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Abstract

Background: In systems biology, the task of reverse engineering gene pathways from data has been limited not just
by the curse of dimensionality (the interaction space is huge) but also by systematic error in the data. The gene
expression barcode reduces spurious association driven by batch effects and probe effects. The binary nature of the
resulting expression calls lends itself perfectly to modern regularization approaches that thrive in high-dimensional
settings.

Results: The Partitioned LASSO-Patternsearch algorithm is proposed to identify patterns of multiple dichotomous
risk factors for outcomes of interest in genomic studies. A partitioning scheme is used to identify promising patterns
by solving many LASSO-Patternsearch subproblems in parallel. All variables that survive this stage proceed to an
aggregation stage where the most significant patterns are identified by solving a reduced LASSO-Patternsearch
problem in just these variables. This approach was applied to genetic data sets with expression levels dichotomized
by gene expression bar code. Most of the genes and second-order interactions thus selected and are known to be
related to the outcomes.

Conclusions: We demonstrate with simulations and data analyses that the proposed method not only selects
variables and patterns more accurately, but also provides smaller models with better prediction accuracy, in
comparison to several alternative methodologies.

Background
The LASSO-Patternsearch (LPS) algorithm [1-3] is an
effective approach for identifying multiple dichotomous
risk factors for outcomes of interest in demographic and
genomic studies. It uses an �1-regularized logistic regres-
sion formulation, targeting the case in which only a small
fraction of the large number of possible candidate pat-
terns are significant. The approach can be used to con-
sider simultaneously all possible patterns up to a specified
order. It can identify complicated correlation structures
among the predictor variables, on a scale that can cause
serious difficulties for algorithms that target problems of
more modest size.
When applied to very large models with higher-order

interactions between the predictor variables, however,
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LPS quickly runs into computational limitations. For
example, a problemwith two thousand predictor variables
yields a logistic-regression formulation with about two
million variables if both first- and second-order patterns
are included in the model. Problems of this size are at the
limit of LPS capabilities, yet current problems of interest
in genetic epidemiology consider ten thousandmarkers or
more [4]. Data sets of this scale can be addressed by using
a screening procedure in conjunction with LPS [5].
In this article, we propose a Partitioned LASSO-

Patternsearch Algorithm (pLPS) scheme to tackle gigantic
data sets in which we wish to consider second- and pos-
sibly third-order interactions among the predictors, in
addition to the first-order effects. As in LPS, we assume
that all predictor variables are binary (or that they have
been dichotomized before the analysis). The model thus
contains a huge number of possible patterns, but the solu-
tion is believed to be sparse, with only a few effects being
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significant risk factors for the given outcome. In the first
(screening) stage of pLPS, the predictors are divided into
partitions of approximately equal size, and LPS is used
to solve smaller subproblems in which just the predic-
tors and higher-order effects within a single partition, or
the interactions between variables in small groups of par-
titions, are considered as variables in the optimization
model. These reduced problems can be solved indepen-
dently and simultaneously on a parallel computer. By
the end of the screening stage, each predictor and each
higher-order effect (up to the specified order) will have
been considered in at least one of the subproblems. The
second stage of pLPS is an aggregation process, in which
all predictors identified in the first stage are considered,
together with all their interactions up to the specified
order. An LPS procedure is used to identify the final set of
significant predictors and interactions.
Tuning parameters in the first stage of pLPS are cho-

sen by BGACV criterion. BGACV is a more stringent
criterion than GACV, the difference between these cri-
teria being similar to the difference between BIC and
AIC (see [1]). In the second stage, two tuning parameters
are used, one for main effects and one for interactions.
These are chosen by BGACV2, a variation of BGACV to
be described below. We examine the effectiveness of the
pLPS strategy on simulated data and on two large-scale
genetic data sets.

Methods
We now give further details of the pLPS scheme and
its implementation. For simplicity, most of our discus-
sion focuses on the case in which first-order effects and
second-order interactions between all predictors are con-
sidered. Extension of the approach to include third-order
effects as well is described briefly at the end of the section.
Considering n subjects with p binary predictor vari-

ables, the total number of interactions up to order q is
given by NB = ∑q

ν=0
(p
ν

)
. For q = 2, we thus have

1 + p(p + 1)/2 patterns. To apply pLPS, we first divide
the p variables into k partitions so that each partition
has g = p/k variables. (For simplicity of description, we
assume that p is divisible by k.) The data set is {y, xj, j =
1, 2, · · · , p}, where y = (y1, y2, · · · , yn) ∈ {0, 1} is the
response, xj = (xj(1), xj(2), · · · , xj(n)) is the jth covariate,
and xj(i) ∈ {0, 1} for all j = 1, 2, · · · , p and i = 1, 2, · · · , n.
By relabelling the p predictors as xst , where s = 1, 2, · · · , k
denotes the partition number and t = 1, 2, · · · , g denotes
the index within the partition, we relabel the full data set
as {y, xst , s = 1, 2, · · · , k, t = 1, 2, · · · , g}.
In the first stage of pLPS (the “screening stage”), we solve

two types of reduced LPS subproblems. The first type is
based on a pair of partitions, denoted by s1 and s2, and
defines the LPS variables in the subproblems to be the
first-order effects within each group (for which there are

2g basis functions {Bt1 = xs1t , t = 1, 2, · · · , g} and {Bt2 =
xs2t , t = 1, 2, · · · , g}) and all the second-order interac-
tions between a predictor in group s1 and a predictor in
group s2. There are g2 basis functions for the latter effects,
namely, {Bt1t2 = xs1t1 × xs2t2 , t1, t2 = 1, 2, · · · , g}. Hence
the total number of patterns in the LPS model for each
subproblem is g2 + 2g + 1, when we include the constant
basis function B ≡ 1.
The second type of reduced LPS problem is obtained

from the first- and second-order effects within a single
partition. Here, the basis functions for group s are {Bt1t2 =
xst1 × xst2 , t1, t2 = 1, 2, · · · , g, t1 < t2} and {Bt = xst , t =
1, 2, · · · , g}, making a total of 1 + g(g + 1)/2 patterns,
when we include the constant basis function. Since each
subproblem of the second type has about half as many
variables as each subproblem of the first type, we define
computational tasks of roughly equivalent complexity by
grouping two of the type-two problems together. Figure 1
is a graphical presentation of the two types of groups
considered in the first stage of pLPS.
We now briefly describe the LPS methodology, which is

applied to each of these subproblems. By relabeling, we
define the basis functions to be B�(x), � = 1, 2, · · · ,NB.
Defining p(x) := Prob

[
y = 1|x] and the logit (log odds

ratio) f (x) := log [p(x)/(1 − p(x))], we estimate f by
minimizing

Iλ(y, f ) = L(y, f ) + λJ(f ), (1)

where L(y, f ) is the negative log likelihood divided by n:

L(y, f ) = 1
n

n∑
i=1

[
−yif (x(i)) + log

(
1 + ef (x(i))

)]
, (2)

with f being expressed as a linear combination of the basis
functions

f (x) = μ +
NB−1∑
�=1

c�B�(x), (3)

and the penalty function being defined by

J(f ) =
NB−1∑
�=1

|c�|. (4)

(We assume that the last basis function is the constant
function 1, whose coefficient μ does not appear in J and
is therefore not penalized.) The penalty parameter λ in (1)
is chosen by BGACV. We then build a parametric logis-
tic regression model on the remaining basis functions by
minimizing (2) and selecting the best model via backward
elimination with the BGACV criteria. More details are
given in Section Results and discussion [1].
If the outcomes can be predicted well using a small

number of patterns, the number of patterns surviving the
first stage of pLPS should be small. Suppose there are
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Figure 1 Diagram of the subproblems in the first stage of pLPS, assuming 5 partitions. Side length of a square is the partition size, while the
horizontal axis contains the labels of the first effect and the vertical axis the label of the second effect. Squares filled with red dots are “type-one”
subproblems while the triangles filled with green dots are “type-two” subproblems.

a total of p∗ unique predictor variables in all these pat-
terns. The second stage of pLPS— the “aggregation stage”
— is an LPS problem in which just these predictors and
all their second-order effects are the patterns. There will
be NB1 = p∗ basis function (denoted by B1�) for the main
effects and NB2 (= (p∗

2
)
) basis functions (denoted by B2�)

for the second-order interactions, plus one constant basis
function. In the aggregation stage, we use different penalty
parameters for the first- and second-order patterns, so the
objective function is

Iλ1,λ2(y, f ) = L(y, f ) + λ1J1(f ) + λ2J2(f ), (5)

where the link function f is

f (x) = μ +
NB1∑
�=1

c1�B1�(x) +
NB2∑
�=1

c2�B2�(x), (6)

and the penalties are

J1(f ) =
NB1∑
�=1

|c1�|, J2(f ) =
NB2∑
�=1

|c2�|. (7)

The choice of penalty parameters (λ1, λ2) in (5) is criti-
cal to the performance of this formulation. BGACV does
not work well in this setting. Often, it tends to select only
second-order patterns, combining main effects with spu-
rious partners. Occasionally, it selects only main effects,

breaking true size-two patterns into separate main effects.
The large difference between the numbers of basis func-
tions NB1 and NB2 makes the solutions sensitive to the
two penalty parameters. Searching over a grid of values
for λ1 and λ2 is expensive and often does not give satisfac-
tory results. As an alternative approach, we introduce the
following penalty function, known as BGACV2:

BGACV2(λ1, λ2) = BGACV (λ1, λ2)

×
(
1 + 0.5

|nb1 − nb2 |
nb1 + nb2

)
,

(8)

where nb1 is the number of nonzero coefficients of main
effects and nb2 is the number of nonzero coefficients of
size-two patterns. The additional penalty factor forces
these two numbers to be similar, reducing the possibil-
ity of the two extreme cases discussed above. If the true
model only contains main effects, the BGACV2 penalty
will tend to select fewer main effects than the BGACV
model. However, BGACV is conservative (see discussion
in [1]), while BGACV2 is less so. We expect that BGACV2
will not miss any important main effects, though it may
also produce some spurious second-order effects. These
spurious effects will be further eliminated by the para-
metric logistic regression step as noted above, followed by
solving (5).
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Minor extensions to the pLPS approach are needed
when size-three patterns (q = 3) are introduced. In the
screening phase of pLPS, there are four types of subprob-
lems (rather than two). These types are distinguished by
considering the labels s1, s2, s3 of the three partitions cho-
sen to define the subproblem (with s1 ≤ s2 ≤ s3). The
four types correspond to the cases s1 < s2 < s3, s1 =
s2 < s3, s1 < s2 = s3, and s1 = s2 = s3, respectively. In
the aggregation phase of pLPS, we will still be using two
penalty parameters, one for main effects and one for inter-
actions; size-two and size-three patterns share the same
penalty parameter. The criterion function for choosing the
appropriate values for penalty parameters λ1 and λ2 is

BGACV3(λ1, λ2) = BGACV (λ1, λ2)

×
(
1 + 0.5

|nb1 − na| + |nb2 − na| + |nb3 − na|
nb1 + nb2 + nb3

)
,

(9)

where nb1 is the number of nonzeromain effects, nb2 is the
number of nonzero size two patterns, nb3 is the number
of nonzero size three patterns and na is the average of the
three.
In the remainder of the paper, we use pLPS to denote

the q = 2 case and pLPS3 for the q = 3 case.
The choice of g (the number of variables in each par-

tition) is determined by the computing power and the
available memory. On our super server (an AMD Dual-
Core 2.8 GHz machine with 64 GB memory), we usually
set g = 2, 000 for q = 2. This choice yields subproblems
with NB = 2, 001, 001 basis functions, which can be han-
dled comfortably by the LPS code. On a more standard
computer (Intel� Pentium� 4 2.80GHz with 2 GB mem-
ory), we usually set g = 200 for q = 2 and g = 35 for
q = 3. As we noted earlier, the subproblems in the first
stage of pLPS can be solved independently, in parallel, on
different computers in a cluster. The grid-computing sys-
tem Condor (http://www.cs.wisc.edu/condor/)
provides an ideal platform for these parallel jobs. In our
Condor implementation, we request machines from the
pool with at least 2 GB of memory, and define our group
sizes to be g = 200 (for q = 2) and g = 35 (for q = 3).
Generally, for faster execution of pLPS, it is advantageous
to set g to the highest value that can be accommodated
by the memory of the computer. The final results of the
computation do not depend strongly on the choice of g.
The pLPS code is available at http://pages.cs.

wisc.edu/˜swright/LPS/index-plps.html.

Results and discussion
Simulation studies
In this section we study the empirical performance of
pLPS through four simulated examples. The first example

is a relatively small data set with independent predictor
variables: One main effect and two second-order inter-
actions are included in the link function. The second
example is a very large data set with strong correlations
among neighboring variables, in which two main effects
and two second-order interactions are assumed to be
important. The third example studies the performance
of pLPS3, which includes third-order interactions in the
model. Two main effects, one second-order interaction,
and one third-order interaction are included. The last
example studies the performance of pLPS where there are
negative correlations among the predictor variables and
the true model involves many patterns.

We compare pLPS with three other methods:

• Logic Regression [6], as implemented in the R
package LogicReg,

• Stepwise Penalized Logistic Regression (SPLR) [7], as
implemented in the R package stepPlr, and

• Random Forest (RF) [8], as implemented in the R
package randomForest.

The number of trees and number of leaves in Logic
Regression are selected by five-fold cross validation. The
smoothing parameter in SPLR is also selected by five-fold
cross validation, while the model size is selected by BIC.

Simulation Example 1
In our first example, 400 iid Bernoulli (0.5) random vari-
ables were simulated. The sample size is 700 and the logit
function is

f (x) = −2 + 1.5X50 + 1.5X150X250 + 1.5X251X252.

One hundred data sets were generated according to this
model and analyzed by the four methods described above.
Table 1 presents the results of this simulation. Each

entry in the table shows the number of appearances of the
pattern and the variables in the 100 simulations. The main

Table 1 Simulation Example 1

False patterns
Methods X50 X150X250 X251X252 (Variables)

pLPS 94 (100) 99 (99,99) 96 (97,97) 153

Logic 100 (100) 70 (88,91) 65 (84,90) 190

RF NA (100) NA (96,97) NA (94,96) (517)

SPLR 100 (100) 97 (100,97) 91 (100,98) 712

n= 700 and p= 400, with no correlations. Tabulated numbers show the number
of tests (out of 100) in which the pattern was detected by each algorithm. The
number outside the parentheses is the number of times the given pattern was
selected; the numbers inside the parentheses shows howmany times the
variables in the pattern are detected in the model, as a main effect or in some
interaction. The final column shows the total number of times (in 100 tests) that
the algorithms selected patterns (variables for RF) that are not in the true model.

http://www.cs.wisc.edu/condor/
http://pages.cs.wisc.edu/~swright/LPS/index-plps.html
http://pages.cs.wisc.edu/~swright/LPS/index-plps.html
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number (outside the parentheses) is the pattern count
showing how many times the given pattern is selected in
the model. The numbers inside the parentheses are the
variable counts showing how many times each variable
in a given pattern appears in the model, either as a main
effect or in some other interaction. Random Forest does
not generate an explicit model, but rather produces an
importance score for all variables. Thus, it is not possi-
ble to calculate a pattern count for Random Forest, but
we calculate the variable count according to whether the
variables in question appeared among the top 10 variables
identified by this technique. For pLPS, Logic Regression,
and SPLR, the last column labeled “False Patterns (Vari-
ables)” counts the total number of appearances in the
100 trials by terms that are not patterns in the model. In
this simulation, any pattern other than X50, X150X250, or
X251X252 is taken to be false. For Random Forest, the last
column counts the total number of false variables selected
in the 100 trials. Any variable other than the five in the
logit function is false.
On this example, pLPS selects all three patterns almost

perfectly and generates the least number of false patterns.
Logic Regression does not do well on the size-two patterns
and selects slightly more false patterns. Random Forest
does well in selecting the important variables but also
selects many false variables. (If we change the criterion for
declaring that Random Forest has selected a variable to
the “top eight” or “top five,” we reduce the number of false
variables but also reduce the variable counts.) SPLR has
similar performance to pLPS in selecting the true patterns,
but selects many more false patterns.

Simulation Example 2
Example 2 studies the behavior of pLPS on a large data
set (n = 1000, p = 8000) with correlations among the
covariates. To generate the binary variables Xi, i =
1, 2, · · · , p, we start with normal distributions, choosing
X∗
i ∼ N(0, 1), i = 1, 2, · · · , p so that corr(X∗

i ,X∗
i+1) = 2/3

and corr(X∗
i ,X∗

i+2) = 1/3, i = 1, 2, · · · , p − 2. (X∗
i and X∗

j
are independent if |i−j| > 2.)We then setXi = 1 ifX∗

i > 0
and Xi = 0 otherwise, for each i = 1, 2, · · · , p. The logit
function is

f (x) = −4+2X500+3X5000+2X1000X3000+3X7000X7002.

The simulation was performed 50 times; each run is
quite time-consuming. We could not run Logic Regres-
sion on this example, as the dimensions exceed the limit
of that code.
Table 2 shows the results, in the same format as Table 1.

pLPS misses the pattern X1000X3000 twice but selects
the remaining patterns perfectly, and generates a smaller
number of false patterns than the other methods. In Ran-
dom Forest, we declared a variable to be selected if it was
ranked in the top 12. It misses the pattern X1000X3000 with

Table 2 Simulation Example 2

False patterns
Methods X500 X5000 X1000X3000 X7000X7002 (Variables)

pLPS 50 (50) 50 (50) 48 (48,50) 50 (50,50) 278

RF NA (50) NA (50) NA (28,37) NA (50,50) (335)

SPLR 50 (50) 50 (50) 50 (50,50) 50 (50,50) 800

n =1000 and p = 8000, with correlations among neighboring variables.
Tabulated numbers show the number of tests (out of 50) in which the pattern
was detected by each algorithm. The number outside the parentheses is the
number of times the given pattern was selected; the numbers inside the
parentheses shows howmany times the variables in the pattern are detected in
the model, as a main effect or in some interaction. The final column shows the
total number of times (in 50 tests) that the algorithms selected patterns
(variables for RF) that are not in the true model.

some frequency. SPLR selects all four patterns perfectly,
but at the cost of a large number of spurious patterns.
SPLR requires the user to set the maximum number of
parameters allowed in the model, and selects the actual
number by BIC. We set this maximum to 20, and it was
reached on all 50 runs. (The maximum is still reached on
every run when we set this parameter to 50).

Simulation Example 3
Example 3 studies the behavior of pLPS3 on a large data
set, with sample size n = 1000 and p = 500 variables.
The marginal distribution and correlation structure are
the same as in Example 2.
The logit function is

f (x) = −4+2X100+3X200+2X300X400+3X150X450X451.

This simulation was performed 50 times. As we can see
from Table 3, pLPS3 selects all patterns quite well with
a reasonable number of false patterns. Logic Regression
selects fewer false patterns but does not do well in identi-
fying the two interaction terms. Random Forest does well
in the size-three pattern but misses the size two pattern

Table 3 Simulation Example 3

False patterns
Methods X100 X200 X300X400 X150X450X451 (Variables)

pLPS3 47 (50) 50 (50) 47 (50,50) 47 (50,49,48) 204

Logic 50 (50) 50 (50) 34 (43,44) 30 (50,44,41) 151

RF NA (50) NA (50) NA (36,40) NA (49,47,49) (279)

SPLR 50 (50) 50 (50) 45 (49,50) 50 (50,50,50) 554

n =1000 and p = 500, with correlations among neighboring variables.
Tabulated numbers show the number of tests (out of 50) in which the pattern
was detected by each algorithm. The number outside the parentheses is the
number of times the given pattern was selected; the numbers inside the
parentheses shows howmany times the variables in the pattern are detected in
the model, as a main effect or in some interaction. The final column shows the
total number of times (in 50 tests) that the algorithms selected patterns
(variables for RF) that are not in the true model.
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quite often. (We declared the top 12 variables identified by
Random Forest to be “selected”).
As in the previous examples, SPLR does well at select-

ing the important patterns but also selects many false
patterns.

Simulation Example 4
Simulation 4 studies the performance of pLPS when there
are some negative correlations among the covariates and
the number of true patterns is large. Assuming n = 700
and p = 400, the correlation structure of the first 200 vari-
ables are the same as those in Example 2. The next 200
variables have some negative correlations generated as fol-
lows. Similar to previous examples we start with normal
variables, choosing X∗

i ∼ N(0, 1), i = 201, 202, · · · , p so
that corr(X∗

i ,X∗
i+1) = −1/3 and corr(X∗

i ,X∗
i+2) = −1/6,

i = 201, 202, · · · , p − 2. (X∗
i and X∗

j are independent
if |i − j| > 2.) We then set Xi = 1 if X∗

i > 0 and
Xi = 0 otherwise, for each i = 201, 202, · · · , p. The logit
function is

f (x) = −1 + 2.5(X1 − X3 + X10 − X201 + X220 − X230)

+ 3(X100X102 − X300X302 + X50X250).

Among the three interaction terms, the first had vari-
ables with positive correlation, the second had variables
with negative correlation and the third had indepen-
dent variables. The simulation was performed 100 times.
(Logic Regression was again not implemented. Although
the dimensions did not exceed the limit of that code,
the number of true patterns did.) Table 4 shows the
results. Instead of listing the appearance frequency of all
main effects, the average of the seven is presented. pLPS
selected all main effects and interactions almost perfectly.
In Random Forest, we declared the top 25 variables to be
“selected,” but this technique did not do well in identify-
ing the second interaction term. SPLR selected all seven
main effects perfectly, but did not do well in selecting the
second interaction term, and tended to select many more
false patterns.

Summary
Logic Regression cannot handle very large data sets and
does not reliably identify the interaction terms. Random
Forest does not provide an explicit model of the interac-
tions. It frequently scores well, but can perform poorly if
the signal is not strong enough. SPLR scores well at select-
ing the right patterns, but selects too many false patterns.
By contrast, pLPS usually selects the right patterns with-
out adding too many false patterns, regardless of the size
of the problem, the number of true patterns or the signs of
correlations.
Our partitions are selected according to the natural

order of variables in these simulation examples. If the
number of variables in each partition is 200, the first 200
variables will be in the first partition and the next 200
variables will be in the second partition, and so on. If the
variables are permuted, resulting in a different partition-
ing, we do not expect the results to be greatly affected. All
possible higher-order patterns are considered in the first
(screening) stage of themethod, regardless of partitioning.
A significant effect should survive the first stage regardless
of how the partitioning is performed. To verify this claim,
we performed a random permutation on the predictor
variables in simulation Example 4 in all 100 runs. Among
all the patterns selected in the original partitioning, 82%
were still selected after the permutation. Although this
figure is on the low side, it can be accounted for by the
presence of noise patterns. If we focus on the ten most
important patterns in each run, then from the 1000 con-
siderations (10 patterns x 100 runs), the original partition
and its permuted counterpart yield results that agree 95%
of the time. To summarize: Although Simulation Exam-
ple 4 is a complicated case with negative correlations
and many important variables, the final results are not
affected greatly by a shuffling of the first-stage partitions.
We would expect similar results for the other examples
discussed in this article.

The gene expression barcode data
With current microarray technology, we are able to
measure thousands of RNA transcripts at one time, a

Table 4 Simulation Example 4

False patterns
Methods Main effects average∗ X100X102 X300X302 X50X250 (Variables)

pLPS 96 (100) 98 (100,100) 98 (98,100) 99 (100,100) 320

RF NA (99) NA (96,100) NA (87,72) NA (94,89) (1268)

SPLR 100(100) 97 (100,100) 82 (100,100) 97 (100,100) 1017

n =700 and p = 200, with positive correlations among neighbors in the first 200 variables and negative correlations among neighbors in the next 200 variables.
Tabulated numbers show the number of tests (out of 100) in which the pattern was detected by each algorithm. The number outside the parentheses is the number of
times the given pattern was selected; the numbers inside the parentheses shows howmany times the variables in the pattern are detected in the model, as a main
effect or in some interaction. The final column shows the total number of times (in 100 tests) that the algorithms selected patterns (variables for RF) that are not in the
true model.
∗The average of X1, X3, X10, X201, X210, X220 and X230.
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capability that allows for richer characterization of cells
and tissues. However, feature characteristics such as probe
sequence can cause the observed intensity to be far away
from the actual expression. Although this “probe effect”
is significant, it is consistent across different hybridiza-
tions, in that the effect is quite similar when comparing
intensities of different hybridizations for the same gene.
Therefore, the majority of microarray data analysis uses
relative expression rather than absolute expression. To
overcome this limitation in measurement, a gene expres-
sion bar code (GEBC) [9] was proposed recently. The
goal is to investigate what intensity measurement con-
stitutes “no expression” for a given gene and microarray
platform. GEBC starts by preprocessing all genes using
Robust Multi-array Analysis (RMA) [10]. For each gene,
an empirical density smoother is used to estimate the den-
sity function of this gene across tissues, and the smallest
mode of the density function is taken to be the expected
intensity of an unexpressed gene. Gene expressions to the
left of this mode are used to estimate the standard devia-
tion of unexpressed genes. If the log expression estimate
of a gene is some constant K standard deviations larger
than the unexpressed mean, then this gene is considered
to be expressed. (K is chosen to be 6 by cross-validation.)
For the purpose of our model, expressed genes are coded
as 1 and unexpressed genes as 0.
GEBC [9] was built from publicly available raw data

from 40 different studies. It consists of a database of
1094 human samples, representing 118 different tissues.
Of these samples, 503 are normal, 500 are breast tumors,
and 91 are other diseases. A total of 22,215 genes are
available for each sample. We dichotomize these genes
in the manner described above. Genes that are expressed
in fewer than 10% or more than 90% of the tissues are
removed from our analysis; 7,654 genes remained after
this screening step. (Genes with unbalanced expression
levels, i.e., with very low or high expression rate, are gen-
erally not helpful in prediction.) As discussed earlier, there
is essentially no limit on the number of variables that can
be analyzed by pLPS, but reducing the problem size from
22,215 to 7,654 saves significant computation time.
In our first analysis, we took all normal tissues as “con-

trols” and all non-breast tumor tissues as “cases”. In the
second analysis we analyze the survival time of breast
cancer patients after dichotomization. We define subjects
with survival time less than 5 years as “cases” and those
with survival time longer than 10 years as “controls”.
We apply pLPS on both data sets with 7,654 genes,

evaluating the variable selection performance of pLPS
by comparing with the knowledge base in literature. To
compare the performance of pLPS with the alternative
methods discussed in the Simulation section, the number
of predictor genes must be reduced further, because Logic
Regression cannot handle more than 1,000 variables. A

screen step [5] was implemented to perform the required
reduction. In this step, we fitted a simple logistic regres-
sion on each gene and selected the most significant genes
based on the p-values from the regression models.

Non-Breast Cancer data
In this analysis, all normal and non-breast cancer tissues
are used. Breast tumors were excluded because no normal
breast tissue was available. The data set contains 503 nor-
mal tissues and 70 cancer tissues, giving a malignancy rate
of 12.2%.
The model fitted by pLPS on this data with 7,654 genes

is shown in (10). Five size-two interactions are selected.

f = −8.15 + 3.58 × CALU × ERBB3 + 1.93×LAMC1
× CD24 + 3.29 × LPCAT1 × ACY1 + 3.75
× FXYD3 × GNL3 + 2.34 × NOTCH3 × CD24.

(10)

Most of these genes are known to be related to one or
more types of cancer. For example, ERBB3 is very impor-
tant in the development of breast cancer [11] and prostate
cancer [12]. LPCAT1 is shown to be highly overexpressed
in colorectal adenocarcinomas, when compared to nor-
mal mucosas [13]. ACY1 is found to be underexpressed in
small-cell lung cancer (SCLC) cell lines and tumors [14].
FXYD3 is overexpressed in pancreatic ductal adenocarci-
noma and influences pancreatic cancer cell growth [15].
Notch3 overexpression is common in pancreatic cancer
[16]. Finally, CD24, one of the most well-known genes
in this model, is related to breast cancer, ovarian cancer,
NSCLC, and colorectal cancer [17-20].
To reduce the number of predictor genes to the size

that is solvable by alternative methods, we fitted a simple
logistic regression on each gene and kept the most signif-
icant genes (p-value < 10−8). This step yields 636 genes.
Although this screening step results in the loss of many
genes that could potentially be helpful in prediction, it
must be performed in order to apply the alternative meth-
ods. To yield a fair comparison, we run all methods on this
screened data set.
Table 5 summarizes the results obtained with all meth-

ods from five-fold cross validation. (Performance mea-
sures in this table are the average of the five-fold cross
validation.) We tabulate the number of selected genes
(# Gene), the number of non-zero coefficients (# Para),
the highest order of interactions (q), and the sum of these
three quantities (Total). The individual parameters give
different perspectives on the complexity of the model,
while the total provides an overall criterion. For predic-
tion accuracy, we calculate the area under the ROC curve,
and tabulate this quantity in the column “AUC”. We can
observe from these results that pLPS and pLPS3 select
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Table 5 Non-Breast Cancer data: Summary of results from
five-fold cross validation

Methods # Gene # Para q Total AUC

pLPS 9.2 6.6 2.0 17.8 0.982

pLPS3 8.4 6.4 3.0 17.8 0.945

Logic 14.0 5.2 5.0 24.2 0.956

SPLR 17.2 20.6 5.6 43.4 0.962

“Total” sums the number of selected genes, the number of non-zero coefficients
in the model, and the highest order of interactions. AUC indicates the area under
the ROC curve.

fewer genes; pLPS, pLPS3, and Logic Regression use fewer
parameters than SPLR; and pLPS and pLPS3 do not go
to high order interactions because these are precluded by
the model. In the total complexity criterion, there is a
tie for first between pLPS and pLPS3. For prediction, as
measured by AUC, pLPS is the clear winner.

Breast cancer survival time
The survival of breast cancer patients depends on many
factors, such as grade, stage and oestrogen-receptor sta-
tus. In this section we study the possible genetic effects
using the gene expression barcode data. We denote
patients who lived less than 5 years after diagnosis as
“cases” and patients who lived more than 10 years after
diagnosis as “controls.” Patients with a censored death
time less than 10 years and patients that died between
5 and 10 years are excluded. The purpose of this step is
not to provide a more homogeneous subset. Rather, we
are converting the survival data into a binary outcome,
because our method is developed with binary outcomes
in mind. After this step, the remaining pool contains 243
patients, among which 80 are cases. The five-year death
rate is 80/243 = 32.9%.
Formula (11) shows the model fitted by pLPS on this

data with 7,654 genes. There are one main effect and four
size-two interactions.

f = 3.21 − 1.59 × PODXL − 2.00 × SYNE2×AKAP11
+ 2.05 × CD20 × CREB1 − 1.88 × STAT5A
× MAPT − 1.89 × MAOB × IFFO1.

(11)

Among the selected genes, CDC20, CREB1, STAT5A
and MAPT are known to be related to breast cancer. It
was noted in [21] that CDC20 is overexpressed in a large
subset of malignancies such as colorectal, breast, lung
and bladder cancers. The study [22] reports that CREB1
is much higher in breast tumor tissues as compared to
non-neoplastic mammary tissues. Active STAT5 has been
identified as a tumor marker of favorable prognosis in
human breast cancer, and STAT5 activation is lost dur-
ing metastatic progression [23]. It has been pointed out by

Table 6 Breast cancer survival data: Summary of results
from five-fold cross validation

Methods # Gene # Para q Total AUC

pLPS 10.0 6.8 2.0 18.8 0.824

pLPS3 10.2 6.6 3.0 19.8 0.780

Logic 4.4 2.6 3.8 10.8 0.721

SPLR 19.4 20.6 5.0 45.0 0.793

“Total” sums the number of selected genes, the number of non-zero coefficients,
and the highest order of interactions. AUC indicates the area under the ROC
curve.

[24] that MAPT inhibits the function of taxanes and high
expression of MAPT decreased the sensitivity to taxanes.
As in the previous subsection, we use a screen step

to select the most important genes (p-value < 10−3);
this step yielded 592 genes. The cutoff p-value used here
is much bigger than that in the non-breast cancer data,
because it is small enough to rule out most genes.
Table 6 summarizes the results obtained with all meth-

ods from five-fold cross validation. Among the five mea-
sures presented, pLPS does best in terms of the highest
order of interactions and AUC, winning by a large mar-
gin over the other methods in the latter measure. Logic
Regression performs surprisingly well in model complex-
ity, selecting the smallest number of genes and parame-
ters. However, its prediction quality, as measured by AUC,
suffers from this reliance on overly simple models.
It is interesting to study the overlap between the sets of

genes selected by these different methods. Table 7 shows
the results from both data sets (average of the five-fold
cross validation). In the breast cancer survival data on the
right side of the table, about 40% of the genes are com-
mon genes between pLPS and pLPS3. The set of common
genes between SPLR and pLPS/pLPS3 contains about 50%
of the genes selected by pLPS/pLPS3, and about 25% of
the genes selected by SPLR. The absolute number of com-
mons genes between Logic Regression and any others is
small, because Logic Regression selected few genes. On
the left side of the table, the number of overlapped genes

Table 7 Summary of common genes

Non-Breast Cancer Breast cancer survival
data data

pLPS pLPS3 Logic SPLR pLPS pLPS3 Logic SPLR

pLPS 9.2 2.6 1.6 2.0 10.0 4.0 1.0 5.2

pLPS3 8.4 1.6 2.2 10.2 1.0 4.8

Logic 14.0 1.6 4.4 1.6

SPLR 17.2 19.4

Off-diagonal element shows the number of common genes selected by
methods from the corresponding row and column. Diagonal element shows the
number of genes selected by method from the corresponding row (or column).
Numbers are the average of the five-fold cross validation.
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in the non-breast cancer data is relatively small. As previ-
ously noted, genes that were used in the comparison stage
are all highly correlated with the response in the non-
breast cancer data (p-value < 10−8 compared to < 10−3

in the breast cancer survival data). It is easier for these
methods to replace one gene with another, because they
are all of similar importance. Therefore, it is not surpris-
ing that the sets of genes selected by different methods do
not overlap strongly with each other.

Conclusions
We have described a partitioned version of the LASSO-
Patternsearch algorithm (named pLPS) that extends the
range of this method to data sets with a higher number of
predictors, and allows parallel execution of much of the
computation. We show through simulations that pLPS is
better than competing methods in selecting the correct
variables and patterns while controlling for the number
of false patterns in the selected model. By testing on two
gene expression data sets, we also show that pLPS gives
smallermodels withmuch better prediction accuracy than
competing approaches.
Two smoothing parameters with modified tuning cri-

terion are used in pLPS and pLPS3 (in contrast to the
single parameter used in LPS). We impose a penalty on
the difference between the number of main effects and
the number of interactions for pLPS and a penalty on
the difference among the numbers of main effects (size-
two interactions in pLPS and size-three interactions in
pLPS3). These penalties eliminate the extreme cases in
which onlymain effects or interactions arise in the LASSO
step, and which the original, unmodified criterion too
often produces. On the other hand, if an extreme case is
the truth, the LASSO step will generate some false pat-
terns, but the parametric step tends to eliminate them and
thus select the correct model.
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Dahl E, Pilarsky C, Altevogt P, Guski H, et al.: CD24 expression is a new
prognostic marker in breast cancer. Clin Cancer Res 2003,
9(13):4906.

20. Weichert W, Denkert C, Burkhardt M, Gansukh T, Bellach J, Altevogt P,
Dietel M, Kristiansen G: Cytoplasmic CD24 expression in colorectal
cancer independently correlates with shortened patient survival.
Clin Cancer Res 2005, 11(18):6574.

21. Kidokoro T, Tanikawa C, Furukawa Y, Katagiri T, Nakamura Y, Matsuda K:
CDC20, a potential cancer therapeutic target, is negatively
regulated by p53. Oncogene 2008, 27:1562–1571.

22. Chhabra A, Fernando H, Watkins G, Mansel RE, Jiang WG: Expression of
transcription factor CREB1 in human breast cancer and its
correlation with prognosis. Oncol R 2007, 18(4):953–958.

http://pages.cs.wisc.edu/ swright/LPS/


Shi et al. BMC Bioinformatics 2012, 13:98 Page 10 of 10
http://www.biomedcentral.com/1471-2105/13/98

23. Sultan AS, Xie J, LeBaron MJ, Ealley EL, Nevalainen MT, Rui H: Stat5
promotes homotypic adhesion and inhibits invasive characteristics
of human breast cancer cells. Oncogene 2005, 24(5):746–60.

24. Ikeda H, Taira N, Hara F, Fujita T, Yamamoto H, Soh J, Toyooka S, Nogami T,
Shien T, Doihara H, Miyoshi S: The estrogen receptor influences
microtubule-associated protein tau (MAPT) expression and the
selective estrogen receptor inhibitor fulvestrant downregulates
MAPT and increases the sensitivity to taxane in breast cancer cells.
Breast Cancer Res 2010, 12:R43.

doi:10.1186/1471-2105-13-98
Cite this article as: Shi et al.: The partitioned LASSO-patternsearch
algorithm with application to gene expression data. BMC Bioinformatics
2012 13:98.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Results and discussion
	Simulation studies
	Simulation Example 1
	Simulation Example 2
	Simulation Example 3
	Simulation Example 4
	Summary

	The gene expression barcode data
	Non-Breast Cancer data
	Breast cancer survival time


	Conclusions
	Competing interests
	Author's contributions
	Acknowledgements
	Author details
	References

