference data already shows promising results (details in
Additional file 12).

Conclusions

In this paper, we have proposed an alternative method for
the base-calling of 454 pyrosequencing data, referred to as
HPCall. Based on the obtained results, we strongly believe
that using HPCall for base-calling and taking advantage
of the base-calling probabilities in downstream tasks like
mapping, genome assembly and sequence variant detec-
tion will lead to more accurate and powerful applications.
Although HPCall is developed based on sequencing data
of the 454 sequencing system, the underlying probabilis-
tic framework is quite general. Therefore, we expect it to
be rather straightforward to adapt HPCall for use in novel
emerging sequencing platforms based on flow cycles, for
which base-calling of long homopolymers is critical, e.g.
Ion Torrent PGM.

Additional files

Additional file 1: Probability of miscalls by native 454 base-caller.
Probability of miscalls by the native 454 base-caller for different HPLs. The
base-calling error rate clearly increases by increasing HPL and becomes
quite substantial from HPL 4.

Additional file 2: Overview of HPCall base-calling pipeline. Overview
of the HPCall base-calling pipeline. Different source files are merged in a
data preparation step before the base-calling takes place. The output of
the pipeline contains base-called sequence reads, Phred-like quality scores,
and base-calling probabilities for the different HPLs.

Additional file 3: Smooth functions in Hurdle Poisson model.
Specification of the smooth functions f; and g; in the Hurdle Poisson model.

Additional file 4: Distribution of quality scores at HPLref3 undercall.
The empirical cumulative distribution function of 454 quality scores
(upper) and HPCall quality scores QSyndercall (lower) for sequences with
reference HPLref 3 assigned to bases associated with HPL 2, 3 and 4.
Because of the undercall only 454 quality scores associated with HPL 2 are
available. The HPCall quality scores associated with HPL 3 and HPL 4 are
mostly very high, whereas this is not the case for those associated with HPL
2. HPCall clearly indicates that undercalls are more likely in this situation,
whereas this insight is not provided by the 454 quality scores.

Additional file 5: Distribution of new informative quality scores at
HPLref3. The empirical cumulative distribution function of HPCall quality
scores QSppcall for sequences with reference HPLref 3 assigned to bases
associated with HPL 2, 3 and 4, in the case of an undercall (upper), correct
call (middle) or overcall (lower).
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Additional file 6: Histograms of estimated probabilities by HPCall. (A)
Histograms of the maximal estimated probabilities by HPCall in the case of
a correct call (upper left), and (B) in the case of a miscall (upper right). (C)
The histogram in the lower left panel gives the distribution of estimated
probabilities for the reference HPLs in the case of a miscall. These very often
correspond with the reference HPL. (D) The lower right panel gives the
histogram of the sum of the probabilities given in the upper right and lower
left panel. These two probabilities almost always sum to a value close to 1.

Additional file 7: Comparison of absolute number of base-calling
errors. Comparison of the absolute number of base-calling errors by HPL
for the three base-calling methods. Using HPCall leads to an overall
decrease of the number of base-calling errors of 35% compared to the
native 454 base-caller. The lower number of base-calling errors for HPCall is
consistent throughout the complete range of reference HPLs.

Additional file 8: Comparison of base-calling prediction accuracy.
Prediction accuracy for the different base-calling methods separated by
nucleotide type. Although the prediction accuracy of the native base-caller
is already quite high, HPCall obtains higher prediction accuracies for each
individual nucleotide type. This is still the case if only flowgram values (fg)
are used. Both HPCall and the native 454 base-caller clearly outperform
Pyrobayes.

Additional file 9: Variability of the prediction accuracy by HPCall.
Variability of the prediction accuracy of HPCall. The obtained prediction
accuracies are very stable among the different random samples of training
data. The standard deviations of the prediction accuracies range from
0.000024 (for nucleotide C) to 0.000047 (for nucleotide T).

Additional file 10: Comparison of mapping mismatches. Percentage
of reads with different numbers of mismatches in the mapping between
the reads produced by either HPCall or the native 454 base-caller and the .
coli K-12 reference sequence. For mapping either ssaha2 or subread is used.
Detected number of sequence variants for the £. coli data set using
ssahaSNP. HPCall results in more perfect-matching reads and less overall
indels and SNPs.

Additional file 11: Base-calling of human TP53 454 amplicon
resequencing data. Percentage of reads with different number of
mismatches in the mapping between either HPCall (with or without
training) or the native 454 base-caller and the human TP53 gene reference
sequence. HPCall results in more perfect-matching reads. When trained on
the E. coli data set the percentage of perfect-matching reads decreases
slightly.

Additional file 12: Base-calling of PGM 314 E. coli data with HPCall.
Cumulative percentage of reads as a function of mismatches per read in
the mapping between the reads produced by either HPCall or the standard
lon PGM base-caller and the E. coli DH10B reference sequence. The results
for HPCall are promising.
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