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Abstract

Background: Whole exome sequencing (WES) has become the strategy of choice to identify a coding allelic
variant for a rare human monogenic disorder. This approach is a revolution in medical genetics history, impacting
both fundamental research, and diagnostic methods leading to personalized medicine. A plethora of efficient
algorithms has been developed to ensure the variant discovery. They generally lead to ~20,000 variations that have
to be narrow down to find the potential pathogenic allelic variant(s) and the affected gene(s). For this purpose,
commonly adopted procedures which implicate various filtering strategies have emerged: exclusion of common
variations, type of the allelics variants, pathogenicity effect prediction, modes of inheritance and multiple
individuals for exome comparison. To deal with the expansion of WES in medical genomics individual laboratories,
new convivial and versatile software tools have to implement these filtering steps. Non-programmer biologists
have to be autonomous combining themselves different filtering criteria and conduct a personal strategy
depending on their assumptions and study design.

Results: We describe EVA (Exome Variation Analyzer), a user-friendly web-interfaced software dedicated to the
filtering strategies for medical WES. Thanks to different modules, EVA (i) integrates and stores annotated exome
variation data as strictly confidential to the project owner, (ii) allows to combine the main filters dealing with
common variations, molecular types, inheritance mode and multiple samples, (iii) offers the browsing of annotated
data and filtered results in various interactive tables, graphical visualizations and statistical charts, (iv) and finally
offers export files and cross-links to external useful databases and softwares for further prioritization of the small
subset of sorted candidate variations and genes. We report a demonstrative case study that allowed to identify a
new candidate gene related to a rare form of Alzheimer disease.

Conclusions: EVA is developed to be a user-friendly, versatile, and efficient-filtering assisting software for WES. It
constitutes a platform for data storage and for drastic screening of clinical relevant genetics variations by non-
programmer geneticists. Thereby, it provides a response to new needs at the expanding era of medical genomics
investigated by WES for both fundamental research and clinical diagnostics.
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Background
Next-generation sequencing (NGS) technologies are
widely used to answer key biological questions at the scale
of the entire genome and with an unprecedented depth
[1-4]. Whether determining genetic or genomic variations,
cataloguing transcripts and assessing their expression
levels, identifying DNA-protein interactions or chromatin
modifications, surveying the species diversity in an envir-
onmental sample, all these tasks are now tackled with
large-scale sequencing and require computer intensive
bioinformatic analyses [5-7], although different.
Identification of genetic variations can be addressed by

whole genome sequencing (WGS) or whole exome
sequencing (WES) of single individuals. WGS is particu-
larly attractive because it allows to access the full spectrum
of genetic variations, i.e. coding and non coding Single
Nucleotide Variations (SNV) and short insertion-deletion
variants (indels), as well as Copy Number Variants (CNV)
and Structural Variants (SV) [2,8]. In practice, out of
major genome centers and a fortiori for the clinical rou-
tine translation, the development of this approach is still
constrained by various difficulties such as the production
organization, the yet expensive cost, the actual error rate
of the technologies (~ 1 error per 100 kb; ~30, 000 erro-
neous variant calls for the whole genome), the sheer
volume of data to store and to transfer, requiring intensive
informatics infrastructures and robust bioinformatics and
filter procedures to retain only clinically relevant variants
[8,9]. As new genomes are sequenced, for example in the
context of large projects like the 1000 Genomes Project
[10], the number of expected variations may decrease. But,
first complete individual constitutional genome sequen-
cing studies reported 3-4 million of SNP per genome,
80-90% of which highly overlapped the National Center
for Biotechnology Information public SNP database
(dbSNP) [11], leaving anyway 0.5 million novel variations
to sift per genome [8].
While WGS remains an appealing ultimate perspective,

WES focusing on only the coding regions of the genome,
has become in a few years the choice strategy to meet the
challenge of identifying a coding allelic variant for rare
human monogenic disorder [12]. Thanks to DNA enrich-
ment techniques, targeted sequencing of coding regions
decreases the cost and improves the efficiency of large-
scale coding variations discovery compared with what
would require the entire human genome. The human
exome, made of ~180,000 exons for a size of ~30 Mbp, is
1.5% of the total human genome. Thereby, not only tar-
geted selection strategy reduces the cost but also acceler-
ates the discovery of coding genetic variants that cause
rare Mendelian diseases. In 2009, Ng et al. [13], by using
an intersection recurrence strategy, showed the proof of
the concept that identifying a gene responsible for a rare
dominantly inherited disorder (Freeman-Sheldon

syndrome) was possible using WES of independant index
cases. Since then, more and more papers confirmed the
success of this strategy [14-17].
Up to now, classical approaches such as linkage analysis

using genetic markers have been extensively used to iden-
tify the molecular basis for nearly 3,500 Mendelian disor-
ders [18]. But for over 3,500 Mendelian disorders, the
gene remains unknown [18,19]. The limited number of
patients for rare diseases or the limited access to the
related members of the family has been a frequent obstacle
to conduct linkage analysis [14]. As the NGS technologies
have emerged, the long and fastidious classical linkage
analysis for human Mendelian disorders will be replaced
by more direct identification of the causal variation(s) and
the corresponding gene. Moreover, in numerous cases
there are no caryotypic nor CGH-array anomaly or nega-
tive result with Sanger sequencing on known mutated
genes or on neighbor genes in a pathway of interest,
because of the low depth of this first generation sequen-
cing technology [20]. So, the exome-scale sequencing
approach generates a technological breakthrough in medi-
cal genetics history in fundamental research for disease
gene discovery and consequently in terms of new diagnos-
tic methods and personalized medicine [12,14,16,21].
Numerous algorithms and software tools have been

developed to efficiently manage terabytes of raw sequence
variation data from WES. Commonly adopted variation
discovery pipelines include successive bioinformatics steps
for quality control of the short reads, alignment of the
short reads to a reference sequence, variation calling and
variation annotation [1,19,22-24]. Generally, ~20,000 var-
iations per individual exome are obtained. The challenge
remains in efficient filtering strategies to find the causal
variant(s) and corresponding gene for a rare disease,
among these thousands of candidates. With this aim, addi-
tional analytical procedures which implicate various heur-
istic filtering strategies have emerged [19,24]. Usually,
wide range common variations (more than 90% of the
total) are firstly excluded. This is done by comparison to
publicy available databases of human genetic variations
and privately available variants from other exome sequen-
cing projects. To narrow down the search on remaining
variations (often between 200 to 500), other filters take
into account the type of variations (focus on presumed
deleterious allelic variants, i.e. nonsynonymous, nonsense,
stop loss, frameshift, splice site) and evaluate the func-
tional effect of variations on gene products. Usually, var-
ious criteria are inspected for this task such as the physical
properties of the wild-type and variant amino acids, the
structural properties affecting protein dynamics and stabi-
lity, the integrity of functional motifs and binding domains
or sites implicated to posttranslational processing and cel-
lular localization of proteins, evolutionary properties
derived from a sequence alignment [21-24]. Beside these
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molecular nature and effects of the alternative allelic var-
iants, filtering strategies also have to take into account the
mode of inheritance of the disorder suggested by pedigree
(recessive or dominant model for Mendelian disorders or
sporadic cases). Finally, taking advantages of multiple indi-
viduals, intersection or differential exome strategies can
drastically reduce the remaining variations to several
genes.
As the exome-scale sequencing is today positioned as a

method of choice for disease gene discovery and persona-
lized medicine, the success of the unavoidable filtering
strategies of thousands variations lies in their implementa-
tion into convivial and versatile software tools. End users
with no computational skill have to be autonomous to
conduct and combine themselves different filtering
approaches, depending on their assumptions and of their
study design, leading them to extract a limited list of likely
candidate genes underlying a genetic disease.
With this aim, in partnership with and for medical

geneticists, we developed EVA (Exome Variation Analy-
zer), a user-friendly web-interfaced free software dedicated
to filtering strategies for medical projects investigated with
exome sequencing. EVA integrates the main filters dealing
with common variations, molecular types, inheritance
mode and multiple samples. Here we report a demonstra-
tive case study with EVA that allowed to identify a new
candidate gene related to a rare form of Alzeihmer disease
[25]. We discuss our development choices and the posi-
tion of EVA among other filtering tools recently published.

Methods
Implementation of EVA
ExomeDB was developed under MySQL (5.0). The main
tables are Variation, Gene and Individual in which data
are integrated from a list of variants (SNV, indel) asso-
ciated with their annotations (Cf. Methods section, ‘Data’
subheadings). Currently, EVA works with the NCBI 37
(hg19) build version of the human genome but integrates
an archive for the previous version (NCBI 36, hg18). Each
new project is subject to a remote loading using an online
Variation integration module that accepts TXT files and
XLS files. The web interface was developed under PHP
(5.3.2-1). For the implemented filtering strategies (Cf.
Result section, ‘Filtering strategy module’ subheadings), a
combination of criteria selected by the user, is transformed
into an SQL query and sent to the ExomeDB database.
Then, EVA’s interface displays the remaining variations in
table browsers (Cf. Result section, figures). The Variation
statistics module proposes interactive bar and pie vizuali-
zations of exome data implemented with the free Java-
Script charting library Highcharts (Highsoft Solutions AS).
To assure the confidentiality of the exome data, EVAs
integrates an Authentication module requiring a login and
a password given by an administrator. Each login/

password is strickly project specific. Users can only see
and manage their own exome projects. Some performance
statistics are described in the Result section. At the time of
this writing, EVA’s interface is accessible at the web
address http://plateforme-genomique-irib.univ-rouen.fr/
EVA/index.php through the described authentication pro-
cess. EVA’s current and update versions will be freely
available under a Creative Commons Attribution-Non-
Commercial-NoDerivs 3.0 Unported License (CC-BY-NC-
ND) and will be downloaded from the same web site.

Data
The input file (TXT file or XLS file) of the Variation
integration module of EVA is a list of variants (SNV and
indel) obtained from an independant variant calling pro-
cedure (briefly in this study: Solexa Illumina technology,
base calling from raw image files with RTA1.8/SCS2.8,
Illumina pipeline CASAVA 1.7 with ELAND v2) and
then annotated (in this study: proprietary bioinformatics
process from IntegraGen company, Genopole® Evry,
France, [26]). Although actually, the format of these files
is a proprietary format, it includes classical annotations
for the detected variations and the affected genes. For the
detected variations main information are: the chromo-
some and the genomic position, the number of the read
bases for each nucleotide, the reference base and the
modified base deduced from an allelic count procedure
and annotated with the genotype homozygosis or hetero-
zygosis status, the number of total sequenced bases and
the number of used bases for the detection variant, the
score of the variation depending on the quality and cov-
erage, the type of variation (SNV or indel), the rs name if
known in dbSNP (in this study dbSNP131 [11], HapMap
[27]), CIGAR format and length for the indels. For the
affected genes the main information are: the gene name
(NCBI GeneID), the NCBI RefSeq accession number [28]
for all mRNA variants expressed by the gene, the type of
affected position (exons, introns (only variations in +/-
20 regions are considered), 5’ or 3’ UTR) and the corre-
sponding number of the exon or intron along the gene
structure, the functional categories of variations (syno-
nym, missense, stop loss and nonsense for SNV, frame-
shift or not for indel), the exon or intron start and stop
positions included the variation and finally position of
the variations in the corresponding protein sequence
with the description of the codon and corresponding
amino-acid for both the reference protein and the
detected variations.

Case study: the Alzheimer disease
Thanks to a nationwide recruitment (Clinical Research
Hospital Program from the French Ministry of Health
(GMAJ, PHRC 2008/067)), exome sequencing was
performed in fourteen autosomal dominant early-onset

Coutant et al. BMC Bioinformatics 2012, 13(Suppl 14):S9
http://www.biomedcentral.com/1471-2105/13/S14/S9

Page 3 of 12

http://plateforme-genomique-irib.univ-rouen.fr/EVA/index.php
http://plateforme-genomique-irib.univ-rouen.fr/EVA/index.php


Alzheimer disease (ADEOAD) unrelated index cases with-
out mutation on known genes (Amyloid precursor protein
(APP), presenilin1 and 2 (PSEN1 and 2)) and also without
known copy number variants of APP gene and genes
involved in Amyloid beta (Ab) peptide processing or sig-
naling. IntegraGen company (Genopole® Evry, France,
[26]) performed exome sequencing. Three micrograms of
genomic DNA from each individual, extracted from per-
ipheral blood lymphocytes and sheared by sonication to
obtain an average fragment size of 150-200 bp, were used
for the construction of a shotgun sequencing library using
paired-end adapters. Exome capture was performed using
the SureSelect Human All Exon kits 38 Mb version 1 (Agi-
lent) (n = 12) or SureSelect Human All Exon kits 44 Mb
version 2 (Agilent) for a second batch (n = 2).
Sequencing was realised on an Illumina Genome Ana-

lyser GAIIx (n = 12) or on an Illumina HiSeq 2000 (n =
2). Raw image files were processed by using the Illumina
pipeline (RTA1.8/SCS2.8 and CASAVA 1.7). For the
genetics variant detection, the 76 bp sequencing reads
were aligned to the NCBI human reference genome
(NCBI (n = 12) or NCBI 37 (n = 2)), using ELANDv2.
Means coverage were of 65-fold (n = 12) and 80-fold
(n = 2) with a percentage of aligned reads ranging
between 88% and 95%.
Only high quality variations having a QPhred threshold

> 10 were conserved (86% of the targeted bases). The
annotation procedure of the detected variations only con-
cerned those included in the coordinates given by the
exon kits capture extended to +/- 20 pb in the flanking
intron. The description of the annotated files is explained
in the Methods section, ‘Data’ subheadings. Each anno-
tated file corresponding to the project (14 individuals) was
integrated in ExomeDB using the Variation integration
module of EVA.

Results
Overview: ExomeDB and EVA web interface
For a given WES project, corresponding to several indivi-
duals and their respective variations, EVA manages data
thanks to six modules (Figure 1). In input, after authenti-
cation (Authentication module), an online Variation inte-
gration module takes the variations files (for details of the
format, Cf. Methods section, ‘Data’ subheadings) obtained
from an independant variant calling bioinformatics pipe-
line. Annotated variations are stored in a relational data-
base ExomeDB which main tables are the annotated
variations, the corresponding genes and the individuals
(Cf. Result section, ‘performance’ ‘subheadings’).
The web interface integrates four other modules for

exome mining. The Variation statistics module allows
through a guided mode selection of individuals, chromo-
somes, genomic regions, genes, genic region, type of
SNV or indel, to summarize in tables and to graphically

represent the global or selected distribution of variations
of a given WES project (Figure 2). The Table browser
module allows to precisely explore data by project, indivi-
dual, gene or variation through rigorous and sortable
categorized tables (Figure 3) (iii) the Search module can
be used for a direct and quick access to a specific region,
gene, variation for a given project, and finally (iv) the
Filtering strategy module, which is the major element in
exome mining to discover potential canditate genes,
offers to combine filters for common variations, molecu-
lar types, inheritance mode and multiple samples to dras-
tically narrow down variations (see details below). The
selected combination is transformed into a SQL query
and sent to the ExomeDB database.
Query results of the Table browser module, Quick

search module and Filtering strategy module can be
explored by five elements types presented in interactive
tables: ‘variation overview’ (Figure 3 and Figure 4), ‘gene
list’, ‘gene details’ (Figure 5), ‘variation list’ (Figure 6)
and ‘variation details’ (Figure 7).
In the ‘variation overview’ tables (Figure 3), the set of

all the variations is divided in known and unknown var-
iations according to the information in dbSNP. Due to
the molecular process of the exome capture kit, most
variations occur in exons but some detected variations
also occur in splice sites. Even if ExomeDB integrates
variations extended to +/- 20 pb in the flanking intron,
we choose to show on the table only variations extended
to +/- 2 pb in the intron, corresponding to the dinucleo-
tide splicing site. Variations in exons can be SNV or
indels. We categorized single variations into four func-
tional classes: synonymous, miss sense, stop loss and
non sense. For indels we classified into two categories:
frameshift or non frameshift.
In output, EVA offers export files (CSV for tables, var-

ious graphical formats for the Variation statistics module).
EVA also provides several cross-links with a selection of
relevant external international databases and softwares for
further functional and pathogenic effect inspection of the
sorting variation and gene candidates (see details below
and on Figure 5).

Filtering strategy module
The Filtering strategy module integrates the current
main categories of filters based on common variations,
molecular type of the variants, modes of inheritance,
homozygous or heterozygous nature of the allelic variant
and multiple individuals.
First, EVA compares the data to international catalogues

of variations. In a constitutive sorting, the set of all the
variations is divided in known and unknown variations
according to the information in the dbSNP (Figure 3 and
Figure 4). EVA also offers to reduce the number of varia-
tions by confronting them to the HapMap Project [27],
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the 1000 genomes Project [10], Complete Genomics pub-
lic data [29], IntegraGen public data [26] or the Exome
Sequencing Project [30]. In addition, other filters or table
browsers offer to sift variations depending on their:

(i) functional categories for SNV (synonymous, miss sense,
stop loss and non sense) and indels (frameshift or non fra-
meshift); (ii) genic region (UTR, CDS, intronic splice
region) or genomic region; (iii) quality score and coverage.

Figure 1 Overview of EVA with the six exome mining modules. To store and manage variation data, EVA consist of a database, ExomeDB
and a friendly web interface. To date six modules permitted to authentify the user (1), to integrate data (2), to search and browse data with
charts (3) or tables (4,5) and finally to conduct a customizable filtering strategy (6) by a combination of selected criteria dealing with common
variations, molecular types of variants, inheritance modes and multiple samples intersection or difference.
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Figure 2 Examples of graphical visualization with the Variation statistics module of EVA. Through a guided mode selection (a), the
distribution of variations for the 14 ADEOAD exome project are graphically represented by a caryotype view (b), a bar chart or a pie chart
distribution (c, d). Useful analysis of indels (e), ratio of transition (purine/purine or pyrimidine/pyrimidine) substitutions to transversion (purine/
pyrimidine) substitutions (f) and substitution matrix of amino-acid (not showed) are proposed.

Figure 3 Raw ‘Variation overview’ in EVA for the 14 ADEOAD exome project. Both individuals EXT 220 and EXT 181 belong to batch #2
described in the section 2.2, all the others belong to batch #1.
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Figure 4 Primary screened ‘variation overview’ after filtering strategy functionality of EVA for the 14 ADEOAD exome project. Both
individuals EXT 220 and EXT 181 belong to batch #2 described in the section 2.2, all the others belong to batch #1.

Figure 5 ’Gene details’ table in EVA. For a given gene (here NOTCH1) it is possible: (top) to get information about its chromosomic laction,
links to useful public databases (Entrez, Pubmed, CCDS, OMIM), areas not captured during the pre sequencing protocol and links to
interpretation tools (SNPper, Polyphen 2, Mutation Taster); (bottom): the categorized variations located in that gene for all the individuals of a
project.
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Figure 6 ’Variation list’ table in EVA. For a given gene (here NOTCH1) it is possible to get the list of all the variations found in that gene for
all the individuals of a project. For each variation the following information is listed: genomic position, gene position, functional class, category,
wild codon vs modified codon, exome frequencies (heterozygous, homozygous), gene symbol, individual and genotype status.

Figure 7 ’Variation details’ table in EVA. For a given variation, it is possible to get information such as: links to dbSNP, counts in HapMap,
1000 genomes and EVA, genomic position, gene information, coverage and quality per individual.
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Finally, one of the strengths of EVA is the implementation
of inheritance filters considering intersection or conversely
differential exome strategies: (i) recurrence strategy for
dominant or recessive independent familial cases (filters
select the genes the most affected by remaining variations
among a specified number of non related individuals.);
(ii) filters for homozygous, heterozygous or composite
cases in intra-familial studies (filters extract genes with
remaining common variants among selected related indivi-
duals); (iii) and de novo strategy for sporadic cases (filters
select genes with remaining variations found in a diseased
child but not in the two healthy parents (sporadic case,
trio-family).
For each strategy the displayed result is a list of poten-

tial candidate genes associated with the number of
affected individuals (’genes list’). Again, it consists on an
interactive table that could be readily explored. The user
can get ‘gene details’ (Figure 5) containing interactive
links to other tables ‘variation overview’ (Figure 3), ‘var-
iation list’ (Figure 6), and ‘variation details’ (Figure 7).
To ensure a rapid execution of EVA (Cf. ‘Performance’
subheadings) implemented in priority to focus on filter-
ing strategies, we made the choice not to include variant
effect prediction functionalities. Nevertheless, to facili-
tate the further prioritization of remained variations and
genes, external functional and pathogenicity interpreta-
tion tools (SNPper [31], Polyphen 2 [32], MutationTa-
ster [33]) are cross-linked as well as useful external
international databases of genes, proteins, pathways, dis-
eases and literature and genome browsers.

Case study: Alzheimer disease
After screening more than one hundred autosomal domi-
nant early-onset Alzheimer disease (ADEOAD) families
for known mutations (Cf. Methods section, ‘Case study’
subheadings) the molecular basis of this rare disorder still
remained unexplained in several of them. Moreover, the
lack of DNA for affected relatives precluding a linkage
analysis in these cases, a full exome sequencing strategy
was decided to identify new candidate gene(s) with
unknown mutations. Exome sequencing, variation detec-
tion and annotation were performed by IntegraGen com-
pany (Cf. Methods section, ‘Case study’ subheadings) for
fourteen ADEOAD unrelated index cases. The annotated
variant files were subjected to ExomeDB to a remote load-
ing using the online Variation integration module of EVA.
Then, the intersection recurrence filtering strategy was
applied with EVA. Here the main steps of our filtering
procedure are summarized:
Firstly we displayed the full project data. Figure 1 cor-

responds to the raw ‘variation overview’ of this exome
project integrated in EVA and is obtained with the Table
browser module. In this interactive table, variations are
displayed by individuals and divided into two groups on

the dbSNP131 referencing basis. ‘Known’ means varia-
tions referenced in dbSNP, while ‘unknown’ means varia-
tions not referenced in dbSNP. Within those groups the
variations are rigourously and usefully displayed by two
functional classes ‘Exon’ and ‘Intron’ (only two intronic
base pairs before and after exons (’+/-2’)). Exonic varia-
tions are classified into six sub-categories, ‘Synonym’,
‘Missense’, ‘Stop loss’ and ‘Nonsense’ for SNV and Frame-
shift (‘Fs’) and No Frameshift (‘Nfs’) for indels. In total,
14,390 (batch #1) to 20,055 (batch #2) genetic variants
were identified per exome according to the capture pro-
tocol (15,600 in average for batch #1 and 20,028 in aver-
age for batch #2). Among these, 6.6% in average are
unknown variations (1028 in average for batch #1 and
1294 in average for batch #2).
Secondly, thanks to the Filtering strategy module we

applied a stringent primary screening based on [common
variations + molecular type of variants + heterozygous
nature]. Figure 2 corresponds to the ‘variation overview’
after this one: variations retained were previously
‘unknown’ (filtered against db SNP31) but then filtered
against HapMap exome projects, and against 42 Integra-
Gen exome projects from unrelated individuals with
non-neurodegenerative diseases, the other filters para-
meters were ‘non-synonym’ SNV, ‘frameshift coding’
indels, ‘splice acceptor and donor site’ and ‘heterozygous’.
Finally, the number of unknown variations by individual
drastically decreases from 1028 in average for batch #1
and 1294 in average for batch #2, to 310 and 455 respec-
tively. So, remaining unknown variations after this pri-
mary screening with EVA represented only 2% of total
genetic variants identified per exome versus 6.6% in the
raw data.
Thirdly, a secondary screening of the remaining varia-

tions based on the inheritance mode assumption of the
disease was applied with an intersection recurrence pro-
cedure. Table 1 summarizes the number of genes har-
boring at least one of these variants classified according
to their recurrence in the patient sample. The 14
patients did not have in common a single altered gene,
indicating that, within this sample, the disease was
genetically heterogeneous. Nevertheless, we observed
that the number of candidate genes drastically decreased
with the increasing number of concerned individuals.
So, EVA enabled geneticists to focus further investiga-
tions on the affected genes shared by a minimum of 5
patients, representing a short list of less than 10 genes.
Finally, after wet investigations (Sanger resequencing

verifications, family co-segregation analysis, genotyping
of each variant in 1500 control individuals, RT-PCR
expression analysis) combined with in silico analysis
(predicted functional impact of each variation, compari-
son to the data set from the 1000 genomes project [10],
and from Complete Genomics [29]), one gene (SORL1)
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containing unknown mutations in 5/14 exomes (non-
sense (n = 1) or missense (n = 4)) has become a new
strong candidate gene for the ADEOAD [25].

Performance
To date, ExomeDB stores WGS projects (multiple unre-
lated cases, duo or trio cases) corresponding to a total
of 23 individuals and contains also targeted resequen-
cing projects corresponding to 5 genes for 25 indivi-
duals. As showed on Table 2, the size of ExomeDB is
about 400 Mb, mainly due to the tables Variation
(112.25 Mb) and Individual_Variation (271.09 Mb).
Tests of EVA have been performed on the ADEOAD
exome project (14 individuals) with one user logged in.
The server is running Linux with four 3 GHz proces-
sors, 5 GB RAM and 150 GB HD. We use the “mysqli::
prepare” mode which speeds up the request time once
the first request has been treated. Table 3 shows request
times in both cases. While it is clear that performances
depend on the number of users logged in simulta-
neously and on the number of variants in the database
(177,303 currently), EVA works with a reasonable time
of execution compatible with the regular needs of a
medical genetics laboratory.

Conclusions
EVA is developed to be a user-friendly, versatile, efficient-
filtering and free assisting software for whole exome
sequencing, providing a response to new needs at the
expanding era of medical genomics investigated by these
targeted next-generation sequencing technologies, for fun-
damental research, clinical diagnostics and personalized
medicine [12,14-16,19,21,24]. Interfacing various now

commonly adopted filtering criteria and strategies on
whole exome data, EVA thereby makes non-programmer
medical geneticists autonomous to pinpoint themselves
among ~20,000 variations per individual exome, few can-
didate variations and genes related to a rare disease,
depending of their specific assumptions and study design.
EVA constitutes a platform for exome sequencing data

storage and for drastic screening of clinical relevant genet-
ics variations. Thanks to different modules (i) it integrates
and stores annotated exome variation data as strictly con-
fidential to the project owner, (ii) for the analytical pro-
cess, it proposes to combine the main filters dealing with
common human variations (various international external
public data [10,11,26,27,29,30], molecular types and func-
tional categories (synonym, missense, stop loss and non-
sense for SNV, frameshift or not for indel; genic region i.e.
UTR, CDS, splice site), homozygous or heterozygous nat-
ure of the allelic variant, inheritance modes and multiple
samples considering intersection or conversely differential
exome strategies (independent familial cases, intra-familial
studies, sporadic cases), quality of the variations (iii) it
offers quick searching or advanced browsing of annotated
data and filtered results thanks to various interactive cate-
gorized or sortable tables and useful graphical visualiza-
tions (iv) finally it offers export files and cross-links to
external relevant databases and softwares for further func-
tional effects inspection [31-33] of the small subset of
sorted candidate variations and genes.
EVA has been used to successfully identify a new can-

didate gene, SORL1, related to a rare form of Alzeihmer

Table 1 Secondary screening obtained thanks to the
‘recurrence’ filtering Strategy functionality of EVA for the
14 ADEOAD exome project.

Number of
individuals

Number of genes
with remaining

variations

14/14 0

13/14 0

12/14 0

11/14 0

10/14 0

09/14 0

08/14 1

07/14 3

06/14 3

05/14 7

04/14 31

03/14 112

02/14 542

01/14 2730

Table 2 Performance of EVA: Tables size of ExomeDB

Tables Size (Mb)

Gene 7.03

IG_NoCouv 5.55

Individual 0.02

Individual_Variation 271.09

Project 0.02

Project_Individual 0.05

User 0.02

User_Project 0.06

Variation 112.25

Table 3 Performance of EVA: Running times of EVA
modules

Request Time
(1st time)

Time
(after)

Table Browse 15 s 3 s

Quick search 9 s 1 s

Filters loading 13 s 2 s

Filters execution 7 s 1 s

Tests of EVA have been performed on the ADEOAD exome project (14
individuals) with one user logged in.
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Disease (ADEOAD), despite a genetics heterogeneity
[25]. SORL1 encodes the Sortilin-related receptor LR11/
SorLA, a protein involved in the control of amyloid beta
peptide production, the same pathway as previously
known genes APP, and presenilin 1 and 2. In this case
study, the primary screening with EVA (based on the
mutation types and common human variations) reduced
unknown variations to only 2% (330 on average) of total
genetic variants identified per exome. The secondary
screening implementing the intersection recurrence
strategy led to a short list of genes (< 10) on which
geneticists focused for further in silico and wet experi-
ments and among which they discovered one. In 5
patients of the 14 independant index cases investigated,
we found that the SORL1 gene harbored unknown non-
sense (n = 1) or missense (n = 4) mutations.
Performance tests showed that EVA run with a reason-

able time of execution compatible with the regular needs
of a medical genetics laboratory. For the case study it
takes between 21 s (1st time) to 3 s (after) to load and
execute the selected filters (server with four 3 GHz pro-
cessors, 5 GB RAM and 150 GB HD, and with one user
logged in) from the currently 400 MB size of ExomeDB.
The commonly assumption for WES mining is that

causal variants related to a Mendelian disorder under
investigation will not be present in public databases of
genetic variations or other exome sequencing projects
[1,13,14,17,19,22-24]. That is why, the more variation
data available the more the filtering strategies in exome
mining would be successful. To enhance its filtering per-
formances, EVA confronts exome data currently to 6
external public data [10,11,26,27,29,30] and will be regu-
larly updating as new large-scale variations data will be
published.
Some polymorphisms of these ressources (dbSNP) are

not associated with their allelic frequency and lack
experimental annotation of their functional impact. So,
projects like the SNP database of effects (SNPdbe) [34],
storing computationally annotated functional impacts of
non synonymous SNPs or the annotation of 1000 top
human cancer genes frequently mutated [35] could be
of interest for EVA improvement.
Alternative tools designed for the similar task as EVA

have been recently published [35-38]. Varsifter [36] is a
graphical Java program for desktop computers. It is
designed to read exome-scale variation data in either a
tab-delimited text file with header, or an uncompressed
VCF file. It proposes numerous filtering options but
doesn’t propose graphic visualization nor statistical sum-
maries of a WES project. SVA [36] is largely based on a
genome browser to deal with WGE as well as WES and
sifts small and large variants. While it proposes many
manipulations of data, it is not clear if inherihance filter-
ing are implemented. More, SVA is a JAVA program

requiring a recommend hardware equipped with at least
48 GB of RAM and 1TB of free hard disk, which are sub-
stantial computational resources, in practice not very
compatible to all individual laboratory. Finally, VAR-MD
[37] is a family based tool. It analyzes WGS and WES
variants exclusively in small human pedigrees with Men-
delian inheritance excluding the scope of the differential
exome analysis.
As perspectives are concerned, the input format for

EVA for the Variation integration module, which is cur-
rently a proprietary format will be soon standardized in
order to offer a wide use of this tool; we retained the Var-
iant Call Format (VCF) format, generated by the 1000
Genomes Project. The Variation integration modulewill
also allow the annotation of the raw variations by both
Annovar [39] and the Variant Effect Predictor Ensembl
API [40]. Regular updates are made concerning build ver-
sion of the human genome, international variation catalo-
gues and improvement of filtering functionalities as well
as organization of results tables and graphics. Future
developments include a graphical representation of a
candidat gene with its variations and a more specific fil-
tering strategy for somatic mutations.

List of abbreviations used
ADEOAD: Autosomal Dominant Early-Onset Alzheimer Disease; WGS: whole
genome sequencing; WES: whole exome sequencing; SNV: single nucleotide
variation.
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