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Abstract

Background: The analysis of next-generation sequencing data from large genomes is a timely research topic.
Sequencers are producing billions of short sequence fragments from newly sequenced organisms. Computational
methods for reconstructing whole genomes/transcriptomes (de novo assemblers) are typically employed to process
such data. However, these methods require large memory resources and computation time. Many basic biological
questions could be answered targeting specific information in the reads, thus avoiding complete assembly.

Results: We present MAPSEMBLER, an iterative micro and targeted assembler which processes large datasets of reads
on commodity hardware. MAPSEMBLER checks for the presence of given regions of interest that can be constructed
from reads and builds a short assembly around it, either as a plain sequence or as a graph, showing contextual
structure. We introduce new algorithms to retrieve approximate occurrences of a sequence from reads and construct
an extension graph. Among other results presented in this paper, MAPSEMBLER enabled to retrieve previously
described human breast cancer candidate fusion genes, and to detect new ones not previously known.

Conclusions: MAPSEMBLER is the first software that enables de novo discovery around a region of interest of repeats,
SNPs, exon skipping, gene fusion, as well as other structural events, directly from raw sequencing reads. As indexing is
localized, the memory footprint of MAPSEMBLER is negligible. MAPSEMBLER is released under the CeCILL license and
can be freely downloaded from http://alcovna.genouest.org/mapsembler/.

Background
Genomics witnessed an unprecedentedly deep change
a few years ago with the arrival of the Next Genera-
tion Sequencers (NGS) also known as High Throughput
Sequencing (HTS). These technologies enable sequencing
of biological material (DNA and RNA) at much higher
throughput and at cost that is now affordable to most aca-
demic labs. These new technologies generate gigabyte- or
terabyte-scale datasets. The size of datasets is one of the
twomain bottlenecks for NGS. The other bottleneck is the
analysis of generated data. Current technologies cannot
output the entire sequence of a DNA molecule, instead
they return small sequence fragments (reads) of length
around a few hundred base pairs. Without a reference
genome, reconstructing the entire sequence from these
fragments (de novo assembly process) is challenging, espe-
cially in terms of computational resources. For instance,
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whole genome assembly of sequencing data from a mam-
malian genome requires hundreds of gigabytes of memory
and several CPU weeks of computation [1-3].
With sequencing costs falling, sequencing efforts are

no longer limited to the main species of interest (human
and other primates, mouse, rat, E. coli, yeast, drosophila,
. . . ). Thus, biologists are increasingly working on data for
which they do not have any close reference genome. In
such situations, de novo assembly of reads is often carried
out as a preliminary step. However, complete assembly is
not always feasible, either because sequencing data is not
adequate (insufficient coverage, genome too complex or
many genomes present) or computational resources are
too costly. Moreover, it should also be noted that assem-
bly algorithms perform heuristics that lead to suboptimal
reconstruction of the original sequence, possibly generat-
ing incomplete or erroneous fragments [2,3]. Especially,
highly-similar occurrences of a repeated sequence can be
collapsed into a single fragment.
We seek to establish that many biological questions

can be answered by analyzing unassembled reads. In
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particular, the user may possess a priori information on
which he wants to focus. In this spirit, we present the
MAPSEMBLER software. MAPSEMBLER checks if a known
piece of information - a sequence fragment called a starter
- is present with a bounded number of substitutions in a
set of reads. The starter can be shorter, longer or equal to
the read length. If the starter is indeed present, MAPSEM-
BLER constructs an assembly around the starter, either as
a plain sequence, or as a graph showing divergences and
convergences in the neighborhood structure. The read
coverage per position is provided. The aim of MAPSEM-
BLER is not to produce contigs as long as possible, hence it
should not be used as a de novo assembler nor be directly
compared with such software. Its aim, after the detection
of the presence of approximate occurrences of a starter,
is to output their neighborhoods on some hundreds or
thousands of nucleotides, providing pieces of informa-
tion about the starter context(s). As presented in the
results section, these micro targeted assemblies provide
relevant biological information such as the occurrences
of elements known to be repeated, SNPs, gene fusions,
alternative splicing events. . .
MAPSEMBLER includes a simple yet effective error cor-

rection step removing most substitution errors present in
the reads. As insertions and deletion errors are not cor-
rected,MAPSEMBLER performs better on reads provided by
technologies generating a small amount of such errors as
Illumina technology for instance.
Another key aspect of MAPSEMBLER is that its memory

usage is independent from the size of the read sets. This
enables MAPSEMBLER to analyze huge sets of reads on a
simple desktop computer.
MAPSEMBLER inputs are a sequence fragment or a set of

fragments called the starter(s), and a set of reads. Appli-
cations of MAPSEMBLER cover a broad range of biological
questions, including but not limited to:

• For a known biological event, e.g. a SNP (*), a splicing
event (*) or a gene fusion (*), MAPSEMBLER can be used
to check its presence in a set of reads, and to provide
abundances in each case. This is done by using as
starter a fragment localizing the event.

• Do these genes have close homologs in this set of
reads (*)? Similarly, do these enzymes exist in this
metagenomic set, or do these exons expressed in this
[meta]transcriptomic set? Using genes or the
enzymes or exons as starters, MAPSEMBLER detects
their presence and their approximate copies, and also
reconstructs the genomic context for each copy. The
exact coverage per position is provided both for the
copies and for their contexts.

• In case of complex genomes, one may be interested in
finding approximate repeated occurrences of known
sequence fragments (*). Using such sequence

fragments as starters, their occurrences within a fixed
Hamming distance are found and their flanking
regions are recovered as a graph.
Note that this approach
is limited to a small number of slightly differing
occurrences. Indeed, graph-based MAPSEMBLER

results are mainly designed to be visually inspected.
• MAPSEMBLER can be used to detect all reads

corresponding to known contaminant organelles,
or symbionts. This enables for instance to remove
such reads from a dataset before further
analysis.

The symbol (*) indicates that an example of this use case
is given in the Results section. Furthermore, it is impor-
tant to note thatMAPSEMBLER operates without a reference
genome.

Methods
The MAPSEMBLER algorithm can be divided into two main
phases:

1. Mapping. MAPSEMBLER detects which starters
correspond to consensuses of reads, subject to
coverage constraints and up to a bounded number of
substitutions. Such starters are said to be read
coherent (see Section “Sub-starter generation and
read coherence”).

2. De novo assembly. Each read coherent starter is
extended in both directions. In accordance to user
choice:

(a) the extension process is stopped as soon as
several divergent extensions are detected. In
this case, the output is a FASTA file
containing the consensus assembly around
each starter;

(b) the extension process continues even in the
case of several divergent possibilities.
Extensions are represented as a directed
graph. Each node stores a sequence fragment
and its read coverage per position. This
graph, is output in xgmml or graphml
format. Several tools, including Gephi [4],
Cytoscape [5], and Cobweb [6] can be used to
display such graph formats.

MAPSEMBLER presents the advantage of not indexing reads
but only starters (see next section for algorithmic expla-
nations). In practice, independently of the size of the read
file (even terabyte-sized), it is possible to runMAPSEMBLER

on any desktop or laptop computer, not requiring large
memory facilities.
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Themapping phase performs several tasks. Amaximum
number d ≥ 0 of substitutions (Hamming distance) is
authorized between a starter and each read. Consequently,
for a single starter s, several distinct read subsets that align
to s yield distinct consensus sequences. These sequences
are called sub-starters (see Section “Sub-starter generation
and read coherence” for a formal definition), see Figure 1a
for an example. We discard sub-starters for which the dis-
tance to s exceeds d. A local assembly is initiated from the
extremities of each sub-starter.

Definitions
We first introduce some notations and definitions used
throughout the paper. A sequence ∈ �∗ is a concate-
nation of zero or more characters from an alphabet
�. A sequence s of length n on � is represented by
s[ 0] s[ 1] . . . s [n − 1], where s[ i]∈ � ∀ 0 ≤ i < n (if
i < 0 or i ≥ n then s[ i]= ε, the empty string). We
denote by s

[
i, j

]
(j ≥ i) the sequence s[ i] s [i + 1] . . . s[ j]

of s. The sequence s
[
i, j

]
occurs position i in s. Its length,

denoted by
∣∣s [i, j]∣∣, is equal to j − i + 1. The Hamming

distance dH(ω1,ω2) between two sequences ω1 and ω2

of equal length is the number of positions at which the
corresponding characters are different:

dH(ω1,ω2) =
∑i<|ω1|

i=0

{
1 if ω1[i] �= ω2[i]
0 else .

Definition 1 (Hamming distance for overlapping
sequences). Given two sequences ω1 and ω2 ∈ �∗, and
i ∈ Z, we define dH(ω1, i,ω2) as the hamming distance
of the overlapping part between ω1 and ω2, consider-
ing the first character of ω2 aligned to position i on ω1.
Formally, dH(ω1, i,ω2) = ∑j<|ω2|

j=0 d
(
ω1

[
i + j

]
,ω2[ j]

)
,

where d(α,β) =
{
0 if α = β or α = ε,
1 otherwise . The character

ω1
[
i + j

]
is equal to ε if a prefix of ω2 is not aligned with

ω1 (i+ j < 0) and/or if a suffix of ω2 is not aligned with ω1
(i + j ≥ |ω1|).

Definition 2 (Mapped read). Given a sequence s ∈ �∗,
a read r ∈ �∗ is said to be mapped to s at position i iff
dH (s, i, r) ≤ d, where d is a fixed threshold.

Figure 1 Algorithm overview. Overview of the algorithm steps with reads of length 7, a minimal coverage of 2 and k-mers of length k = 3. a)
Representation of the sub-starter generation step. A set of reads is mapped to the starter s. First, reads are error-corrected according to a voting
procedure (see lower right read for instance). Then, each sub-starter (s1 and s2) is computed from each perfect multiple read alignment. The
Hamming distance between each sub-starter and s is required to be below a certain threshold. b) Representation of an extension. Three reads have
prefix of length at least kmapping perfectly to the suffix of an extension s. All fragments of these reads longer than extension s are used for
generating extension of s. As minimal coverage is 2, the last character of the first extending reads (T ) is not stored for generating extension of s. The
generated extension of s (ACT ) is stored in a new node linked to extension s. Note that suffix of length k − 1 of extension s (TC) is stored as prefix of
extension of s (then called enriched extension). This avoids to omit overlapping k-mers between extensions such as TCA or CAC while mapping
reads on extension of s.
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The notation s ‖di r denotes that r maps on s at position
i, with threshold d.

Example 1 (Mapped read). Given s = ATTCGGA,
r = GAATGCG and threshold d = 1, s ‖1−2 r is true as
dH(s,−2, r) = 1:

−2 −1 0 1 2 3 4 5 6
s = A T G C G G A

| | · | |
r = G A A T T C G

(1)

Algorithm
An overview of the whole process is presented in Algo-
rithm 1. In a few words, the algorithm is divided into two
main phases: the mapping phase (Steps 1 to 4 of Algo-
rithm 1). This first phase is similar to seed-based mapping
algorithms such as GASSST [7]. However, sub-starter gen-
eration (Step 4) is a novel algorithm presented in Section
“Sub-starter generation and read coherence”. The second
phase is the targeted de novo assembly phase (Steps 6
to 14). This phase extends sub-starter sequences similarly
to greedy de novo assembly algorithms, such as SSAKE
[8]. Extensions are stored in a graph using a novel pro-
cedure (Steps 12 and 15) presented in Section “Graph
management”.

Algorithm 1: Mapsembler overview
Requires: Set of reads R, set of starters S, integer value
k; Ensure: For each starter in S, the sub-starters and
extensions

1: Index the k-mers of S
2: Map reads R to each starter from S, using the k-mer

index
3: for all s ∈ S do
4: Using reads mapped to s, generate sub-starters

of s.
5: Add new sub-starters to Ext0.
6: i = 0
7: while Exti �= ∅ do
8: Free previous index, index Exti with k-mers
9: Map reads R to sequences of Exti, using the

k-mer index
10: for all s ∈ Exti do
11: Using reads mapped to s, generate extensions

of s.
12: Create nodes containing the extensions &

manage graph
13: Store all novel extensions in Exti+1
14: i = i + 1
15: Simplify the created graphs
16: For each starter in S, output its sub-starters and their

extensions

Explanation of Algorithm 1 steps
• Step 1: An index of all k -mers that appear in the

initial starter set S is created. For each sequence sid
belonging to the indexed set, and for each k-mer in
sid , a list of couples (sid, pid) is stored, with pid being
a position where the k-mer occurs in sid . Note that,
as a k-mer may occur more than once in a sequence
sid , several distinct couples may be stored for a given
k-mer and a given sid . All couples (sid, pid) of a given
k-mer can be accessed in constant time using a hash
table with the k-mer as key.

• Step 2: input reads (and their reverse complement)
are processed on the fly, only mapped reads are
stored in memory. The mapping process is as follows.
All k -mers of each read are used as seeds to attempt
to map the read to the indexed sequences. After the
entire set of reads is processed, an error correction
step (described in the next paragraph) removes
sequencing errors from mapped reads. Each
error-corrected mapped read r (∃i such that s ‖di r) is
stored in the setMs.

• Steps 8 and 9: Indexing of extensions Exti and read
mapping are performed similarly to Steps 1 and 2.
During these steps, reads have to perfectly agree with
the extensions, hence read mapping is done with
distance threshold d = 0.

• Step 11: For each sub-starter, extensions are always
stored in a rooted directed string graph, each node
containing a sequence fragment. A node storing a
sequence s is denoted by Ns. The node storing the
sub-starter itself is the root of the graph. For each
sequence s ∈ Exti, using all error-corrected mapped
readsMs, detect those whose suffix stops after s ends
(see Figure 1b for an example). Those reads are used
to compute the extension(s) of s, yielding three cases:

1. An empty extension is found.
2. Exactly one extension e is larger than s. Create a

node Ne, and link the node Ns to the node Ne.
Store the fragment e in Exti+1.

3. Several extensions {e1, e2, . . . , en} are found, then:
– For simple sequence output, the longest

common prefix p of all ei is stored in a
new node Np. Link Ns to Np for output
purpose. As p is not stored in Exti+1, its
extension stops.

– For graph output, link Ns to n new
extending nodes each storing an extending
fragment. All fragments in {e1, e2, . . . , en}
are stored in Exti+1.

• Step 12: Generate enriched extensions by adding
suffix of s of length k − 1 as prefix of each extension
of s (see Figure 1b). By adding such a prefix, we
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ensure that each node stores a sequence long enough
(at least k) to be indexed and then exploited for next
extensions and that each k-mer, including those
overlapping nodes are considered as seeds.

• Step 13: Novel extensions are those corresponding to
nodes which are not already present in the graph (see
Section “Graph management”).

• Step 16: In case of simple sequence format, the
extensions graph of each sub-starter do not contain
branching nodes. A simple traversal provides the
consensus sequence of the contig containing the
sub-starter.

Error correction
Actual sequencing reads are error-prone, therefore error
correction mechanisms are implemented inside the map-
ping phase. At Steps 2 and 9, error-prone reads are
mapped to starters. An error correction phase is per-
formed immediately after both of these steps, by taking
advantage of the multiple read alignments. This proce-
dure is based on nucleotide votes, similarly to greedy
assemblers [8], under the assumption that erroneous
nucleotides are less represented than correct nucleotides.
Specifically, at each position relative to the starter, the
count of each nucleotide is recorded. Given a threshold
t, a read position is considered to be correct if the cor-
responding nucleotide at this position is seen at least t
times. Otherwise, if only one other nucleotide appears
over t times at this position, the read position is cor-
rected by assigning this other nucleotide (Figure 1a, cir-
cled position). In the remaining case, where many possi-
ble nucleotides can possibly correct a read position, no
correction occurs, and the read is truncated before this
position.
We now provide deeper algorithmic explanations for

sub-starter generation (Step 4) and the graph manage-
ment (Steps 12 and 15). The remaining steps (read map-
ping and greedy sequence extensions) are classically well
known [7,8].

Sub-starter generation and read coherence
The sub-starter generation and read coherence step take
place immediately after the mapping phase (Step 4). Given
a starter s and mapped reads R, this step generates a finite
set (si) of sequences (called sub-starters) which:

• originate from the reads, i.e. each si is a consensus
sequence of a subset of reads from R,

• are coherent with the starter s, i.e. the Hamming
distance between s and si is at most d.

• are significantly represented, i.e. each position of si is
covered by at least c reads.

A starter is read coherent if it yields at least one sub-
starter. We are interested in retrieving the largest set of
sub-starters for each starter s. This can be formulated
as the following computational problem. To simplify the
presentation, reads are assumed to contain no errors. In
practice, the read correction step (previous paragraph)
effectively corrects or discards erroneous reads.

Problem 1 (Multiple consensuses from read align-
ments). Given a starter s, two parameters c, d ≥ 0 and
a set of error-free mapped reads R = {ri such that s ‖dpi
ri} (each read ri is aligned to s at a position pi with at
most d substitutions), find all maximal (with respect to the
inclusion order) subsets Si of R satisfying:

1. each subset Si admits a perfect consensus si, i.e. each
read ri aligns to si at position pi (relative to s) with no
mismatch: si ‖0pi ri,

2. the consensus si aligns s with at most d mismatches:
s ‖d0 si,

3. each position of s is covered by at least c reads in Si.

A trivial (exponential) solution is (i) to generate the
power set (all possible subsets) of R, (ii) remove sets which
do no satisfy one of the propositions above, and (iii) keep
only maximal sets (ordered by inclusion). The exponen-
tial complexity of this solution clearly comes from step (i).
In Algorithm 2, we give a polynomial time (in the num-
ber of mapped reads) procedure which subsumes (i), as it
generates a solution which includes all the correct subsets.
The completeness proof that Algorithm 2 finds all maxi-

mal subsets corresponding to correct sub-starters is as fol-
lows. The proof is by contradiction: let s be a correct sub-
starter not found by the algorithm. Let r1, . . . , rn be the
maximal subset of reads which yields s, sorted by increas-
ing mapping positions to f . We show by induction that the
algorithm returns a subset which includes r1, . . . , rk , for
k ∈ [1..n]. For k = 1, notice that a subset is assigned to
each read. Assuming r1, . . . , rk is part of a returned subset
S0, we show that r1, . . . , rk+1 is also returned. Since rk+1
is part of a subset which yields s, it overlaps perfectly with
rk . However, rk+1 does not necessarily belong to S0. Let
r′k+1 be the read which follows rk in S0. In the ordering of
the reads by increasing position, if the read rk+1 is seen
before r′k+1, then the algorithm selects r′k+1 = rk+1. Else,
as rk+1 perfectly overlaps with rk , a new subset is created
from S0, which contains exactly r1, . . . , rk+1. Eventually,
from the induction, a subset which contains r1, . . . , rn is
constructed. Since r1, . . . , rn is itself maximal, the subset
found by the algorithm is exactly r1, . . . , rn.
Note that Algorithm 2 may return subsets which do not

satisfy all the three conditions (e.g. coverage of s after the
last aligned read position p is not checked), hence steps (ii)
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and (iii) are still required. The running time of the algo-
rithm is now analyzed. Observe that during the algorithm
execution, each intermediate subset in S is included in a
distinct final maximal subset. There are at most |�|d max-
imal subsets, one for each combination of substitutions
with s. Hence, there are O(|�|d) intermediate subsets at
any time. Assuming that the read length is bounded by
a constant, the overlap detection steps 4 and 7 can be
performed in O(|R|) time. Hence, the time complexity of
Algorithm 2 is O(|�|d|R|2), where in practice d is a small
constant, and |�| = 4 on genomic sequences.

Algorithm 2: Generating candidate subsets Si for solving
the multiple consensuses from read alignments problem
Requires: Set of reads R, starter s, minimum consen-
sus c ≥ 0, distance threshold d ≥ 0; Ensure: Set S of
candidate subsets.

1: S = ∅.
2: for each read (r, p) in R ordered by alignment

position do
3: for each subset Si in S do
4: if r overlaps without substitutions with the last

read of Si then
5: Add r to Si.
6: else
7: if r overlaps without substitutions with one

of the reads of Si then
8: Let (r′, p′) be the last read of Si

overlapping with r.
9: Let T be the subset of Si of all reads up to

(r′, p′).
10: Create a new subset S′ = T ∪ {r}.
11: Insert S′ into S.
12: if r was not appended to any subset then
13: Create a new subset with r and insert it into S.
14: Remove any subset from S if its consensus has

more than d differences with s, or a position
before p is covered by less than c reads.

15: return S.

Graphmanagement
Adding a node
Several biological events such as a SNP, an indel, or exon
skipping, create two or more distinct paths in the exten-
sion graph. These paths eventually converge and continue
with an identical sequence. Consequently, path conver-
gence is checked during the iterative assembly phase
(Algorithm 1, Step 12). When a sequence s is extended
with extension e, the algorithm checks if e is not already
present in the graph in a node Ns′ . To do this, the last k-
mer of the sequence of each node is indexed in a hash
table. Checking if e is already present in the graph is done
using k-mers of e and this last index as seeds for map-
ping. If the overlap of e on the sequence of a node Ns′ is
perfect (i.e. ∃i, such that s′ ‖0i e) then Ns is linked to Ns′ .
If i < 0, an intermediate node containing the prefix of e
not mapped on s′ is added between Ns and Ns′ . If i > 0,
the suffix of length i of s is pruned from node Ns as it is
already present in node Ns′ .

Graph simplification
Once extensions are finished, each graph is simplified as
follows:

• As presented in Figure 2a-b, enriched extensions are
transformed into extensions, by removing the first
k − 1 characters of each internal node except the
root. This removes redundant information in nodes.

• Two nodes Ns and N ′
s are merged into node Ns.s′ if

and only if Ns has only Ns′ as successor while Ns′ has
only Ns as predecessor. This is a classical
concatenation of simple paths. See Figure 2a-b for an
example.

• For all nodes successors of a node Ns having only Ns
as predecessor, their longest common prefix pre is
pruned and factorized as suffix of the sequence stored
in Ns, thus generating node Ns.pre. Similarly, for all
nodes predecessors of a node Ns having only Ns as
successor, their longest common suffix suf is pruned
and factorized as prefix of the sequence stored in Ns,
thus generating node Nsuf .s. This simplification

Figure 2 Graph simplification. Graph simplification (Algorithm 1, Step 15). a) the graph before simplification. b) After removing the first k − 1
characters of each internal node and after merging non branching nodes. c) After common prefix and suffix factorizations.
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relocates branching in the graph, to the exact
position where sequences diverge and converge. See
Figure 2c for an example.

Availability and requirements
MAPSEMBLER is released under CeCILL License. It
can be downloaded from http://alcovna.genouest.org/
mapsembler/ website. The download comes with docu-
mentation about installation and usage. A MAPSEMBLER

newsletter is also available from this address.

Results
All presented results were obtained on a 2.66 Ghz dual-
core laptop with 3 MB cache and 4 GB RAMmemory.
For each experiments presented in this manuscript,

details about datasets,MAPSEMBLER commands and results
are packed in Additional file 1. When read datasets are
public, a link to a download address is provided in the
archive. When they are not, only reads used by MAPSEM-
BLER during mapping and assembly phases are provided.
In Figures representing graphs, the node size indicates

average read coverage in the sequence and the node bor-
der size indicates the length of the sequence.
Note that MAPSEMBLER is not designed to be a whole

genome assembler, thus classical assembly statistics
(N50, genome coverage, . . . ) do not apply. Apart from
nucleotide accuracy and rate of misjoins, quality measures
for de novo targeted genome assembly are, to the best of
our knowledge, not defined.

Mapsembler and the state of the art
Targeted assembly should not be confused with Sanger-
generation, localized BAC-by-BAC assembly methods
(e.g. Atlas [9]). BAC-by-BAC sequencing is typically not
performed anymore in second-generation sequencing.
MAPSEMBLER computes targeted assemblies within a
whole-genome set of short reads, i.e. without any local-
ized sequencing process. To date, we are aware of only
one related targeted assembly method in the literature,
TASR [10].
TASR is based on the SSAKE assembler [8]. It maps a set

of reads on targets (starters) using seeds of length 15.
Mapping between a read and a target is tested if at least
one sequence of length 15 exactly matches both. TASR
outputs the result of this mapping, including extensions
obtained from reads mapped to extremities of starters.
Similarly toMAPSEMBLER, TASR indexes only targets, hence
memory requirements do not depend on the size of the
read file. MAPSEMBLER significantly differs from TASR as it
offers the following novel features:

• sub-starters retrieval;
• multiple iterations to extend starters as far as

possible. This is equivalent to re-running TASR

multiple times, using its results
as starters;

• graph output of the left and right neighborhood
of starters.

We compared TASR and MAPSEMBLER time and memory
performances using a set of 6.5 millions of short reads
of length 36 (unpublished Illumina aphid RNA-seq). We
ranMAPSEMBLERwithout iterative extensions and set seeds
length to 15, to match TASR behavior.
Using a unique randomly selected read as starter,

MAPSEMBLER finished in 40 seconds, using 2.15 MB of
memory, while TASR finished in 165 seconds using 4.21
MB of memory. On a larger set of 500 starters randomly
selected from reads, MAPSEMBLER finished in 59 seconds
using 23.8 MB of memory. TASR was stopped after 10
hours, while using 287 MB of memory. Note that in both
cases, MAPSEMBLER produces strictly more results than
TASR as it detects and extends all the sub-starters of each
starter.
The iterative mapping and assembly strategies are also

used in the IMAGE approach [11], although in a dif-
ferent context. IMAGE maps paired-end reads to a pre-
assembled set of contigs in order to extend contig lengths
and close gaps. MAPSEMBLER could theoretically be used
to extend contigs with unpaired reads, but does not per-
form automated gap closing. In practice MAPSEMBLER

is an orthogonal approach to IMAGE, as it aims to
replace whole-genome assembly for a subset of biological
questions.

Assembly accuracy
The accuracy of MAPSEMBLER targeted assemblies is
assessed. We performed targeted assembly of 50 starters
of length 37 nt sampled uniformly from the E. coli
genome. These starters were assembled using 20.8 M
raw Illumina reads (SRA: SRX000429). Mapsembler was
run with default parameters and d = 0, to dis-
card sub-starters which do not correspond exactly to
starters. Using 40 iterations, MAPSEMBLER returned 50
extended sub-starters of average length 812 nt. We com-
puted global alignments between Mapsembler exten-
sions and the reference genome. For each alignment,
the reported accuracy corresponds to the ratio of the
number of substitutions and mismatches over the num-
ber aligned bases. Each targeted assembly aligns with
more than 99% accuracy, and no misjoin was pro-
duced. Specifically, 97.8% of the extensions were per-
fectly aligned. This level of accuracy is consistent with
that of whole-genome de novo assemblers. For instance,
96.5% of the contigs from a SOAPdenovo [12] whole-
genome assembly of the same dataset align perfectly to the
reference.
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Table 1 Mapsembler time andmemory requirements on
large data-sets

Reads Mapping Assembly Total Memory
data set time (s) time (s) time (s) (MB)

S10K < 1 < 1 1 < 1.5

S100K 1 2 5 < 1.5

S1M 14 6 40 < 1.5

S10M 170 95 442 < 1.5

S100M 1813 903 3983 < 1.5

Time and memory requirements for targeted assembly of 10 starters using
increasingly large human genome read data sets. Mapping time corresponds to
the mapping phase (Algorithm 1, Steps 1 to 5). Assembly time corresponds to
the assembly phase (Steps 18 to 14) per iteration.

Dealing with large data sets
In this section, we focus exclusively on MAPSEMBLER time
and memory requirements. From the NCBI Sequence
Read Archive, we downloaded a human NA12878 Illu-
mina run containing 105 million reads of length 101
(SRR068330, total 10.6 Gbases). Five subsets, S10K , S100K ,
S1M, S10M, and S100M, were generated by random sampling
of 105, 106, 107, 108 and 109 reads. A targeted assembly
of 10 randomly selected reads as starters was performed
usingMAPSEMBLER with default options.
Results summarized in Table 1 show that memory

requirement does not depend on the read file size. Note
that a read file containing 9.9 Gbases (S100M data set)
was analyzed using < 1.5 MB of memory. These results
also show that computation time is reasonable even on
such large data sets as time linearly increases with the
number of starters. On average on the S100M data set,
checking read coherence of all starters took 1813 sec-
onds while one extension of all sequence fragments took
903 seconds. MAPSEMBLER computation time grows lin-
early with respect to the number of input starters and
the number of computed extensions. Note that an option
enables to limit the number of extensions, and note that if
manually stopped, MAPSEMBLER outputs results obtained
so far.

Recovering environments of repeat occurrences
We analyzed a dataset of 20.8 M raw Illumina reads (SRA:
SRX000429) from E. coli K12 using as starter a sub-
sequence of the reference genome (chr:15,387-16,731)
containing Inserted Sequences IS186 and IS421 trans-
posase. This fragment has six exact occurrences on the
reference genome. Using 3 iterations,MAPSEMBLER needed
202 seconds and 1.5 MB of memory to produce the
graph presented in Figure 3. The graph yields neighbor
sequences of all occurrences of this repeat. The six occur-
rences were exactly recovered by MAPSEMBLER. Where
classical whole genome assemblers interrupt an assembly,
MAPSEMBLER retrieves the environments of the occur-
rences of a repeat. In this case, the exact number of
occurrences can be directly inferred from MAPSEMBLER

graph structure.

Detecting AluY sub-families in a personal genome
Alu elements are a family of highly-repeated, ≈ 300
bp sequences found in primate genomes. Sub-families of
the AluY family are characterized by known evolution-
ary mutations. We demonstrate how MAPSEMBLER can
be used to detect the AluY sub-families present in a set
of reads.
We downloaded a dataset of high-coverage, NA12878

chromosome 19 reads from the 1000 Genomes project.
We selected bases 60-120 of the RepBase [13] con-
sensus sequence of AluY as a starter, as prior knowl-
edge indicates that no indel occurs inside this region.
MAPSEMBLER then processed on the whole dataset (65
M reads) to recover sub-starters, without extending
them. MAPSEMBLER error and coverage thresholds were
increased according to the coverage of the dataset, and 5
substitutions were allowed between the starter and each
sub-starter.
A total of 58,656 reads mapped to the 60 bp starter and 8

sub-starters were constructed by MAPSEMBLER. We exam-
ine the specificity of MAPSEMBLER by verifying that sub-
starters correspond to known consensus sequences. We
annotated each sub-starter using sub-families consensus
sequences [14] and the NA12878 reference sequence [15].

Figure 3 Repeated starter. Graph obtained using a repeat occurrence as starter. To be readable the prefixes of left extensions and the suffixes of
right extensions, as well as the core or the starter are truncated.
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starter TCACGAGGTCAGGAGATCGAGACCATCCTGGCTAACACGGTGAAACCCCGTCTCTACTAA AluY

substarter 0 ---CG---------------------------C---------------CG---------- AluSg

substarter 1 ---CA---------------------------T---------------CA----------

substarter 2 ---CG---------------------------T---------------CA---------- chr19 maternal 517189

substarter 3 ---TG---------------------------T---------------CA----------

substarter 4 ---CG---------------------------T---------------TG---------- chr19 maternal 887598

substarter 5 ---CG---------------------------T---------------CG---------- AluY (starter)

substarter 6 ---CA---------------------------T---------------CG---------- chr19 maternal 461151

substarter 7 ---TG---------------------------T---------------CG---------- AluYb8

Several sub-starters (1, 2, 3, 4 and 6) did not exactly
correspond to a knownAlu consensus sequence.Weman-
ually verified that all these sub-starters are valid as follows.
Sub-starters 2, 4, 5 and 6 (resp. 2, 4 and 5) align perfectly
to theNA12878maternal (resp. paternal) reference.Muta-
tions of sub-starters 2 and 4 (bases 50 and 49 respectively)
are also found in Alu Ya5 [16]. As further evidence, sub-
sequences specific to each substarters (bases 3 to 50) are
abundantly present as exact substrings in the reads. For
instance, bases 3 to 50 of the remaining unidentified sub-
starters (1 and 3) are present in respectively 73 and 76
reads. Consequently, the possibility that sub-starters 1 and
3 are artifacts was ruled out.

Gene detection in a different strain
The folA gene (dihydrofolate reductase) is present in sev-
eral strains of E. coli, including K12 (chr:49,823-50,302)
and O157:H7 (chr:54,238-54,717). The sequence of this
gene is not exactly similar between the K-12 and O157:H7
strains (10 single-nucleotide mutations across 479 bp).
We attempted to recover the O157:H7 gene sequence
of the folA gene, using only sequencing reads and prior
knowledge of the K-12 sequence. To this end, we ana-
lyzed a dataset of 15.7 M raw reads of length 70 bp
(SRA:ERR018562) from E. coli O157:H7. The K-12 allele
of the folA gene (length 479 bp, NCBI ID:944790) was
used as the starter. The sub-starter generation module
of MAPSEMBLER confirmed the presence of the gene, and
furthermore recovered the exact O157:H7 gene sequence
of folA from the reads (100% identity with O157:H7 ref-
erence). MAPSEMBLER performed this experiment in 572
seconds and using 1.5 MB of memory.

Detection of known biological events in Drosophila
In this section, one Illumina HiSeq2000 RNA-Seq run
of 22.5 million reads of length 70 nt from Drosophila
Melanogaster is analyzed (data not published). As pre-
sented in upcoming sections, MAPSEMBLER enables to
check for the presence or absence of a putative biological
event for which one has an a priori knowledge, and to pro-
vide additional information in case of presence. Recall that
the tool is not dedicated for calling blindly all such events
in a high throughput sequencing dataset.

Exon skipping
We chose a starter located close to a known exon fragment
(Chr4:488,592-488,620 BDGP R5/dm3). Using less than
one megabyte of memory and in 33 minutes, MAPSEM-
BLER confirmed the presence of this exon fragment. The
corresponding part of the obtained graph is presented in
Figure 4, while a visualization of the Blat [17] result is
presented Figure 5.

Visualizing SNPs
On the same read data set, we used a fragment
(chrX:17,783,737-17,783,812 BDGP R5/dm3) for which
neighboring genes are known. We applied MAPSEMBLER

using this fragment as starter and obtained results in less
than 1 megabyte of memory and less than 110 minutes of
execution (40 iterations). The results presented in Figure 6
enable to visualize the SNPs. Note that these results do not
bring phasing SNP information.

Detection of fusion genes in breast cancer
Recent work from Edgren et. al. [18] uses paired reads
from RNA-seq experiments (SRA: SRP003186) to detect
fusion genes using a reference genome (Ensembl version
55). MAPSEMBLER enabled to retrieve these fusion genes
and enabled to detect new candidate fusion genes impli-
cated in human breast cancer. Here, we present results for
cell line BT-474, for which we downloaded the short reads
used in [18] (merging runs SRR064438 and SRR064439).
This data set contains≈ 43million reads of average length
51bp. Using extremities of fusions as starters, in 1 hour
and 36 minutes, using ≈ 70 MB of memory, MAPSEMBLER

retrieved in 25 iterations fusions genes detected in [18].
It is of particular interest to notice that MAPSEM-

BLER retrieved these fusion genes without making use
of a reference genome nor information between read
pairs. As shown Figures 7 and 8, for junction VAPB-
IKZF3, MAPSEMBLER enabled to retrieve the fusion gene
described in [18] and additionally detected two other
fusions between genes VAPB and IKZF3, on different
exons than those previously described. Moreover, as this
is usually the case while applying MAPSEMBLER on RNA-
seq data, the graph output enables to retrieve the exon
structure in the extensions.
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Figure 4 Drosophila exon. Visualization of MAPSEMBLER results on a drosophila read data set. Red characters correspond to splice sites found by
mapping using Blat [17], while the circled characters is a codon stop.

Discussion
We presented MAPSEMBLER, a new tool for targeting spe-
cific pieces of information from a possible huge set of
reads, on a simple desktop computer. Presented results
show that such software has great potential for query-
ing information from next generation sequencer reads.
It enables to confirm the presence of a region of inter-
est and retrieve information about surrounding sequence
context. This approach presents the advantage to avoid a
costly and approximative [2] full de novo assembly. How-
ever, MAPSEMBLER presents some limitations discussed in
this section.

Homology/similarity distance
MAPSEMBLER allows d substitutions between each starter
its sub-starters. Hence, this homology distance is limited
to a few percent of the starter length. Thus MAPSEMBLER

can not be used for searching homologous genes having
less than, say, 90% of similarity.
Furthermore, setting a large d is not recommended for

two reasons. Firstly, in the worst case, there are O(|�|d)
sub-starters having at most d substitutions with a starter

s. To avoid dealing with an arbitrarily large number of
sub-starters, MAPSEMBLER implements a limit of 100 sub-
starters per starter.
Secondly, MAPSEMBLER output sub-starters which may

contain uncorrelated mutations, i.e. false positives. Con-
sider a starter which contains two SNPs A/B and C/D
sufficiently far away, so that are not spanned by any
read. MAPSEMBLER would reconstruct 4 sub-starters, cor-
responding to AC, AD, BC, and BD, even if only two of
them were actually present in the sequenced organism.

Paired reads vs. single reads
The MAPSEMBLER algorithm does not use the paired reads
information. Such information is difficult to incorporate
in the iterative micro assembly process. We chose to dis-
card it to keep the algorithm simple and applicable to any
kind of data. However, in the case of the graph output,
paired reads would enable to provide more information,
for instance in splicing events. The graph constructed
from single reads contains all possible junctions. Paired
reads can be used to eliminate paths with two or more

Figure 5 Drosophila exon - blat result. Visualization of Blat results on sequences obtained from graph presented Figure 4. Shorter path
corresponds to the concatenation of the sequences from starter node (blue node) and from the lowest node, while longer path corresponds to the
concatenation of the sequences from starter node, left most node and lowest node. The central node includes, but is not limited to a known EST
CO332306.
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Figure 6 Drosophila SNPs. Visualization of MAPSEMBLER results on a drosophila read data sets, looking for known SNPs. On this graph, 2 SNPs
(circled nodes) in the right extensions are shown. Full sequences are truncated.

Figure 7 Gene fusion in human breast cancer. Extension graph of an extremity of an exon from the VAPB human gene located on chromosome
20. a): the raw graph produced by MAPSEMBLER. b): the same graph manually curated by mapping the sequence of each node on the human
genome. Nodes where moved in order to reflect their relative mapping position on the chromosomes. Nodes from the raw graph having sequences
mapping at the same position wheremerged. For each node, the start and stop positions of themapping are indicated. The presence of two start and
stop positions reflects the presence of a central intron. Except for the purple node having multiple hits among the genome, 100% of the sequence of
each node was mapped, either to an exon from gene VAPB on chromosome 20 or from gene IKZF3 on chromosome 17. The bold edge corresponds
to the gene fusion found in [18], while the two other edges starting from the starter and targeting a chromosome 17 exon are new gene fusions.
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Figure 8 Gene fusion in human breast cancer - Blat results. Blat [17] results obtained after mapping paths from the starter to a leaf of the graph
presented Figure 7. Succession of nodes of each mapped path (black lines) are indicated by their identifiers (red letters in Figure 7). Path belonging
to gene VAPB chromosome 20 are represented on the upper part of the figure (S A B C D, S A F G D and S A E) while those belonging to gene
IKZF3 on chromosome 20 (H, I J and K J) are represented on the lower part. Note that the starter is not mapped on gene IKZF3 as it appears only on
chromosome 17 on the genome. However, it is concatenated to rightmost exons of each of the three paths (H, I J and K J) in the transcripts.

branching junctions which do not correspond to true
isoforms.
Instead of injecting the paired read information in the

algorithm, we believe that it is simpler to runMAPSEMBLER,
then use a third party algorithm (such as BLASTREE
[19]) to map paired reads to the graph and output pairs-
coherent paths.

Micro assembly vs. full contigs assembly
One key aspect ofMAPSEMBLER is to be usable on a simple
desktop computer, not requiring large memory facilities.
This is achieved by an iterative algorithm which avoids
indexing the read set. However, as shown Table 1, on
common datasets generated by a run of an existing NGS
platform, each iteration can take hundreds of seconds.
Depending on the length of the reads, each iteration
extends sub-starters by a few dozens nucleotides.

Does contig lengthmatter?
If feasible on the data, using MAPSEMBLER for the creation
of contigs of length around 100kb or more would take
weeks on a classical desktop computer. Consequently the
user should specify a maximal number of iterations, or
manually stop the process after a while.
We argue that short contigs provide sufficient biological

information for our purpose. As presented in the results
section, we retrieved SNPs, different isoforms and gene

fusions using short contigs. For instance, the graph pre-
sented Figure 7, created in 1h36 after 25 iterations, stores
a path of length 422 nucleotides. This whole graph is suf-
ficient to detect the presence of 11 exons spread over two
genes.

Sensitivity to SNPs
Similarly to greedy assemblers, in the simple sequence
output mode, MAPSEMBLER aborts sequence extension as
soon as more than as one extension are found. This mech-
anism typically yields short neighbors, in particular in
sequences containing SNPs. Thus we implemented an
option to allow merging of multiple extensions having the
same sequence except for one substitution. In this case,
the substitution position is replaced by the nucleotide
having the largest coverage. This effectively resolves ambi-
guities due to SNPs and generate longer extensions.

Starter selection
The input starters are sequence fragments on which reads
will be mapped. They can be of any length, however
very long starters (over 104 nt) are discouraged, as the
sub-starters generation step is quadratic in the number
of aligned reads. Furthermore, Mapsembler verifies that
starters are read-coherent, hence longer starters are more
likely to contain regions where the coverage is too low.
Also, as previously mentioned, long starters may lead to
false positive sub-starters.
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Mapsembler discards read alignments which contain an
indel. Hence, it is advised to input small, well-conserved
starters. However, indels in the extensions are retained
in the graph structure. Starters are typically constructed
from an external source of information, such as sequence
information from a related species, a known conserved
gene, or an existing collapsed assembly.

Full biological events calling versusMAPSEMBLER

MAPSEMBLER was clearly not designed for calling broadly
biological events. It should not be used for this purpose.
Its usage should then be limited to cases where user
has a piece of priori knowledge she wants to validate
and extend, without making use of heavy and heuristics
approaches.

Conclusions
MAPSEMBLER is a simple yet powerful, non-specific tool
for extracting targeted pieces of information from newly
sequenced, non-assembled genomes or transcriptomes.
Technically,MAPSEMBLER retrieves the approximate occur-
rences of a region of interest and performs targeted
assembly through repeated iterations of read mapping. It
also provides the possibility of visualizing the genomic
context of assembled sequences as a graph.MAPSEMBLER is
not a whole-genome assembly software, instead it focuses
on specific targets and assemble their contexts over a
few hundreds of nucleotides. MAPSEMBLER can be exe-
cuted on a classical desktop computer; without cleaning
the data and without a reference genome. Usage possibil-
ities are numerous and fit the actual trend of sequencing,
as more and more species, including meta-genomes, are
sequenced without reference genomes.
We presented the main MAPSEMBLER features and algo-

rithmic ingredients. We have shown a selected overview
ofMAPSEMBLER applications, among which one enabled to
detect novel fusion genes. Benchmarks were ran on very
large amounts of biologically relevant data. With respect
to other comparable method, MAPSEMBLER runs consis-
tently faster and consumes less memory. More impor-
tantly, MAPSEMBLER has several novel features, such as
sub-starters retrieval, iterative extensions and graph visu-
alization.
There is much room for future work. Currently the error

correction is based on substitutions only. For opening
MAPSEMBLER to broader technologies like Roche 454 Sys-
tem, insertions and deletions will be taken into account
during read correction.
To finish, its simplicity and its power make MAPSEM-

BLER a good candidate for ambitious future NGS applica-
tions. In particular, even if it was not initially designed
in this spirit, MAPSEMBLER is highly parallelizable and can
be adapted to a “zero memory” whole genome de novo
assembly tool.
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