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Abstract

Background: For shotgun mass spectrometry based proteomics the most computationally expensive step is in
matching the spectra against an increasingly large database of sequences and their post-translational modifications
with known masses. Each mass spectrometer can generate data at an astonishingly high rate, and the scope of
what is searched for is continually increasing. Therefore solutions for improving our ability to perform these
searches are needed.

Results: We present a sequence database search engine that is specifically designed to run efficiently on the
Hadoop MapReduce distributed computing framework. The search engine implements the K-score algorithm,
generating comparable output for the same input files as the original implementation. The scalability of the system
is shown, and the architecture required for the development of such distributed processing is discussed.

Conclusion: The software is scalable in its ability to handle a large peptide database, numerous modifications and
large numbers of spectra. Performance scales with the number of processors in the cluster, allowing throughput to
expand with the available resources.
Background
The identification of peptide sequences from spectra is a
computationally expensive and rate limiting task. This
expense is due to the fact that the identification process
typically involves each measured spectrum being
matched against the likely (artificially generated) spectra
for each possible peptide ion within a range of mass-to
charge ratios. The problem with identification of pep-
tides is confounded as the number of peptides is huge,
and the search space increases geometrically with the
number of amino acid modifications considered. This
paper introduces a highly scalable strategy for overcom-
ing these limitations, which has been purposefully built
to take full advantage of a highly distributed computa-
tion framework.
The shotgun proteomics workflow has become the

most widely used technique for identifying and quantify-
ing proteins present in a biological sample in a high-
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throughput manner. Although many variations exist, the
basic approach begins with extracting proteins from
sample and digesting the proteins into peptides with a
proteolytic enzyme such as trypsin. The peptides are
then separated using liquid chromatography and ana-
lyzed by mass spectrometry (MS). The mass-to-charge
(m/z) ratios of the peptide precursor ions are measured
and the precursors are fragmented into a series of ions
and measured in tandem mass spectrometry (MS/MS)
mode. The resulting MS/MS spectra of these peptide
ions together with the precursor m/z are searched
against a database of possible peptides to determine the
best match [1].
Many strategies have been proposed to help with

such search techniques. Raw, embarrassingly parallel
approaches are the most widely used (e.g. for X!Tan-
dem [2], SEQUEST [3], OMSSA [4]). To increase the
speed and scalability of the searching advances in high
performance computing hardware have also been used
to offload the searching from general to dedicated
hardware (including GPUs [5] and FGAs [6]), and
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improvements to search algorithms have been imple-
mented [7,8]. Some algorithms have been ported to
parallel computing architectures such as MPI ([9]).
Previous parallel implementations generally scale with
the number of spectra [10], however the scalability
issues relating to the size of the database being
searched are not addressed.
In this paper we introduce Hydra, which is designed to

scale both in terms of the number of spectra and the size
of the search database. Hydra makes use of Hadoop [11],
which is a common and well supported framework for
handling distributed computation. The Hadoop frame-
work handles the management of a cluster of generic
machines. It handles the details of taking a set of two
tasks: map and reduce [12] (see methods for details) and
creating the instances required to handle a given data
set. Tasks are sent by the framework to specific
machines and output is collected by the framework to
the next task. The framework handles details such as
failure and retry, generation of a distributed data system
and storage and access to temporary results.
Using Hadoop for mass spectrometry based searching

has been suggested before [13], where an existing MPI
search engine (X!!Tandem [2]) was wrapped to work
with Hadoop. However, such MPI based code does not
use critical features of the MapReduce algorithm (e.g.
the ability to sort data in ways that guarantee that
searches are performed optimally). The algorithm intro-
duced in this paper is a complete bottom-up rewrite of
the X!Tandem code, and has been designed to take full
advantage of map-reduce. Within Hydra, we implement
the K-score [14], which is one of the pluggable scoring
algorithms packaged with the Trans-Proteomic Pipeline
[15,16] distribution of X!Tandem. The K-score is an im-
plementation of the COMET scoring function, which
produces a dot product of matched peak intensities after
spectrum normalization [14]. The K-score normalization
and scoring routines account for noise and unmatched
peaks within the input spectra.
The advantages of the approach introduced in this

paper are: scalability, as Hadoop has been shown to be
able to handle massive data sets in the petabyte range,
and has been used to undertake complex search and
analysis operations on datasets of this size. This means,
as is shown in this paper, that such a framework is
highly suited for the growing data sets that are becom-
ingly searched against when undertaking MS/MS ana-
lyses; flexibility, as the system can be used on a variety
of commodity hardware configurations, including run-
ning across heterogeneous machines where the perform-
ance scales with additional hardware, and can be used
within cloud environments (e.g. Amazon EC2) that sup-
port Hadoop; and reliability, as Hadoop provides the
necessary libraries to handle the critical issues of task
distribution, monitoring and failure recovery (as the
numbers of tasks, nodes and data sets increases, so too
does the probability of task failures, which is an import-
ant issue with high throughput experiments).
In this paper we present the design for decomposition

of mass spectrometry search into a collection of map/re-
duce tasks, and show an implementation of our prote-
omic search engine Hydra. Hydra is specifically designed
from the ground up to work within the MapReduce al-
gorithm. By comparison to X!Tandem we show where
and how the system scales, and discuss the advantages
of our approach. The software is made publicly available
under an open source license.

Implementation
The strategy advocated in this paper for ensuring scal-
able searches of mass spectrometry data is one that uses
distributed parallel processing. This type of solution has
become popular over the last five years as it allows for
scalability using commodity hardware, and so both
reduces the hardware and software development costs
traditionally associated with high performance comput-
ing. This style of architecture allows for the development
of parallel solutions across clusters of heterogeneous
hardware.
With highly distributed frameworks, the times

required for execution scale inversely with the number
of processors allocated and directly with the size of the
data set. These frameworks are most efficient with large
data sets, as there is always an overhead with initial
setup. These frameworks coupled with MapReduce
based designs provide a means to partition the analysis
tasks effectively.
Hydra was designed to specifically take full advantage

of the MapReduce architecture and native capabilities.
The MapReduce algorithm parallelizes the performance
of a number of problems. Computation is performed in
two phases. The first phase, called the mapper, receives
data in parallel at a series of nodes, and then emits data
as a series of key-value pairs. The unit of data received
and emitted is application dependent. In our case the
first mapper receives information representing a single
spectrum and emits the same.
The reducers handle the key value pairs emitted by the

mappers. The framework processes and sorts the data
emitted by the mappers in order to offer the following
guarantees: 1) all values associated with a specific key
will be handled in a specific reduce task. 2) Any keys
reaching a specific reducer will be received in sorted
order. Each reducer may emit a collection of key-value
pairs stored in a collection of files which is the same size
as the number of reducers. The algorithms that are dis-
cussed in this paper take specific advantage of these fea-
tures and are described in detail below. As with many



Figure 2 MapReduce jobs to score measured spectra. Spectra
are scored against the contents of the peptide database with a
series of m/z values. In the next job all scores are combined to
generate the best scores. As a single file is the desired output, the
last job has a single reducer allowing all output to go to a single file.
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other MapReduce based applications, our approach con-
sists of a series of steps (see Figures 1 and 2) which are
described in further detail below.
We use the Hadoop framework, which is the de facto

open-source implementation of the MapReduce archi-
tecture supported by Apache and available on a number
of machines. Our code is single threaded and uses the
Hadoop framework to achieve parallelism in separate
nodes on a cluster. One important feature of the ap-
proach is to precompute all candidate peptide sequences
including any mass modifications and to group them by
m/z. This allows each sequence and its corresponding
spectrum to be generated only once.
Our implementation divides proteomic search into

two tasks: generation of a peptide database and the sub-
sequent scoring of a collection of spectra against the
database. This separation allows the set of peptides with
appropriate modifications to be generated in advance of
searches and, as long as the set of proteins and modifica-
tions remains unchanged, to be reused in multiple
searches. In addition, as discussed below, knowledge of
the number of peptide ions to be scored allows tuning
to control memory requirements.

Generation of the peptide database
The peptide database is written to answer a single query:
given a specific m/z ratio return a list of all peptides and
modified peptides to score having that m/z. The task of
generating peptides has two parts - the first finds a list
Figure 1 MapReduce jobs to generate a list of peptides to
score at a specified m/z ratio. The first mapper generates all
possible sequences and modified sequences defined in the search
parameters for a given fasta database. The reducer eliminates
duplicates, remembers all source proteins and emits the peptide
with m/z as the key. The next set of reducers collects all peptides to
be scored against a given m/z and stores them in the database.
of all unique peptides in a protein database after apply-
ing a specified digestive enzyme (e.g., trypsin allowing
one missed cleavage) and a collection of modifications.
The second element is to generate groups of peptides
with a specified m/z ratio and store them.
Our MapReduce implementation (see Figure 1) has

the following steps: for every protein, the mapper gener-
ates all peptides and uses the sequence (with modifica-
tions) as a key and an id of the protein as a value. Every
key delivered to the reducer represents a unique se-
quence (duplicate keys are collapsed automatically) and
the list of values represents the proteins containing the
sequence. The reducer emits the sequence as the value
with the m/z ratio as a key.
The next reducer receives all sequences scored at a

specific m/z ratio and stores them for later analyses.
Also generated is a list of m/z values and the corre-
sponding number of scored sequences.

Scoring spectra
The algorithm for scoring spectra uses three MapReduce
jobs (Figure 2). The first job sends spectra to be scored
against a set of peptide ions having a theoretical m/z



Figure 3 Search times as a function of job complexity.
Complexity is measured as dot products - the score of one
spectrum against one peptide. Complexity depends on the number
of spectra, the size of the protein database and the modifications
and cleavages searched. The measured spectra files used for
benchmarking our implementation were picked out of the public
experiments of the PRIDE (Proteomics Identifications Database)
proteomics repository. The PRIDE accession numbers of the 3
experiments used for making Figure 3 are: 7962, 15459, 10295. The
PRIDE xml files containing spectra were downloaded from the PRIDE
website and were opened in the PRIDE Inspector [19]. The mgf
export functionality of PRIDE Inspector was used to generate the
mgf files used in the searches, with only human tissue samples or
cell lines being used to generate the mass spectra.
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ratio within the specified tolerance of the measured one.
The second job combines all scoring of a specific
spectrum, choosing the best scoring peptides. The third
job combines the scoring of all spectra into a single out-
put file.
These algorithms score spectra against a range of m/z

values within a specific delta of the precursor m/z ratio.
Our implementation assigns candidate peptides to a spe-
cific m/z group (1 Dalton for z = 1). Spectra are assigned
to score against a set of groups close to the precursor
ion m/z. Every group is scored on a separate reducer.
When the number of peptides in a group exceeds a
known limit, the group is split and scored on multiple
machines. For each spectrum the top scoring peptides in
the group, as well as scoring statistics are gathered as an
object, serialized as XML and written with the scan id as
the key.
The second MapReduce job gathers the scoring for

each spectrum and collates the results. Peptide-
spectrum matches (PSMs) from all groups are com-
bined into a single list sorted by score. Again, the top
scoring peptides and overall statistics are packed into a
single object and serialized as XML with the scan id
being the key.
The consolidation task receives these overall score

objects for each scan. The data is reformatted into the
standard X!Tandem output and written to a single file.
Following the completion of the consolidation task, the
output of the consolidator stage, a file in X!Tandem for-
mat is copied from the cluster to the user’s machine.

Results and discussion
The program was tested against larger searches to valid-
ate scalability and the ability to handle large search
spaces. We ran the program against three databases: a
large non-redundant (nr) sample (~16.4 million pro-
teins), a subset with half the original nr data and one
with a quarter the original set. Sample data sets ranged
from 4000 to 500,000 spectra. We used a cluster with 4
nodes with 8 cores/node, and each node had a terabyte
disk. All nodes were in the same rack connected with
standard Ethernet.
To generate the original database, we used NCBI's

non-redundant list of protein sequences for building the
database of peptides. This file contains all available pro-
tein sequences for all organisms that differ at least with
one amino acid residue [17]. The smaller databases were
generated by selecting subsets of the larger database. For
searching against the human proteome, the 2012 February
UniProt reference proteome (65835 proteins) was used
[18].
The scalability problems with proteomics searching

come down to three factors. The first factor is the size
of the peptide database: the number and size of the
proteins considered; whether tryptic only or semitryptic
peptides are searched; and the number of modifications
and missed cleavages. Secondly the size of the experi-
ment, which is the number of spectra scored. The third
factor is the number of computer resources that can be
made available. Our algorithm is designed to be opti-
mized to scale for all the three factors. So that there are
no limits on the number of searched peptides, the num-
ber of scored spectra, and the number of compute nodes
that can be used. Adding proteins or spectra will in-
crease execution time for a given set of resources, but
it does not prevent the algorithm from arriving at a
solution.
The performance of Hydra scales with the product of

the number of spectra and the number of peptides con-
sidered (see Figure 3). Every time a measured spectrum
is scored against a peptide, a dot product is computed.
The number of dot products is a reasonable way to
measure the complexity of a search, and depends on the
number of spectra scored and the number of scored
peptides close enough to the precursor m/z. Hydra



Figure 4 Showing database build time as a function of the
number of peptides cataloged. The figure shows the time for
building a tryptic database against the number of peptides. The data
is for a tryptic database with limited modifications. Build times are
higher with semitryptic builds or with more modifications. Build
times for tryptic digests range from a few minutes, largely
representing set up time, to under an hour for the largest databases
with over a million proteins.
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performed 27 billion peptide scorings in approximately
40 minutes. For benchmarking we used: a dedicated 4
core linux server, for X!Tandem; and a 43 node Hadoop/
Linux cluster with 8 cores per node (433 cores in total),
was used for Hydra. The longest task (scoring nr) took
approximately 50 minutes on the cluster, while it took
almost 6 days using X!Tandem on a 4 core local ma-
chine. A smaller task (quarternr) which took 15 minutes
on the cluster took 38 hours on a single four core ma-
chine (see Table 1). Because the peptide database is re-
usable in multiple searches we build the database in a
separate job (see Figure 4).
Hydra and X!Tandem do differ in the data that they

generate, as X!Tandem returns a single peptide, and
Hydra returns a list of the top likely peptides. When
comparing the outputs of X!Tandem to Hydra with arti-
ficial spectra they are greater than 99.9% identical in
terms of the best peptide found. When running the sys-
tem on experimental data there are differences due to al-
gorithmic details (e.g. integer rounding), which means
that they are 75% identical in terms of the top peptide
and score matching, and 95% of the time they both re-
turn peptides with similar scores. It is interesting to note
that X!Tandem itself does not always generate exactly
the same results, possible due to race conditions in the
code base. Because we can afford to do a slightly wider
search, Hydra can find peptides the X!Tandem does not
(in nearly all the cases where the systems do not match
Hydra finds a peptide with a substantially higher score
than X!Tandem).

Conclusion
Scalability of search operations in mass spectrometry is
a critical concern. The size of proteome databases con-
tinues to grow especially as more modifications, post-
translational changes, isotopic labeling and semi-and
non-tryptic peptides are searched. Isotopic labeling and
modifications geometrically expand the search space of
Table 1 Comparison of search times for standard X!Tandem a

Mode Scans Nodes (Cores) DB Name Prot

Hadoop 16000 43 (344) ecoli 5.4

Hadoop 256000 43 (344) ecoli 5.4

Tandem 4663 1 (4) human 222

Hadoop 4663 43 (344) human 222

Tandem 184880 1 (4) nr 4370

Hadoop 184880 43 (344) nr 4370

Tandem 184880 1 (4) nr 1639

Hadoop 184880 43 (344) nr 1639

Example of comparison of run time for different complexities of search using the st
number of spectra searched against, the Nodes column is the number of resources
number of total cores), the database name is the species database used, the Datab
number of actual calculations. The times show that Hydra, unlike X!Tandem, is able
startup costs associated with Hydra it is not suited for small searches. The PRIDE ac
peptide masses. The wider availability of faster mass
spectrometers and the common practice of scoring data
with multiple search algorithms are having huge effects
on the computational requirements for such operations.
The software discussed in this paper is designed to have
few limits on scalability.
Search is inherently a parallel operation and algo-

rithms already exist that have been adapted to work in
parallel. In this paper we present the use of a distributed
framework to develop a new generation of search
nd Hydra

eins (K) Peptides (M) Dot product (M) Tim (min)

1.3 164 9.8

1.3 23395 338

168 477 29

168 477 4.7

692 3291 2280

692 3291 15.4

2 1248 13167 8410

2 1248 13167 52.7

andard X!Tandem implementation and Hydra. The scans columns gives the
used (the first number of the number of machines, the second number is the
ase Proteins is the number of proteins in the database, the dot product is the
to scale nearly linearly with the size of the problem. However, due to the
cession numbers for the spectra used were 10295 and 7962.
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algorithms, as these frameworks lend themselves con-
veniently to sequence-spectra matching. The advantage
of using such a framework is that much of the infra-
structure of managing parallel jobs is built into the
framework. Hadoop has been demonstrated to scale up
to thousands of processors. The details of handling a
cluster, distributing work, gathering results and, critically
for large systems, handling failure and retry are built
into the framework.
The genomics field has already demonstrated the

power of using cloud or high distributed frameworks for
computational intensive tasks [20]. As the computational
burden in tandem mass spectrometry proteomics based
searching is large and increasing, exploration into the
use of such distributed frameworks is necessary. This in-
crease in search space is going to continue to be a rate
limiting step, and this paper discusses one strategy
which can be used to overcome these limitations.

Availability
The full source code, documentation and test code is
available at http://code.google.com/p/hydra-proteomics/.
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