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Predicting the outer membrane proteome of
Pasteurella multocida based on consensus
prediction enhanced by results integration and
manual confirmation
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Abstract

Background: Outer membrane proteins (OMPs) of Pasteurella multocida have various functions related to virulence
and pathogenesis and represent important targets for vaccine development. Various bioinformatic algorithms can
predict outer membrane localization and discriminate OMPs by structure or function. The designation of a
confident prediction framework by integrating different predictors followed by consensus prediction, results
integration and manual confirmation will improve the prediction of the outer membrane proteome.

Results: In the present study, we used 10 different predictors classified into three groups (subcellular localization,
transmembrane b-barrel protein and lipoprotein predictors) to identify putative OMPs from two available P.
multocida genomes: those of avian strain Pm70 and porcine non-toxigenic strain 3480. Predicted proteins in each
group were filtered by optimized criteria for consensus prediction: at least two positive predictions for the
subcellular localization predictors, three for the transmembrane b-barrel protein predictors and one for the
lipoprotein predictors. The consensus predicted proteins were integrated from each group into a single list of
proteins. We further incorporated a manual confirmation step including a public database search against PubMed
and sequence analyses, e.g. sequence and structural homology, conserved motifs/domains, functional prediction,
and protein-protein interactions to enhance the confidence of prediction. As a result, we were able to confidently
predict 98 putative OMPs from the avian strain genome and 107 OMPs from the porcine strain genome with 83%
overlap between the two genomes.

Conclusions: The bioinformatic framework developed in this study has increased the number of putative OMPs
identified in P. multocida and allowed these OMPs to be identified with a higher degree of confidence. Our
approach can be applied to investigate the outer membrane proteomes of other Gram-negative bacteria.

Background
The Gram-negative bacterium Pasteurella multocida is
responsible for economically significant infections of a
wide range of animal species. The organism causes a
variety of disease syndromes which include pneumonic
pasteurellosis of ruminants and pigs, porcine progressive
atrophic rhinitis (PAR), fowl cholera, bovine haemorrha-
gic septicaemia (HS), and human infections via

carnivorous bites or scratches [1]. Like all Gram-nega-
tive bacteria, the cell envelope of P. multocida consists
of a symmetrical inner membrane and an asymmetrical
outer membrane, separated by the periplasmic space
and peptidoglycan layer [2]. The outer membrane con-
sists of an inner phospholipid layer and an outer LPS
leaflet [3]. It serves as a selective barrier that controls
the passage of nutrients and waste products into and
out of the cell and is the interface between pathogen
and host. The outer membrane harbours two classes of
proteins, integral membrane proteins and peripheral
lipoproteins, which together account for 2-3% of the
total encoded proteins [4,5]. Integral outer membrane
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proteins (OMPs) typically have a b-barrel structure
whereas lipoproteins are mostly anchored to the inner
leaflet of the outer membrane [6,7]. The biosynthesis
and translocation of these two groups of proteins have
previously been reviewed [6,8-10]. Outer membrane
proteins play varied and important roles for bacteria,
allowing them to adapt to different environments and
host niches [6]. These roles include biogenesis and
integrity of the outer membrane, nonspecific porin
activity, energy-dependent transport, adherence and
membrane-associated enzymatic activity [4]. In P. multo-
cida, certain OMPs play important roles in virulence
and have been utilized as vaccine antigens [11].
The majority of OMPs can be bioinformatically differ-

entiated and predicted by using their amino acid com-
positions [12-14], specific protein modifications and
sorting mechanisms [15,16], and unique sequences and
structural patterns [17-21]. Predictors of outer mem-
brane-located proteins employ a variety of algorithms
and methods having different accuracies and sensitivity
levels of prediction [22-44]. These predictors can be
categorized into three groups: (1) subcellular localization
or global predictors which can differentiate between
proteins from different compartments; (2) transmem-
brane b-barrel protein predictors which distinguish b-
barrel structures from transmembrane a-helical proteins
predominantly found in the inner membrane; and (3)
lipoprotein predictors which can discriminate between
inner membrane and outer membrane lipoprotein signal
peptides [45].
Bioinformatic predictors have been used to identify

OMPs in several Gram-negative bacterial species
[5,32,46,47]. However, disagreement between the pre-
dicted results from individual programs is frequently
observed. A combination of different predictors,
together with consensus prediction, has been shown to
increase the coverage and accuracy of the predicted
outer membrane proteome [45,48] including that of
transmembrane b-barrel proteins [49]. Heinz et al. [50]
also employed a manual confirmation step to remove
false positives and increase the confidence of the pre-
dicted outer membrane proteome.
In a previous P. multocida study [51], three predictors

(two subcellular localization and one lipoprotein) were
used to predict 129 proteins as secreted, outer membrane
or lipoprotein from the publicly available genome of P.
multocida avian strain Pm70 [52]. However, certain pre-
dicted proteins were not confirmed as OMPs by all three
predictors. Boyce et al. [46] identified 35 proteins by pro-
teomics from the P. multocida avian strain X-73 but only
one third of these proteins were predicted to be OMPs
by a combination of two subcellular localization predic-
tors. Therefore, our understanding of the outer mem-
brane proteome of P. multocida remains elusive.

In the present study, we used 10 different predictors
classified into three groups (subcellular localization,
transmembrane b-barrel protein and lipoprotein predic-
tors) to identify putative OMPs from two available P.
multocida genomes: the avian strain Pm70 and the
unannotated genome of porcine non-toxigenic strain
3480. The predicted proteins in each group were filtered
by optimized criteria for the consensus prediction and
the consensus predicted proteins from each group were
integrated into a single list of proteins. We further
incorporated a manual confirmation step which included
a public database search against PubMed together with
various sequence analyses, e.g. sequence and structural
homology, conserved motifs/domains, functional predic-
tion, and protein-protein interaction to enhance the
confidence of prediction. Using these approaches, we
were able to confidently predict the outer membrane
proteomes of the two P. multocida strains.

Results
Prediction of OMPs using different predictors
Outer membrane proteins were predicted, by ten differ-
ent bioinformatic programs (Table 1), from the two
available genomes of P. multocida; the genome of avian
strain Pm70 and the genome of porcine strain 3480.
These programs were categorized into three groups:
subcellular localization predictors (PA, PSORTb,
CELLO, SOSUI-GramN), transmembrane b-barrel pro-
tein predictors (TMB-Hunt, TMBETADISC-RBF,
BOMP, MCMBB), and lipoprotein predictors (LIPO and
LIPOP). Individual programs predicted different num-
bers of proteins. The use of these ten predictors in com-
bination predicted 421 putative OMPs from the avian
strain genome (20.9% of the genome) and 439 proteins
from the porcine strain genome (19.4% of the genome)
(Figure 1, Additional Files 1 and 2).
The subcellular localization predictors identified 162

putative OMPs from the avian strain genome and 197
proteins from the porcine strain genome (Figure 2A).
CELLO identified the highest (91 and 108) and PSORTb
identified the lowest (49 and 63) number of predicted
proteins from the avian and porcine strain genomes,
respectively. For the avian strain genome, 97 proteins
were predicted by only a single program: 35, 24, 3 and
35 by CELLO, PA, PSORTb and SOSUI-GramN, respec-
tively. Similarly, 124 proteins were identified by a single
predictor from the porcine strain genome: 50, 30, 5 and
39 by CELLO, PA, PSORTb and SOSUI-GramN, respec-
tively. Twenty-four proteins were identified from the
avian strain genome and 22 from the porcine strain gen-
ome using all four programs. The use of two or three
programs predicted a total of 41 proteins from the avian
strain genome and 51 proteins from the porcine strain
genome.
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The transmembrane b-barrel protein predictors identi-
fied 329 putative b-barrel proteins from the avian strain
genome and 336 proteins from the porcine strain gen-
ome (Figure 2B). TMB-Hunt identified the highest num-
ber of predicted proteins (168) from the avian strain
genome, while MCMBB identified the highest number
of predicted proteins (184) from the porcine strain gen-
ome. BOMP identified the lowest number of predicted
proteins (40 and 48) from the avian and porcine strain
genomes, respectively. For the avian strain genome, 231
proteins were predicted by only a single program: 70,
113, 43 and 5 proteins by MCMBB, TMB-Hunt, TMBE-
TADISC-RBF and BOMP, respectively. Similarly, 225
proteins were identified by only a single predictor from
the porcine strain genome: 84, 84, 46 and 11 proteins
by MCMBB, TMB-Hunt, TMBETADISC-RBF and
BOMP, respectively. Nineteen proteins were predicted
by all four programs in both the avian and porcine
strain genomes. The use of two or three programs pre-
dicted a total of 79 proteins from the avian strain gen-
ome and 92 proteins from the porcine strain genome.
The lipoprotein predictors identified 86 proteins from

the avian strain genome and 82 proteins from the por-
cine strain genome (Figure 2C). LIPO predicted 73 pro-
teins from the avian strain genome and 75 from the
porcine strain genome whereas LIPOP predicted 69 pro-
teins from the avian strain genome and 67 from the
porcine strain genome. Together, LIPO and LIPOP pre-
dicted 56 and 60 proteins from the avian and porcine
strain genomes, respectively. However, LIPO identified
17 unique lipoproteins from the avian strain genome
and 15 from the porcine strain genome, whereas LIPOP
identified 13 unique lipoproteins from the avian strain
genome and seven from the porcine strain genome.
Comparison of the predicted OMPs by the three

groups of predictors revealed that the use of one group
of predictors alone identified 290 proteins from the
avian strain genome and 283 proteins from the porcine
strain genome, whereas a combination of two groups of
predictors identified 106 proteins from the avian strain

genome and 130 proteins from the porcine strain gen-
ome (Figure 3). The use of all three groups of predictors
identified 25 proteins from the avian strain genome and
24 proteins from the porcine strain genomes. Notice-
ably, the transmembrane b-barrel protein predictors pre-
dicted a high number of proteins (217 and 202) that
were not predicted by the other two groups of
predictors.

Agreement between pairs of predictors
The analysis in Figure 4 shows different degrees of
agreement between pairs of outer membrane predictors.
For the subcellular localization predictors, prediction by
pairs of PA and PSORTb as well as PSORTb and
CELLO resulted in high agreement scores (0.74 and
0.86, respectively). Pairing of PSORTb with TMBETA-
DISC-RBF and MCMBB also produced high agreement
scores (0.90 and 0.76, respectively). For the transmem-
brane b-barrel protein predictors, predictions by pairing
of BOMP with MCMBB and TMBETADISC-RBF as
well as MCMBB with TMBETADISC-RBF showed mod-
erate scores (0.57 on average), while pairs of LIPO and
LIPOP had a higher agreement score of 0.77 for lipopro-
tein prediction. The disagreement between lipoprotein
predictors and the others was clearly shown with scores
of less than 0.5. Subcellular localization predictors dis-
criminate between proteins belonging to different loca-
tions. Although these predictors predict a wide range of
outer membrane-located proteins, and some of these
predictors incorporate the prediction of transmembrane
b-barrel proteins and lipoproteins as parts of their pro-
grams, some OMPs were possibly mispredicted or
excluded, as confirmed by the low agreement score
between subcellular localization and lipoprotein predic-
tors. Conversely, the transmembrane b-barrel and lipo-
protein predictors differentiate between specific groups
of OMPs; they are unable to predict all outer mem-
brane-localized proteins. Therefore, a combination of
the subcellular localization, transmembrane b-barrel and
lipoprotein predictors resulted in better coverage of the

Table 1 Bioinformatic predictors used for the OMP prediction

Predictor group Programme Method of predictor

Subcellular localization Proteome Analyst v. 3.0 (PA) http://webdocs.cs.ualberta.ca/~bioinfo/PA/[24]

PSORTb v. 2.0 http://www.psort.org/psortb/[28]

CELLO v. 2.5 http://cello.life.nctu.edu.tw/[25]

SOSUI-GramN http://bp.nuap.nagoya-u.ac.jp/sosui/sosuigramn/sosuigramn_submit.html[39]

Trans-membrane b-barrel structure TMB-Hunt http://bmbpcu36.leeds.ac.uk/~andy/betaBarrel/AACompPred/aaTMB_Hunt.cgi[29]

TMBETADISC-RBF http://rbf.bioinfo.tw/~sachen/OMPpredict/TMBETADISC-RBF.php[41]

BOMP http://services.cbu.uib.no/tools/bomp[31]

MCMBB http://athina.biol.uoa.gr/bioinformatics/mcmbb/[23]

Outer membrane lipoprotein LIPO http://services.cbu.uib.no/tools/lipo[32]

LIPOP v. 1.0 http://www.cbs.dtu.dk/services/LipoP/[15]
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predicted OMPs than the use of a single predictor or
group of predictors.

Consensus prediction
The above analyses indicated different levels of agree-
ment between pairs of predictors. The use of multiple
predictors for subcellular localization, transmembrane b-
barrel and lipoprotein predictions produced a large
number of predicted proteins many of which were

potential false positives. Therefore, the predicted results
from individual predictors in each group were filtered
using various criteria. The criteria for consensus predic-
tion were first determined using a training dataset con-
taining 526 Gram-negative bacterial protein sequences
of known localization (Additional File 3). Measurements
of accuracy, recall/sensitivity, specificity and Mathews
Correlation Coefficient (MCC) were used to compare
the predictive power of the various criteria for

Figure 1 Overview of the prediction framework. Diagram representing the workflow of bioinformatic prediction of putative OMPs from the
avian and porcine strain genomes of P. multocida. Ten predictors were categorized into 3 groups: subcellular localization, transmembrane b-
barrel protein prediction and outer membrane lipoprotein prediction. The predicted proteins in each group were filtered by consensus
prediction and combined to form a single integrated list. Text mining and sequence analyses were used to confirm that the predicted proteins
were outer membrane-associated with a high degree of confidence. The proteins filtered-out from the avian strain genome were also analyzed
further by data mining and sequence analysis. The numbers of predicted proteins in each step are shown in parentheses: the first number
represents proteins from the avian strain genome and the second number from the porcine strain genome.
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consensus prediction [41] and the results are summar-
ized in Figure 5. For the subcellular localization predic-
tors (Figure 5A), all criteria generally presented high
accuracy and specificity scores (close to unity). Recall/

sensitivity (a measure of ability to identify true positives)
decreased as the number of predictors increased, but
was close to unity in predictions by at least one or two
predictors. The MCC score was highest in the

Figure 2 Within-group comparison of numbers of predicted proteins. Diagrams show within-group comparisons of the numbers of
proteins predicted by three groups of predictors: subcellular localization (A), transmembrane b-barrel protein (B), lipoprotein (C) predictors. The
diagrams on the left (i) represent the avian strain genome and those on the right (ii) represent the porcine strain genome. The numbers of
proteins predicted by one, two, three or four predictors are indicated.
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prediction by at least two predictors, whereas those of
the other criteria ranged from 0.7 to 0.82. Therefore,
prediction by at least two predictors was selected for the
subcellular localization predictors because this threshold
gave the highest accuracy and MCC scores and very
high scores for recall/sensitivity and specificity. For the
transmembrane b-barrel protein predictors (Figure 5B),
accuracy and specificity scores ranged from 0.8 to 1.0

for predictions by at least two, three or four predictors
whereas recall/sensitivity decreased as the criteria
threshold increased. Prediction by at least three predic-
tors was chosen for the transmembrane b-barrel protein
predictors because this threshold gave the second high-
est accuracy, specificity and MCC scores with a reason-
ably high recall/sensitivity score. Although prediction by
at least four predictors gave the highest accuracy, speci-
ficity and MCC scores, this criterion gave the lowest
recall/sensitivity score, indicating potential loss of true-
OMPs. For both predictor groups, increased specificity
occurred as the number of predictors increased whereas,
conversely, recall/sensitivity decreased as the number of
predictors increased. For the lipoprotein predictors (Fig-
ure 5C), prediction by at least one predictor was
selected as this resulted in the highest recall/sensitivity
and comparable accuracy, specificity and MCC scores
compared with at least two predictors. The selected
consensus criteria were next validated on a test dataset
(Additional File 4) containing 529 Gram-negative bac-
terial protein sequences. The results are presented in
Table 2. The selected criterion for the subcellular locali-
zation predictors yielded very high accuracy, recall/sen-
sitivity, specificity and MCC scores (0.98 to 1.00). The
selected criteria for the transmembrane b-barrel protein
and the outer membrane lipoprotein predictors showed
accuracy and specificity scores higher than 0.9, whereas
recall/sensitivity and MCC scores ranged from 0.44 to
0.63. Combining these three selected criteria for the
three predictor groups resulted in high accuracy, recall/
sensitivity and specificity scores of greater than 0.9. In
particular, a recall/sensitivity score of 1.0 indicated that
a combination of these three predictor groups identified
all of the OMPs from the test dataset.
The P. multocida proteins predicted by each group of pre-
dictors were filtered using these optimized criteria and
resulted in 65 consensus predicted proteins from the avian
strain genome and 73 proteins from the porcine strain
genome for the subcellular localization predictors; 47 and
53 proteins from the avian and porcine strain genomes,
respectively, for the b-barrel transmembrane protein pre-
dictors; and 86 and 82 proteins from the avian and porcine
strain genomes, respectively, for the lipoprotein predictors
(Figure 1). Integration of the consensus-predicted proteins
from these three groups subsequently yielded 140 proteins
from the avian strain genome and 147 proteins from the
porcine strain genome (Figure 1). Of the proteins pre-
dicted from the avian and porcine strain genomes, 27 pro-
teins from the avian strain genome and 24 proteins from
the porcine strain genome were filtered out by the subcel-
lular localization predictor group but not by the b-barrel
transmembrane protein and/or the lipoprotein predictor
groups. Similarly, 36 proteins from the avian strain gen-
ome and 34 proteins from the porcine strain genome were

Figure 3 Between-group comparison of numbers of predicted
proteins. Diagrams show between-group comparisons of the
numbers of proteins predicted by three groups of predictors:
subcellular localization, transmembrane b-barrel protein, lipoprotein
predictors. The diagram on the left side represents the avian strain
genome and that on the right the porcine strain genome. Indicated
are the numbers of proteins predicted by one, two or three
predictor groups.

Figure 4 Analysis of agreement. Analysis of agreement between
pairs of different bioinformatic predictors (the 10 predictors were
classified into three groups: subcellular localization, transmembrane
b-barrel and lipoprotein predictors) used for the prediction of OMPs
within the avian strain genome. Each square represents the color
coded agreement score which corresponds to the proportion of
commonly predicted proteins for pairs of predictors. The agreement
score ranges from 0 for the lowest agreement (white) to 1 for the
highest (purple).
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filtered out by the b-barrel transmembrane protein predic-
tor group but not by the subcellular localization and/or
the lipoprotein predictor groups. No proteins from either
genome were removed from the lipoprotein predictor
group.

Manual confirmation of the predicted proteins
In the final step, published information available on the
predicted proteins was searched, using text mining and
sequence analysis, to confirm their outer membrane loca-
tion. Forty-two proteins (30%) from the avian strain

Figure 5 Criteria for optimization of consensus prediction. Comparisons of different consensus prediction criteria for the subcellular
localization (A), transmembrane b-barrel (B) and lipoprotein (C) predictors tested on a modified PA training dataset using four statistical
parameters: accuracy, recall/sensitivity, specificity and Mathews Correlation Coefficient (MCC). Four criteria for subcellular localization predictors,
four for transmembrane b-barrel predictors, and two for lipoprotein predictors were considered. The statistical parameters evaluated on each
criterion are shown on the x-axis. A score of one (y-axis) indicates the highest performance and zero the lowest.
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genome and 40 proteins (27%) from the porcine strain
genome were removed at the manual confirmation stage.
Thirty-one of these proteins were identified in both gen-
omes and included 19 cytoplasmic or inner membrane
proteins, 11 periplasmic proteins, two secreted proteins
and one phage protein. In this way, 98 proteins from the
avian strain genome and 107 proteins from the porcine
strain genome were confirmed as being confidently-pre-
dicted OMPs (Figure 1). These proteins accounted for
4.9% of the avian strain genome and 4.7% of the porcine
strain genome. Details of the confidently predicted OMPs
from the avian strain genome are given in Additional File
5. Eighty-nine (91%) of the predicted OMPs in the avian
strain genome were also detected in the porcine strain
genome, indicating that these two outer membrane pro-
teomes are very similar. Eighteen (17%) of the predicted
OMPs from the porcine strain genome had no homolo-
gous proteins in the avian strain genome; most of these
were hypothetical proteins. However, these proteins
included an Omp100 adhesin/invasin homologue in Aggre-
gatibacter aphrophilus and two uncharacterized TonB-
dependent receptors.
Of the 98 confidently predicted OMPs of the avian

strain genome, 59 (60%) were predicted by subcellular
localization, 44 (45%) by transmembrane b-barrel, and
49 (50%) by lipoprotein predictors (Figure 6). Thirty-one
proteins were identified as transmembrane b-barrel pro-
teins by both subcellular localization and

transmembrane b-barrel predictors. A further five were
identified as transmembrane b-barrel proteins by the b-
barrel predictors alone; two of these were hypothetical
b-barrel proteins (PM0519 and PM1772) which might
have novel functions. Thirty-two proteins were uniquely
predicted to be outer membrane lipoproteins which
were consistent with the agreement analysis. However,
almost half of these were of unknown function. A
further nine proteins were identified as lipoproteins by
both lipoprotein and subcellular localization predictors.
Thirteen proteins were identified only by the subcellular
localization predictors. Four of these (OmpW and the
TonB-dependent receptors PM0745, PM1081 and
PM1428) contain transmembrane b-barrel domains but
were filtered out by the transmembrane b-barrel predic-
tors since they did not pass the criteria. Two proteins
were identified by both transmembrane b-barrel and
lipoprotein predictors and six proteins by all three
groups of predictors.
Comparison of the DNA sequence identity of the con-

fidently-predicted OMPs from the avian and porcine
strain genomes indicated that the majority (64 proteins)
of the predicted OMPs had sequence identities above
99% (Figure 7). OMPs having DNA sequence identities
less than 99% included HgbA (98%) and HgbB (haemo-
globin and haemoglobin-haptoglobin receptors, 98%),
OmpH_2 (a porin, 98%), NanH (sialidase, 98%), PM1717
(an autotransporter, 98%), LppA (98%), PilW (98%),

Table 2 Comparison of statistical parameters used for selection of the consensus criteria obtained with the training
dataset of 526 Gram-negative bacterial protein sequences of known localization and for validation of the consensus
criteria obtained with the test dataset of 529 Gram-negative bacterial protein sequences of known localization

Selected criteria Statistical parameters

Accuracy Recall/sensitivity Specificity MCC

Training dataset

Subcellular localization predictor group

At least one positive prediction 0.95 1.00 0.95 0.77

At least two positive predictions 0.99 0.98 0.99 0.94

At least three positive predictions 0.98 0.72 1.00 0.82

All four positive predictions 0.96 0.51 1.00 0.70

Transmembrane b-barrel protein predictor group

At least one positive prediction 0.50 0.95 0.46 0.23

At least two positive predictions 0.86 0.77 0.87 0.46

At least three positive predictions 0.91 0.56 0.95 0.47

All four positive predictions 0.94 0.37 0.99 0.52

Outer membrane lipoprotein predictor group

At least one positive prediction 0.93 0.35 0.98 0.41

All two positive predictions 0.94 0.33 1.00 0.51

Test dataset

At least two positive predictions for subcellular localization predictors 1.00 0.98 1.00 0.98

At least three positive predictions for transmembrane b-barrel protein predictors 0.91 0.63 0.94 0.50

At least one positive prediction for outer membrane protein predictors 0.93 0.44 0.98 0.49

Integration of the three predictor groups 0.92 1.00 0.92 0.69
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TadD (97%), RcpA (96%), YccT (96%), FadL (95%), MltB
(94%), OmpA (92%), NanB (89%), Hsf_2 (trimeric auto-
transporter, 87%), Hsf_1 (83%), PlpP (83%), LspB_2 (an
autotransporter, 74%), PM0803 (TonB-dependent recep-
tor, 63%), PM1543 (hypothetical protein, 63%), Opa
(62%) and PlpE (56%).

Analysis of filtered-out predicted proteins
Proteins of the avian strain genome that were filtered
out at the consensus prediction stage were integrated

and further analyzed by manual confirmation (Figure 1).
Ninety-seven (60%) of the proteins predicted by the sub-
cellular localization predictors and 277 (84%) of the pro-
teins predicted by the transmembrane b-barrel
predictors were filtered out; no proteins were filtered
out by the lipoprotein predictors. In total, 339 of the
proteins predicted by the subcellular localization and
transmembrane b-barrel protein predictors were filtered
out by consensus prediction. Further analyses of these
proteins by manual confirmation revealed that 39 were
putative OMPs and/or periplasmic proteins. However,
20 of these had previously been predicted by the lipo-
protein predictor group and were therefore removed
from the list of filtered-out proteins. A further six pro-
teins that had previously been filtered out by the trans-
membrane b-barrel predictor group had passed the
criteria of the subcellular localization predictor group
and were also removed from the list of filtered-out pro-
teins. Thus, 13 (4%) of the filtered-out proteins likely
represented true OMPs. Manual confirmation of these
13 proteins showed that seven were indeed putative
OMPs. These included HbpA/DppA (PM0592), NlpD
(PM1507), RcpB (PM0851), MltA (PM0928), ComEA
(PM1665), NlpI (PM1113) and a putative OMP
(PM1623). The remaining six proteins were putative
periplasmic proteins. Thus, only seven (2%) of the 339
filtered-out proteins were putative OMPs, whereas 332
(98%) proteins could be confidently classified as non-
OMPs. These results clearly demonstrate that consensus
prediction removes the majority (98%) of non-OMPs
and substantially reduces the time that needs to be
spent on manual confirmation.

Functions of the confidently predicted OMPs
The functions of the 98 confidently predicted OMPs in
the avian strain genome are shown in Additional File 6.
These functions include outer membrane biogenesis and
integrity (12 proteins), transport and receptor (25

Figure 6 Comparison of confidently predicted OMPs .
Comparative bioinformatic prediction of the 98 confidently
predicted OMPs from the avian strain genome using three different
groups of predictors (subcellular localization, transmembrane b-
barrel protein and lipoprotein predictors). The predicted proteins in
each group were determined as shown in Figure 1. The numbers
represent shared or unique predicted proteins. The total number of
proteins predicted by each of the three approaches is shown in
parentheses.

Figure 7 Comparison of DNA sequence identity of the confidently predicted OMPs from the avian and porcine strain genomes. DNA
sequences of the confidently predicted OMPs from the avian strain genome were compared to the confidently predicted proteins from the
porcine strain genome using BLAST. The percentage of identity (y-axis) was plotted against the P. multocida avian strain gene IDs and short
protein names in parentheses (x-axis). CHP, TonBRep, HP, LP and Autotrans are abbreviations for conserved hypothetical protein, TonB-
dependent receptor, hypothetical protein, lipoprotein and autotransporter, respectively. Numbers above the graph indicate the percentage of
identity and OMPs are grouped according to the same percentage of identity.
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proteins), adherence (7 proteins) and enzymatic activity
(9 proteins). Forty-one proteins have unknown functions
(although 17 are named) and 27 of these are lipopro-
teins. Interestingly, two or three copies of genes encod-
ing certain proteins were predicted. For example, three
ompH genes and two genes of lspB, hsf, hgbB, plpE and
hlpB were predicted. Similar observations, including
three ompH genes and two genes of lspB, hsf, hgbA, and
plpE, were made for the porcine strain genome. Two
proteins, HexD and Wza, were predicted from both gen-
omes but they appear to have similar functions in cap-
sular polysaccharide transport. Twelve TonB-dependent
receptors including HemR (hemin receptor), PfhR and
HasR (heme receptors), HmbR, HgbA and two HgbB
(haemoglobin receptors), and PM0803, PM1075,
PM1081, PM1282 and PM1428 were predicted in the
avian strain genome; notably, most of these are involved
in iron uptake. Similarly, 14 TonB-dependent receptors
were identified in the porcine strain genome including
HemR, PfhR and HasR, HmbR, two HgbAs, HgbB,
PM0803, PM1075, PM1081, PM1282, PM1428 and two
uncharacterized porcine strain-specific proteins
(PMpPor1882 and PMpPor2194).

Physicochemical properties of putative OMPs
Analysis of physicochemical parameters (Additional File
5) highlighted the properties of the putative OMPs. The
predicted proteins had molecular masses ranging from
7.1 to 276.2 kDa (52.4 ± 43 kDa average) and an average
pI value of 8.1 ± 1.5. The average size of the predicted
lipoproteins was smaller than that of the other proteins.
Some proteins had very large sizes such as Hsf_1 (276
kDa) and the hypothetical lipoprotein PM0659 (214
kDa). The average GRAVY score [53] was -0.35 ± 0.24
which indicated that the proteins were relatively hydro-
philic compared to the predicted inner membrane pro-
teins (data not shown). The predicted OMPs had more
b-sheet strands (3-44 strands) than a-helices (0-3
helices).

Discussion
Different prediction methods
Each prediction method used in the present study
(Table 1) is based on different algorithms and training
datasets. The subcellular localization predictors aimed
to determine all cellular components (secreted, outer
membrane, periplasmic, inner membrane and cytoplas-
mic proteins) of the genome of P. multocida. PA ana-
lyzes keywords obtained from various databases using
machine-learned classifiers and provides a user-friendly
graphical explanation of each prediction [24]. PSORTb
combines multiple prediction components and each
component performs a specific function including
homology prediction, transmembrane prediction, a

signal peptide prediction, and a specific motif prediction
[28]. SOSUI-GramN uses only the total sequence and
physicochemical properties of the N- and C-terminal
signal sequences for its prediction [39]. CELLO uses a
supervised-learning method (support vector machines,
SVMs) to detect specific amino acid compositions and
motifs [25]. Of 162 proteins predicted by the subcellular
localization predictors from the avian strain genome,
15% were predicted by all four predictors, 25% by two
or three predictors and 60% by a single predictor. Simi-
larly, of 197 predicted proteins from the porcine strain
genome, 11% of proteins were predicted by all four pre-
dictors, 26% by two or three predictors and 63% were
predicted by a single predictor. Therefore, approximately
40% of the proteins predicted by the subcellular localiza-
tion predictors were predicted by at least two predictors.
Although PA and PSORTb have been widely used and
reported as highly efficient predictors [54], SOSUI-
GramN and CELLO identified additional OMPs (e.g.,
RcpC, NanB, TadD, LppC and PM1515) which the first
two predictors did not. Overall, the use of multiple sub-
cellular localization predictors increased both the pre-
diction coverage and the confidence of prediction.
Conversely, the transmembrane b-barrel protein and

lipoprotein predictors identified specific groups of
OMPs. The four transmembrane b-barrel protein pre-
dictors discriminate between b-barrel proteins and non-
b-barrel proteins. BOMP detects the C-terminal signal
sequence and typical b-barrel pattern of the total amino
acid sequence [31]. MCMBB uses a fast algorithm to
determine alternating patterns of the transmembrane b-
barrel proteins [23]. TMB-Hunt and TMBETADISC-
RBF identify transmembrane b-barrel proteins based on
amino acid composition profiles using different algo-
rithms [29,41]. MCMBB and TMB-Hunt predicted
more proteins than BOMP and TMBETADISC-RBF
(Figure 2, Additional Files 1 and 2). The explanation for
this could be due to differences in the algorithms, scor-
ing schemes and performance levels. By using these
four transmembrane b-barrel protein predictors, 30%
and 33% of transmembrane proteins were predicted by
at least two predictors from the avian and porcine strain
genomes, respectively; the remaining transmembrane
proteins were predicted by a single predictor. The use
of multiple transmembrane b-barrel protein predictors
again resulted in an increase in the confidence of
prediction.
For the lipoprotein predictors, LIPO and LIPOP detect

outer membrane lipoproteins by using their conserved
lipo-box sequences. Together, LIPO and LIPOP pre-
dicted 65% of lipoproteins from the avian strain genome
and 73% of lipoproteins from the porcine strain genome.
These results indicate a high level of agreement between
the two predictors and a high level of confidence.

E-komon et al. BMC Bioinformatics 2012, 13:63
http://www.biomedcentral.com/1471-2105/13/63

Page 10 of 17



Our findings confirm results obtained with Escherichia
coli which showed that the use of multiple predictors
increases the efficiency of subcellular localization predic-
tion as well as specific-feature (b-barrel and lipid modi-
fied proteins) prediction when compared with the use of
a single program [45]. Mirus and Schleiff [17] compared
different transmembrane b-barrel protein predictors and
showed that the combinatory approach improved the
reliability of the prediction. Moreover, we have also con-
firmed that the combined use of different predictors
improves the coverage of predicted OMPs and our find-
ings are consistent with previous work in other bacterial
species [5,32,47]. However, a higher number of predic-
tors were used in the present study.

Filtration, integration and confirmation of the prediction
results
In the present study, we used a combination of subcellu-
lar localization, transmembrane b-barrel protein and
lipoprotein predictors, followed by consensus prediction
with optimized criteria, integration and manual confir-
mation (data mining and sequence analyses) to predict
OMPs in the available avian and porcine P. multocida
genomes. Consensus prediction was validated on a mod-
ified PA dataset containing 1055 Gram-negative bacter-
ial protein sequences (of < 25% similarity) which were
divided into training and test datasets. The consensus
criteria were selected by comparing statistical para-
meters obtained using various criteria in the training
dataset; the selected criteria were validated using the
test dataset. The selected criteria were chosen to opti-
mize or maximize the accuracy, recall/sensitivity, specifi-
city and MCC scores. The criterion (i.e. at least two
predictors) selected for the subcellular localization pre-
dictors was chosen by maximizing the accuracy, specifi-
city and MCC scores (Figure 5 and Table 2). For the
transmembrane b-barrel protein predictor group, the
accuracy, specificity and MCC scores increased as the
number of predictors increased (i.e. maximum values
were achieved for at least 4 predictors). However, there
was a corresponding reduction in the recall/sensitivity
scores (Figure 5). Thus, although more false-positive
proteins were removed as the number of predictors
increases, there was also an increase in the loss of true
positive proteins. Therefore, the consensus criterion (at
least three predictors) for the transmembrane b-barrel
protein predictors was selected by optimization of
recall/sensitivity in conjunction with the other statistical
parameters. The MCC scores of the selected criteria for
the transmembrane b-barrel protein and the outer
membrane lipoprotein predictors were moderate (Figure
5). The reason for these moderate scores could be due
to the ability to predict specific subgroups of OMPs (e.g.
transmembrane b-barrel and outer membrane

lipoprotein) with these predictors. When the three
groups of predictors were combined, the prediction per-
formance was enhanced (Table 2).
Applying the consensus prediction to the predicted

OMPs of P. multocida significantly reduced the number
of false positive proteins, but this advantage has to be
measured against the loss of a small number (seven) of
true positive proteins. If absolutely necessary, the identi-
ties and locations of the filtered-out proteins can be
checked using the additional manual confirmation step
(Figure 1). Applying the consensus method and manual
confirmation enhances the confidence and reliability of
the predicted proteins [45,48,50]. Viratyosin et al. [48]
developed a computational framework incorporating
consensus prediction of the subcellular localization pre-
dictors and homology information for subcellular locali-
zation prediction of the Leptospira interrogans genome
and identified 63 putative OMPs. Similarly, Heinz et al.
[50] used multiple prediction phases, including screen-
ing of the inner membrane proteins, manual confirma-
tion of the PSORTb database, and prediction of b-
barrel, b-helix and lipoproteins, to identify the OMPs in
Chlamydiae. Our study provides a simple framework
which improves the confidence of prediction of the
outer membrane proteome of P. multocida compared to
previous studies.
By using the consensus prediction followed by integra-

tion of the results for three predictor groups (Figure 1),
the number of predicted proteins decreased from
approximately 400 to 140 for the avian strain genome
and to 147 for the porcine strain genome. The manual
confirmation step further reduced the numbers to 98
and 107 confidently-predicted putative OMPs for the
avian and porcine P. multocida genomes, respectively.
These values represent an average of 4.8% of the total
proteome. The two predicted outer membrane pro-
teomes were very similar, sharing 89 (83%) proteins.
The majority (64) of these proteins had sequence identi-
ties above 99%, whereas 22 proteins had sequence iden-
tities in the range of 55.9 to 98%. Twelve proteins were
present in either the avian or porcine genomes but not
both. Of these, only three, namely, the Omp100 adhe-
sin/invasin and two uncharacterized TonB-dependent
receptors, were annotated as having putative function, in
adherence and transport. The presence of these proteins
in porcine isolates alone suggests a possible role in host
adaptation.
We compared the confidently predicted putative

OMPs from the avian strain genome obtained by our
prediction framework with those predicted by a recently
published subcellular localization predictor ClubSub-P
which was developed based on cluster-based and con-
sensus prediction methods [55]. Fifty-eight proteins
were predicted by the ClubSub-P program including 34
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inner or outer membrane lipoproteins, 20 transmem-
brane b-barrel proteins and four lipidified transmem-
brane b-barrel proteins. Forty-eight of these proteins
were predicted by our prediction framework, whereas
ten proteins were not predicted by our method. The
ClubSub-P predictor did not discriminate between outer
and inner membrane lipoproteins. The ten proteins not
predicted by our method were removed during either
the consensus prediction or manual confirmation step.
Therefore, our prediction framework provided better
coverage of the predicted outer membrane proteome of
P. multocida compared to ClubSub-P [55].
Of the 98 confidently predicted putative OMPs from

the avian strain genome, 48 proteins were predicted by
at least two groups of predictors, while the remainder
were identified by only one approach (Figure 6). We
were able to classify the predicted OMPs into trans-
membrane b-barrel, lipidified transmembrane b-barrel,
and lipidified proteins. The subcellular localization pre-
dictors predicted four potential b-barrel proteins that
were filtered out by the b-barrel predictor group. The
loss of these potential true OMPs in the prediction may
have occurred due to the stringent criteria used during
the consensus prediction as increased stringency reduces
the rate of false positives at the cost of an increased rate
of false negatives. The manual confirmation of indivi-
dual predicted proteins helped in the elimination of the
false-positive proteins, such as some secreted and peri-
plasmic proteins, and confidently confirmed that pre-
dicted proteins were targeted to the outer membrane.
Moreover, it also assigned relevant functions to about
60% of the predicted proteins whose roles included
outer membrane biogenesis and integrity, transport and
receptor functions, adherence, and enzymatic activity.
However, the remainder of the proteins, especially the
lipoproteins, are hypothetical and require further
characterization.
Eighty-four of the 98 putative OMPs predicted from

the avian strain genome in the present study were also
identified in the previous study by Al-hasani et al. [51]
(Figure 8). These authors predicted 129 putative OMPs
and secreted proteins from the avian P. multocida gen-
ome using only three predictors (PA, PSORTb and
LIPOP). The additional 14 proteins that we identified
included seven proteins predicted by transmembrane b-
barrel protein predictors (a pilus assembly protein RcpC,
a sialidase NanB, Mce/PqiB, YccT, PM0519, PM1515,
PM1772), three proteins predicted by lipoprotein predic-
tors (PM1002, PM1798, PM1939), three proteins pre-
dicted by subcellular localization predictors (PM0015,
PM0234, a RlpA-like protein PM1926), and one protein
(PM1323) predicted by all these predictor groups. In
contrast to the present study, Al-hasani et al. [51] did
not apply consensus prediction to filter their predicted

results and were interested in identifying both OMPs
and secreted proteins. Consequently, there was disagree-
ment in the localization of 19 proteins between the
three predictors (particularly between PA and PSORTb)
and these proteins could not be concluded to be OMPs
with certainty. Forty-five proteins predicted by Al-hasani
et al. [51] were not confidently predicted in the present
study (Figure 8). Of these, 18 were not predicted and 27
were filtered out by consensus prediction or manual
confirmation. Clearly, the use of a large number of pre-
dictors, together with consensus prediction, allowed us
to identify a larger number of outer membrane-asso-
ciated proteins with a greater degree of confidence.
Hatfaludi et al. [56] reviewed the functions and classi-

fication of the OMPs of P. multocida and reported that
73 proteins were outer membrane-located based on pre-
viously published experimental research. We have confi-
dently predicted 45 of these proteins, whereas 28
proteins were not predicted in the present study (Figure
8). One protein, TbpA, was not identified because of its
absence from the avian and porcine strain genomes.
The remaining 27 proteins were not included in our list
of confidently predicted OMPs for a number of reasons.
Nine proteins were filtered out by consensus prediction
(five proteins) or shown to be non-OMPs by manual
confirmation (four proteins). The proteins that were fil-
tered out by consensus prediction included lipoprotein
PM0979, a competence-related DNA-binding and
uptake protein ComE1, an outer membrane-bounded
sialic acid-binding protein NanP or YiaO, and Flp (Tad)
operon proteins Flp1 and RcpB. The remaining 18 pro-
teins were not identified as OMPs by any of the ten pre-
dictors in the present study. These included cytoplasmic
proteins (3), inner membrane proteins (4), a periplasmic
protein (1) and extracellular proteins (2). There are a
number of explanations for the presence of these pro-
teins in the list assembled by Hatfaludi et al. [56]
including contamination during outer membrane extrac-
tion and multiple subcellular localizations of certain
proteins. Significantly, of the 98 OMPs predicted from
the avian strain genome in the present study, 53 OMPs
(Figure 8) were not reported by Hatfaludi et al. [56].
These included OmpH_3, Opa, Hsf_1 and _2, LolB,
LppA, RlpB, PlpE, SmpA, Plp4, LppC, HexD and Wza.
Clearly, these findings indicate that there is still a lack
of experimental evidence relating to the structures and
functions of the majority of the predicted outer mem-
brane proteome.
Both Hatfaludi et al [56] and Al-hasani et al [51] iden-

tified the same 44 proteins that were also predicted in
the present study (Figure 8). However, a further 40 pro-
teins in our list were only predicted by Al-hasani et al
[51] whereas one protein was only reported by Hatfaludi
et al [56]. In the present study, we have predicted 13
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proteins that were not described by Hatfaludi et al [56]
or predicted by Al-hasani et al [51]. These include the
Flp operon protein RcpC, the paraquat-inducible protein
Mce/PqiB, YccT, a RplA-like protein PM1986, and nine
hypothetical proteins (PM1515, PM0519, PM1772,
PM1002, PM1798, PM1939, PM0015, PM0234 and
PM1323). However, the functions of certain of these
proteins have not been determined. Overall, the present
study has improved the coverage of the predicted outer
membrane proteome of P. multocida by 15% compared
to that of Al-hasani et al [51]. Our simple prediction
framework has allowed us to confidently predict and
increase the coverage of the outer membrane sub-pro-
teome of P. multocida by using currently available pre-
dictors and databases. However, our ten selected
predictors could be replaced or modified as improved
subcellular localization or specific-feature predictors are
made available. For example, the Freeman-Wimley pre-
diction algorithm was developed to improve the predic-
tion of transmembrane b-barrel proteins over previous
algorithms to an accuracy of 99% and MCC score of
0.75 [57]. Freeman and Wimley [57] demonstrated that
their prediction algorithm was more accurate than
BOMP and TMBETADISC-RBF, two of the methods
used in the present study. This method could potentially
be incorporated into our transmembrane b-barrel pro-
tein predictor group to further improve the prediction
performance of our prediction method if it was available
as an online user-friendly tool for genome-scale predic-
tion. However, it should be pointed out that of the

seven putative OMPs that were filtered out by consen-
sus prediction and subsequently identified by data-
mining, five (HbpA/DppA, NlpD, ComEA, Nlpl and
PM1623) were transmembrane b-barrel proteins that
were identified by the transmembrane b-barrel protein
predictors used - BOMP (3 proteins), MCMBB (2),
TMB-Hunt (1) or TMBETADISC-RBF (1). If the Free-
man-Wimley method identified all of these, only
ComEA and PM1623 would pass the consensus predic-
tion criteria (i.e. prediction by at least three predictors).
Recently, Goudenege et al. [58] created a subcellular
localization database, CoBaltDB, for Bacteria and
Archeae by incorporating 43 different predictors and
784 complete proteomes, but they did not give consen-
sus localization of the predicted proteins and a decision
for protein location has to be made by the users them-
selves. By using this database, our prediction framework
could also be applied to confidently predict subcellular
localization in other bacterial species.

Conclusions
In the present study, we have designed a simple predic-
tion framework that allows the prediction of putative
OMPs from the available P. multocida genomes with a
high level of confidence. Our approach involves the use
of multiple predictors divided into three groups,
together with consensus prediction followed by integra-
tion and manual confirmation. We have confidently
identified 98 putative OMPs from the avian strain gen-
ome and 107 putative OMPs from the porcine strain

Figure 8 Comparison of OMPs predicted in the present study to those in previously published research. Diagram comparing the
numbers of OMPs predicted in the present study with those predicted by Al-hasani et al. [51] and reported by Hatfaludi et al. [56]. Indicated are
the numbers of proteins predicted/reported by one, two or all three studies. The total number of proteins predicted/reported by each of the
three studies is shown in parentheses.
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genome of P. multocida with 83% overlap between the
two genomes. The coverage of the outer membrane pro-
teome of this bacterium has been improved on previous
research. The identification of previously unrecognized
OMPs in strains of P. multocida from different host spe-
cies will stimulate further studies into the molecular
basis of the pathogenesis of this organism. In a separate
study, the authors have analyzed the outer membrane
proteomes of eight P. multocida isolates using comple-
mentary proteomic methods [59]. In this study, more
than half of the predicted outer membrane proteome
has been demonstrated experimentally. Fifty-four puta-
tive OMPs have been identified representing 52% of the
predicted avian outer membrane proteome and 48% of
the predicted porcine sub-proteomes. This study not
only provides a basis for furthering our understanding
of the outer membrane proteome of P. multocida but
can also be applied to other Gram-negative bacteria.

Methods
P. multocida genomes
The publicly available genome of the avian P. multocida
subsp. multocida strain Pm70 [GenBank: AE004439]
and the unannotated genome of the porcine non-toxi-
genic P. multocida strain 3480 [Project ID: 32177] were
used for all bioinformatic analyses. The avian strain gen-
ome containing 2,015 protein-coding genes was
retrieved from NCBI. The 2,260 protein-coding genes of
the unannotated porcine genome (kindly provided by
Dr. A. Gillaspy, University of Oklahoma) were manually
predicted using GeneMark [60] and automatically
named using Blast2GO [61].

Selection of bioinformatic predictors
The scheme for the bioinformatic prediction of the
OMPs is shown in Figure 1. Three groups of predictors,
involving 10 genome-scale programs (Table 1), were
used to predict putative OMPs from the two genomes.
Subcellular localization or global predictors included the
programmes Proteome Analyst (PA) [24], PSORTb [28],
CELLO [25] and SOSUI-GramN [39]; transmembrane
b-barrel protein predictors included TMB-Hunt [29],
TMBETADISC-RBF [41], BOMP [31] and MCMBB
[23]; and outer membrane lipoprotein predictors
included LIPO [32] and LIPOP [15]. Predicted results of
each protein in the HTML or Excel formats from indivi-
dual programmes were parsed using in-house built perl
scripts.

Analysis of agreement between pairs of bioinformatic
predictors
The advantages of using multiple predictors over a sin-
gle predictor can be evaluated by analysis of agreement

between pairs of selected programs [45]. This analysis
determines the level of agreement between different pre-
dictors by use of the following formula:

Agreement (A) =
(P1 ∩ P2)L

P′
L

[45]

where (P1 ∩ P2)L is the number of predicted proteins
shared between predictor P1 and P2 for a subcellular
location, L, and P’L is the total number of predicted pro-
teins from a lower coverage program of the predictor
pair for that location. An agreement score (A) of one
means that all proteins predicted by both methods (P1
and P2) are localized on a location, L. A score of zero
means that there are no shared predicted proteins
between the two predictors for a location, L. In-house
built perl scripts were used to analyze the predicted
results of each program before pairwise comparison and
calculation of the agreement score.

Criteria optimization, consensus prediction and
integration
Predicted proteins from different programs in each
group were filtered by consensus prediction (Figure 1)
with optimized criteria to eliminate redundancy and
proteins of low confidence. These analyses were per-
formed using Excel. We varied the criteria by increasing
the number of positive predicted results as a threshold
in each predictor group. For the subcellular localization
and transmembrane b-barrel predictor groups, the cri-
teria were varied from positive predicted proteins
obtained by at least one, two, three or four predictors.
For the lipoprotein predictors, the criteria were varied
from positive predicted proteins obtained by at least one
or two predictors. The effectiveness of these criteria was
validated by two-fold cross-validation using two different
protein data sets (training and test datasets) modified
from the PA protein dataset http://webdocs.cs.ualberta.
ca/~bioinfo/PA/. The original PA dataset contained
6089 Gram-negative bacterial protein sequences of
known subcellular locations including cytoplasmic
(3959), inner membrane (1127), periplasmic (400), outer
membrane (361) and extracellular (242) proteins. These
protein sequences were clustered using the minimum
identity of 25% by the BLASTclust program http://
toolkit.genzentrum.lmu.de/blastclust#. The percentages
of sequence identity and similarity of pairwise compari-
son of these sequences were generated by the MatGat
program [62]. The sequences which had sequence iden-
tity greater than or equal to 25% were excluded. This
modified PA dataset containing 1055 protein sequences
was then sub-divided randomly into two, a training
dataset and a test dataset. The training dataset con-
tained 526 protein sequences of known subcellular loca-
tions including cytoplasmic (157), inner membrane
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(219), periplasmic (71), outer membrane (43) and extra-
cellular (36) proteins. The test dataset contained 529
protein sequences of known subcellular locations includ-
ing cytoplasmic (158), inner membrane (220), periplas-
mic (71), outer membrane (43) and extracellular (37)
proteins. Pairs of proteins between and within these two
datasets had sequence identities of less than 25%. Differ-
ent consensus criteria of the three predictor groups
were trained using the training dataset. We used calcu-
lations of accuracy, recall/sensitivity, specificity and Mat-
thews Correlation Coefficient (MMC) from the training
dataset to assess the prediction performance using these
different criteria. Accuracy of prediction is defined as
the degree of closeness of the predicted number of
OMPs compared to the actual number of OMPs. Recall
or sensitivity is defined as the proportion of OMPs that
are correctly predicted. Specificity is defined as the pro-
portion of non-OMPs that are correctly predicted. MCC
measures sensitivity and specificity together and ranges
from -1 to 1, where MCC = 1 indicates a perfect predic-
tion, MCC = 0 indicates a completely random predic-
tion, and MCC = -1 indicates a reverse correlation. The
formulae are shown below where TP represents the
number of true positives (proteins predicted as OMPs
being OMPs), TN the true negatives (proteins predicted
as non-OMPs being non-OMPs), FP the false positives
(proteins predicted as OMPs being non-OMPs) and FN
the false negatives (proteins predicted as non-OMPs
being OMPs). This optimization tended to reduce most
of the false positive and retain most of the true positive
proteins.

Accuracy (% of correct predictions) =
(TP + TN)

(TP + FP + TN + FN)

Recall or Sensitivity (% of true positive identification) =
TP

(TP + FN)

Specificity (% of true negative identification) =
TN

(TN + FP)

MCC (Measurement of prediction quality) =
(TP × TN − FP × FN )√

(TP + FN) (TP + FP) (TN + FP) (TN + FN)

The criteria that maximized the above parameters
were selected and evaluated on the test dataset. The
selected optimal criteria were then used for filtering the
predicted P. multocida proteins. Subsequently, consen-
sus predictions from the three groups were integrated
(Figure 1) and a single list of predicted OMPs generated.

Manual confirmation of the predicted proteins
After the consensus prediction, each predicted protein
was manually confirmed as being outer membrane-asso-
ciated by using public database searches and sequence
analyses (Figure 1). The PubMed database http://www.
ncbi.nlm.nih.gov/pubmed was used to retrieve published
experimental information relevant to the predicted

proteins. The UniProt protein database http://www.uni-
prot.org/ was searched for homology and domain/motif,
protein-protein interactions, and functional and struc-
tural predictions. Structural homology was examined by
using the HHpred program http://toolkit.tuebingen.mpg.
de/hhpred, [63]). The STRING protein interaction data-
base http://string-db.org/ was used to identify whether
the predicted proteins interacted with any known pro-
teins or were members of any characterized pathways.
Taken together, these analyses confirmed the proteins as
confidently predicted putative OMP candidates (Figure
1).

Analysis of filtered-out predicted proteins
The use of filtering criteria aims to reduce the number
of false positive proteins. However, it may increase the
probability of losing a small proportion of true positive
proteins. Therefore, predicted proteins that were filtered
out by the consensus criteria were integrated and also
examined by manual confirmation to identify such lost
true positive proteins (Figure 1).

Physicochemical properties of the predicted OMPs
Physicochemical properties, e.g. molecular weight,
length of protein sequence, theoretical pI, grand average
of hydropathicity (GRAVY) score, aliphatic index,
charge, number of b-strands and helices, of the putative
OMPs were predicted by the ProtParam program http://
expasy.org/tools/protparam.html, TMBETA-NET [13]
and TMHMM [64].

Availability and requirements
Project name: None
Project home page: None
Operating system: Platform independent
Programming language: Java, Perl
Other requirements: Excel
License: None for usage
Any restrictions to use by non-academics: None

Additional material

Additional file 1: Proteins predicted from the avian strain genome
of P. multocida using 10 bioinformatic predictors. 421 proteins were
predicted using 10 bioinformatic predictors classified into three groups
(four subcellular localization predictors, four transmembrane b-barrel
protein predictors and two lipoprotein predictors) from the genome of
avian P. multocida strain Pm70. “YES” indicates positive OMP prediction
and “NO” indicates negative OMP prediction. The total number of
positive predictions of each protein is summarized in the last column of
each predictor group. The total number of positive predictions of each
predictor is summarized in the last row. “-” represents unannotated
genes.

Additional file 2: Proteins predicted from the porcine strain
genome of P. multocida using 10 bioinformatic predictors. 439
proteins were predicted using 10 bioinformatic predictors classified into
three groups (four subcellular localization predictors, four transmembrane
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b-barrel protein predictors and two lipoprotein predictors) from the
genome of porcine P. multocida strain 3480. “YES” indicates positive OMP
prediction and “NO” indicates negative OMP prediction. The total
number of positive predictions of each protein is summarized in the last
column of each predictor group. The total number of positive
predictions of each predictor is summarized in the last row. “-” represents
unannotated genes.

Additional file 3: Training protein dataset used for two-fold cross-
validation of consensus prediction. Training dataset containing 526
Gram-negative bacterial protein sequences of known localization.
Pairwise sequence comparison of these protein sequences showed less
than 25% identity. This dataset was used for selection of various criteria
of the consensus prediction using four statistical parameters including
accuracy, recall/sensitivity, specificity and MCC. “OMP” indicates positive
OMP prediction and “nonOMP” indicates non-OMP prediction. Total
number of positive prediction of each protein is summarized in the last
column of each predictor group. Total number of positive prediction of
each predictor is summarized in the last row. “cyt” = cytoplasmic protein;
“imp” = inner membrane protein; “per” = periplasmic protein; “omp” =
outer membrane protein; and “ext” = extracellular protein.

Additional file 4: Test protein dataset used for two-fold cross-
validation of consensus prediction. Test dataset containing 529 Gram-
negative bacterial protein sequences of known localization. Pairwise
sequence comparison of these protein sequences showed less than 25%
identity. This dataset was used for validation of selected criteria of the
consensus prediction using four statistical parameters including accuracy,
recall/sensitivity, specificity and MCC. “OMP” indicates positive OMP
prediction and “nonOMP” indicates non-OMP prediction. Total number of
positive predictions of each protein is summarized in the last column of
each predictor group. Total number of positive predictions of each
predictor is summarized in the last row. “cyt” = cytoplasmic protein;
“imp” = inner membrane protein; “per” = periplasmic protein; “omp” =
outer membrane protein; and “ext” = extracellular protein.

Additional file 5: Properties of confidently predicted OMPs.
Confidently-predicted putative OMPs identified from the genome of
avian P. multocida strain Pm70 by 10 predictors, categorized into three
groups (subcellular localization, transmembrane b-barrel and lipoprotein
predictors) and subjected to the bioinformatic process described in
Figure 1. OMPs predicted from the porcine P. multocida genome strain
3480 were compared. Physicochemical properties including molecular
weight (MW), PI, aliphatic index, GRAVY score, number of transmembrane
helices and b-strands, length and charge of each protein are also shown.
Proteins were classified by predictor groups.

Additional file 6: Functional classification of the confidently
predicted OMPs. Functional classification of the 98 confidently
predicted OMPs from the avian P. multocida genome.
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