
PROCEEDINGS Open Access

Restricted DCJ-indel model: sorting linear
genomes with DCJ and indels
Poly H da Silva1,2*, Raphael Machado2, Simone Dantas1, Marília DV Braga2

From Tenth Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on Com-
parative Genomics
Niterói, Brazil. 17-19 October 2012

Abstract

Background: The double-cut-and-join (DCJ) is a model that is able to efficiently sort a genome into another,
generalizing the typical mutations (inversions, fusions, fissions, translocations) to which genomes are subject, but
allowing the existence of circular chromosomes at the intermediate steps. In the general model many circular
chromosomes can coexist in some intermediate step. However, when the compared genomes are linear, it is more
plausible to use the so-called restricted DCJ model, in which we proceed the reincorporation of a circular
chromosome immediately after its creation. These two consecutive DCJ operations, which create and reincorporate
a circular chromosome, mimic a transposition or a block-interchange. When the compared genomes have the
same content, it is known that the genomic distance for the restricted DCJ model is the same as the distance for
the general model. If the genomes have unequal contents, in addition to DCJ it is necessary to consider indels,
which are insertions and deletions of DNA segments. Linear time algorithms were proposed to compute the
distance and to find a sorting scenario in a general, unrestricted DCJ-indel model that considers DCJ and indels.

Results: In the present work we consider the restricted DCJ-indel model for sorting linear genomes with unequal
contents. We allow DCJ operations and indels with the following constraint: if a circular chromosome is created by
a DCJ, it has to be reincorporated in the next step (no other DCJ or indel can be applied between the creation
and the reincorporation of a circular chromosome). We then develop a sorting algorithm and give a tight upper
bound for the restricted DCJ-indel distance.

Conclusions: We have given a tight upper bound for the restricted DCJ-indel distance. The question whether this
bound can be reduced so that both the general and the restricted DCJ-indel distances are equal remains open.

Background
The distance between two genomes is often computed
using only the common content, which occurs in both
genomes. Such distance takes into consideration only
organizational operations, which change the organization
of the genome, that is, the positions and orientations of
DNA segments, number and types of chromosomes.
Inversions, translocations, fusions and fissions are some
of these operations [1]. All these rearrangements can
be generically represented as double-cut-and-join (DCJ)
operations [2]. The DCJ model has simple linear

algorithms to compute the distance and to find an opti-
mal sorting sequence [3]. However, while sorting a gen-
ome into another by DCJ, circular chromosomes can
appear in the intermediate species [3]. In the general
model many circular chromosomes can coexist in some
intermediate species. Due to this fact, when the com-
pared genomes are linear, it is desirable to consider the
so-called restricted model, in which we proceed the rein-
corporation of a circular chromosome immediately after
its creation [2,4]. These two consecutive DCJ operations,
which create and reincorporate a circular chromosome,
mimic a transposition or a block-interchange. In other
words, in the restricted model most of the classical orga-
nizational operations (reversals, translocations, fusions

* Correspondence: poly.hannah@gmail.com
1IME, Universidade Federal Fluminense, Niterói, Brazil
Full list of author information is available at the end of the article

da Silva et al. BMC Bioinformatics 2012, 13(Suppl 19):S14
http://www.biomedcentral.com/1471-2105/13/S19/S14

© 2012 da Silva et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:poly.hannah@gmail.com
http://creativecommons.org/licenses/by/2.0

and fissions) cost one DCJ, while transpositions and
block-interchanges cost two DCJs.
When comparing genomes with the same content and

without duplicated DNA segments, it is already known
that the genomic distance for the restricted DCJ model is
the same as the distance for the general model and can
be computed in linear time [2,3]. In contrast, while the
genomes can be sorted also in linear time in the general
model [3], the best sorting algorithm in the restricted
model up to now takes O(n log n) [4]. Figure 1 shows an
example of a general and a restricted sorting sequence.
If the genomes have unequal contents, in addition to

DCJ operations it is necessary to consider insertions and
deletions of DNA segments. Insertions and deletions are
jointly called indels. In this context, linear algorithms were
proposed to compute the distance and to find a sorting
scenario in a general, unrestricted model that handles gen-
omes without duplicated DNA segments, considering DCJ
and indel operations [5,6]. During the evolution of many
organisms, indel operations are said to occur more often
than organizational operations and, consequently, should
be assigned to a lower cost. Examples are bacteria that are
obligate intracellular parasites, such as Rickettsia [7]. The
genomes of such intracellular parasites are observed to
have a reductive evolution, that is, the process by which
genomes shrink and undergo extreme levels of gene degra-
dation and loss.
The general DCJ-indel model has the flexibility of

assigning different positive costs to DCJ and indel opera-
tions [5,6]. But, again, many circular chromosomes may
coexist in intermediate stages of the sorting process. Thus,
while sorting linear genomes, it would be more plausible

to consider a restricted DCJ-indel model, in which a circu-
lar chromosome must be reincorporated immediately after
its creation. Figure 2 shows an example of a general and a
restricted sorting sequence with DCJs and indels. In this
case, no algorithm was provided up to now and even the
question whether the distance is the same for both the
general and the restricted DCJ-indel models remains open.
Here we address this issue and give a sorting algorithm
and a tight upper bound for the restricted DCJ-indel dis-
tance, also allowing the assignment of distinct costs to
indel and DCJ operations and with the restriction that the
indel cost is upper bounded by the DCJ cost.
This paper is organized as follows. In the remainder of

this section we recall some key concepts of the DCJ-indel
model with distinct operation costs [6], which is based
on the DCJ-model [2,3]. We then develop a restricted
DCJ-indel sorting algorithm, that gives an upper bound
for the restricted DCJ-indel distance. Finally we conclude
our work with some final remarks.

The DCJ model
A linear genome is composed of linear chromosomes and
can be represented by a set of strings as follows. For each
chromosome C of each genome, we build a string
obtained by the concatenation of all markers in C . Each
marker g is a DNA fragment and is represented by the
symbol g, if it is read in direct orientation, or by the sym-
bol ḡ , if it is read in reverse orientation. Each one of the
two extremities of a linear chromosome is called a telo-
mere, represented by the symbol ○.
Given two linear genomes A and B, possibly with

unequal content, let G , A and B be three disjoint sets,

Figure 1 (i) An optimal sorting sequence in the general DCJ model - many circular chromosomes can coexist in the intermediate
species. (ii) An optimal sorting sequence in the restricted DCJ model - a circular chromosome is immediately reincorporated after its excision.
The distance is always the same for both general and restricted DCJ models.

da Silva et al. BMC Bioinformatics 2012, 13(Suppl 19):S14
http://www.biomedcentral.com/1471-2105/13/S19/S14

Page 2 of 11

such that the set G is the set of markers which occur in
A and in B, the set A is the set of markers which occur
only in A and the set B is the set of markers which
occur only in B. The markers in A and in B are also
called unique markers. As an example, consider the gen-

omes A = {◦bsuc̄avd̄e◦} and B = {◦awbx̄c◦, ◦ydze◦} . Here

we have G = {a, b, c, d, e} , A = {s, u, v} and B = {w, x, y, z} .
Given two genomes A and B, we denote the two

extremities of each g ∈ G by gt (tail) and gh (head). A
G -adjacency or simply adjacency [5] in genome A
(respectively in genome B) is a string v = γ1�γ2 ≡ γ2�γ1 ,
such that each gi is a telomere or an extremity of a mar-
ker from G and ℓ is a substring composed of the mar-
kers which are between g1 and g2 in A (respectively in
B) and contains no marker which also belongs to G .
The substring ℓ is the label of v. If ℓ is empty, the adja-
cency is said to be clean, otherwise it is said to be
labeled. If a linear chromosome is composed only of
markers which are not in G , it is represented by an
adjacency ○ℓ○.
DCJ operations
A cut performed on a genome A separates two adjacent
markers of A. A cut affects a single adjacency v in A: it
is done between two symbols of v, creating two open
ends. A double-cut and join or DCJ applied on a gen-
ome A is the operation that performs cuts in two differ-
ent adjacencies in A, creating four open ends, and joins
these open ends in a different way. In other words, a

DCJ rearranges two adjacencies in A, transforming them
into two new adjacencies.
Consider a DCJ r applied to adjacencies v1 = g1ℓ1ℓ4g4

and v2 = g3ℓ3ℓ2g2, which creates x1 = g1ℓ1ℓ2g2 and x2 =
g3ℓ3ℓ4g4. We represent such an operation as r =
({g1ℓ1|ℓ4g4, g3ℓ3|ℓ2g2} ® {g1ℓ1|ℓ2g2, g3ℓ3|ℓ4g4}). The two
adjacencies v1 and v2 are called the sources, while the
two adjacencies x1 and x2 are called the resultants of r
[8]. One or more labels among ℓ1, ℓ2, ℓ3 and ℓ4 can be
equal to ε (the empty string), as well as one or more
extremities among g1, g2, g3 and g4 can be equal to ○ (a
telomere), A DCJ operation can correspond to several
rearrangement events, such as an inversion, a transloca-
tion, a fusion or a fission [2].
Adjacency graph and the DCJ distance
Given two genomes A and B, the adjacency graph AG(A,
B) [3] is the bipartite multigraph whose vertices are the
adjacencies of A and of B and that has one edge for each
common extremity of a pair of vertices. The graph AG(A,
B) is composed of connected components that alternate
vertices in genome A and in genome B. Each component
can be either a cycle, or an AB-path (which has one end-
point in genome A and the other in B), or an AA-path
(which has both endpoints in genome A), or a BB-path
(which has both endpoints in B). A special case of an AA
or a BB-path is a linear singleton, that is a linear chromo-
some represented by an adjacency of type ○ℓ○. In Figure 3
we show the example of an adjacency graph.

Figure 2 (i) An optimal sorting sequence in the general DCJ-indel model - many circular chromosomes can coexist in the intermediate
species. (ii) An optimal sorting sequence in the restricted DCJ-indel model - a circular chromosome is immediately reincorporated after its
excision. Although the number of steps in (i) and (ii) is the same, the question whether the distance is the same for both general and restricted
DCJ-indel models is open. (The common content of the initial and the final genomes is represented in black, while the content exclusive to the
initial genome is represented in red.).

da Silva et al. BMC Bioinformatics 2012, 13(Suppl 19):S14
http://www.biomedcentral.com/1471-2105/13/S19/S14

Page 3 of 11

Components with 3 or more vertices need to be reduced
- by applying DCJ operations - to components with only 2
vertices, that can be cycles or AB-paths [8]. This proce-
dure is called DCJ-sorting of A into B. The number of AB-
paths in AG(A, B) is always even and a DCJ operation can
be of three types [5]: it can either increase the number of
cycles by one, or the number of AB-paths by two (optimal
DCJ); or it does not affect the number of cycles and AB-
paths (neutral DCJ); or it can either decrease the number
of cycles by one, or the number of AB-paths by two (coun-
ter-optimal DCJ). We assign the same cost to any DCJ
operation. For simplicity, we consider the DCJ cost equal
to one. Then, the DCJ distance of A and B, denoted by
dDCJ (A, B), corresponds to the minimum number of steps
required to do a DCJ-sorting of A into B and is given by
the following theorem.
Theorem 1([3]) Given two genomes A and B without

duplicated markers, we have dDCJ(A,B) = |G| − c − b
2 ,

where G is the set of common markers and c and b are,
respectively, the number of cycles and of AB-paths in AG
(A, B).

The DCJ-indel model with distinct costs
Although the DCJ-model was defined in the previous sec-
tions for genomes with unequal contents, only the com-
mon markers were handled. In this section we explain
how to deal with unique markers, that are markers which
occur only in genome A and markers which occur only in
genome B.
Indel operations
In order to deal with unique markers, we need operations
that change the content of a genome. These operations
can be an insertion or a deletion of a block of contiguous
markers. Insertions and deletions can be jointly called
indel operations. We consider a model in which an indel
only affects the label of one single adjacency, by deleting
or inserting contiguous markers in this label, with the
restriction that an insertion cannot produce duplicated
markers [5]. In other words, while sorting A into B, the

indel operations are the steps in which the markers in A
are deleted and the markers in B are inserted.
Given ℓ3 ≠ ε, the deletion of ℓ3 from the adjacency

g1ℓ1ℓ3ℓ2g2 is represented as (g1ℓ1|ℓ3|ℓ2g2 ® g1ℓ1|ℓ2g2),
while the insertion of ℓ3 in the adjacency g1ℓ1ℓ2g2 is
represented as (g1ℓ1|ℓ2g2 ® g1ℓ1|ℓ3|ℓ2g2). One or both
extremities among g1 and g2 can be equal to ○ (a telo-
mere), as well as one or both labels among ℓ1 and ℓ2, can
be equal to ε (the empty string). Observe that at most
one chromosome can be entirely deleted or inserted at
once. Moreover, since duplications are not allowed, an
insertion of a marker that already exists is not allowed.
Consequently, in this model, it is not possible to apply
insertions and/or deletions involving the markers in G .
Given two genomes A and B, the DCJ-indel distance of

A and B, denoted by didDCJ(A,B) , is the minimum cost of

a DCJ-indel sequence of operations which sorts A into B,
assigning the cost of 1 to each DCJ and a positive cost
w ≤ 1 to each indel operation. If w = 1, the DCJ-indel
distance corresponds exactly to the minimum number of
steps required to sort A into B [5].
Runs, indel-potential and the DCJ-indel distance
Let us recall the concept of run, introduced by Braga et al.
[5]. Given two genomes A and B and a component C of
AG(A, B), a run is a maximal subpath of C, in which the
first and the last vertices are labeled and all labeled vertices
belong to the same genome (or partition). A run is then a
subpath of a component and can be represented by its list
of vertices. A vertex v that corresponds to an entire run is
called a compact-run. If a run is not compact, it is a long-
run. An example of a component with 3 runs is given in
Figure 4. A run in genome A is also called an A -run, and
a run in genome B is called a B -run. We denote by Λ(C)
the number of runs in a component C. While a path can
have 0 or any positive number or runs, a cycle has either
0, 1, or an even number of runs.
A set of labels of one genome can be accumulated

with DCJs. In particular, when we apply optimal DCJs
on only one component of the adjacency graph, we can

Figure 3 For genomes A and B, the graph has one BB and two AB-paths.

da Silva et al. BMC Bioinformatics 2012, 13(Suppl 19):S14
http://www.biomedcentral.com/1471-2105/13/S19/S14

Page 4 of 11

accumulate an entire run into a single adjacency [5]. It
is possible to do a separate DCJ-sorting using only opti-
mal DCJs in any component C of AG(A, B) [8]. We
denote by dDCJ (C) the number of optimal DCJ opera-
tions used for DCJ-sorting C separately (dDCJ (C)
depends only on the number of vertices or, equivalently,
the number of edges of C [8]). The DCJ distance can
also be re-written as dDCJ(A, B) = ∑cÎAG(A, B) dDCJ(C).
Runs can be merged by DCJ operations. Consequently,

during the optimal DCJ-sorting of a component C, we
can reduce its number of runs. The indel-potential of C,
denoted by l(C), is defined by Braga et al. [5] as the
minimum number of runs that we can obtain doing a
separate DCJ-sorting in C with optimal DCJ operations.
An example is given in Figure 5.
The indel-potential of a component depends only on

its number of runs:
Proposition 1 ([5]) Given two genomes A and B and a

component C of AG(A, B), the indel-potential of C is

given by λ(C) =
⌈

�(C)+1
2

⌉
, if Λ(C) ≥ 1. Otherwise, if

Λ(C) = 0, then l(C) = 0.
Let l0 and l1 be, respectively, the sum of the indel-

potentials for the components of the adjacency graph
before and after a DCJ operation r, and let Δl(r) = l1 -
l0. If r is an optimal DCJ acting on two adjacencies of a
single component of the graph, the definition of indel-
potential implies Δl(r) ≥ 0. We also know that Δl(r) ≥
0, if r is counter-optimal, and Δl(r) ≥ -1, if r is neutral

[5]. This allows us to exactly compute didDCJ(C) , that

is the DCJ-indel distance of a component C of

AG(A,B) : didDCJ(C) = dDCJ(C) + wλ(C) [6]. We can then

derive the following upper bound for the DCJ-indel
distance:
Lemma 1 ([6]) Given two genomes A and B without

duplicated markers and a positive indel cost w ≤ 1, we have

didDCJ(A,B) ≤ dDCJ(A,B) + w
∑

C∈AG(A,B)
λ(C).

Recombinations Until this point, we have explored the
possible effects of any DCJ that is applied to two adjacen-
cies belonging to a single component of the graph. How-
ever, there is another type of DCJ that must be
considered. A DCJ operation r applied to adjacencies
belonging to two different components is called a recom-
bination and can have Δl(r) < 0 [5]. Thus, depending on
the value of w and on whether the recombination is an
optimal, a neutral or a counter-optimal DCJ, a recombi-
nation with Δl(r) < 0 can lead to a sorting sequence with
lower cost. As an example, a neutral recombination with
Δl = -2 is represented in Figure 6.
Although many different recombinations can occur, it is

possible to explore the space of recombinations in linear
time and compute the maximum deduction that we can
obtain with respect to the upper bound of Lemma 1 [6].

Results
In this section we develop a restricted DCJ-indel sorting
algorithm, from which we can derive an upper bound
for the restricted DCJ-indel distance.

Chained operations
Let us generalize to the DCJ-indel model a concept intro-
duced in [8]. Let s = r1r2 ... rn-1rn be a DCJ-indel

Figure 4 An AB-path with 3 runs (extracted from Figure 3). The first and the second runs are compact, while the third run is long and
composed of three vertices.

da Silva et al. BMC Bioinformatics 2012, 13(Suppl 19):S14
http://www.biomedcentral.com/1471-2105/13/S19/S14

Page 5 of 11

sequence of operations sorting genome A into genome B.
Two consecutive operations ri and ri+1 of s are said to be
independent when no source of ri+1 is a resultant of ri.
Otherwise, ri+1 use as a source a resultant from ri. In
this case, the operations ri and ri+1 are said to be
chained.

Bi-directional approach
Although in general a sorting algorithm is conceived to
follow a single direction, in which all operations are
applied on the initial genome, here we design a bi-direc-
tional algorithm, in which some operations are applied
on genome A and the others are applied on genome B.
Running a bi-directional algorithm we actually trans-
form genomes A and B into an intermediate genome I.
However, with the operations that transform A and B
into I, we can derive an optimal sequence of operations
simply sorting genome A into B. Given any DCJ or indel
operation r = (X ® Y), the inverse of r is r-1 = (Y ® X)
[5]. This notation can also be extended to a sequence of
operations: given a sequence s = r1r2 ... rn , we have

s−1 = ρ−1
n ρ−1

n−1 · · · ρ−1
2 ρ−1

1 . Observe that the inverse of a

deletion is an insertion, and vice-versa.

Proposition 2 ([5]) Given two genomes A and B, and a
pair of sequences s1 and s2 composed of DCJ and indel opera-
tions applied respectively on genomes A and B, transforming
both A and B into an intermediate genome I, such that

|s1| + |s2| = didDCJ(A,B) , then s1s
−1
2 is an optimal sequence of

DCJ and indel operations that transforms A into B.
Figure 7 illustrates the generation of a sequence of

operations sorting A into B from a bi-directional
sequence of operations.
Accumulating x splitting labels
A DCJ that accumulates labels is always applied to two
labeled adjacencies and results into a clean adjacency
and an adjacency containing the concatenation of the
labels of the original adjacencies. In general, we can
represent such an accumulating DCJ r by ({g1ℓ1|g4,
g3|ℓ2g2}®{g1ℓ1|ℓ2g2, g3|g4}). If r accumulate labels of an

A -run, it is denoted by AA
A � B . Similarly, if r accumu-

lates labels of a B -run, it is denoted by BB
B � A .

The inverse of an accumulating DCJ r is a splitting DCJ
r-1 = ({g1ℓ1|ℓ2g2, g3|g4} ® {g1ℓ1|g4, g3|ℓ2g2}). Observe that,
if r is applied on A, r-1 is applied on B and split a label of

an A -run. In other words, the inverse of an AA
A � B is a

Figure 5 Two optimal sequences for DCJ-sorting an AB-path with Λ = 3 (the cuts of each DCJ in each sequence are represented by
“|”). In (i) the overall number of runs in the resulting components is three, while in (ii) the resulting components have only two runs. Indeed, in
this case, the best we can have is the indel-potential l = 2.

Figure 6 This recombination is a neutral DCJ that has Δl = -2 (we represent only the labels of the adjacencies, the cuts of the
recombination are represented by “/"and “\”).

da Silva et al. BMC Bioinformatics 2012, 13(Suppl 19):S14
http://www.biomedcentral.com/1471-2105/13/S19/S14

Page 6 of 11

DCJ applied on B that separates vertices belonging to the
same A -run in two different cycles, denoted by B≺A

AA .

Similarly, the inverse of a BB
B � A is a DCJ applied on A

that separates vertices belonging to the same B -run,
denoted by A≺B

BB . An A≺B
BB or a B≺A

AA is called an

inverted-split. In Table 1 we summarize the operations
described above.
Accumulation-deletion x insertion-split
Let n be a positive integer, such that n ≥ 2 and let r1 =
v1x1v2x2 ... vixi ... vjxj ... vn-1xn-1vn be a long-run, in
which v1 and vn are labeled, each vk (2 ≤ k ≤ n - 1) can
also be labeled and all xk(1 ≤ k ≤ n - 1) are clean. We
say that two vertices vi and vj (1 ≤ i <j ≤ n) in r1 are
partners if vi and vj are labeled and all vertices between
vi and vj in r1 are clean. We can apply an accumulating
DCJ on the two partners vi and vj, accumulating their
labels into a new vertex vi-j, reducing r1 to r2 = v1x1v2x2
... vi-1xi-1vi-jxjvj+1xj+1 ... vn-1xn-1vn. The subsequent step
of accumulation then occurs between two partners of r2,
reducing r2 to r3, and so on. Assuming that the initial r1
has m ≤ n labeled vertices, we need to apply m - 1 accu-
mulating operations. In the end of the process, we
obtain the compact-run rm, that corresponds to a single
vertex whose label is the accumulation of all labels of r1.
Observe that all labeled vertices will be used in some
accumulating DCJ, until the compact-run rm is obtained.
As an example, take v1 = g1ℓ1g2, x1 = g2g3, v2 = g3ℓ2g4,

x2 = g4g5, v3 = g5ℓ3g6, x3 = g6g7, v4 = g7ℓ4g8, with all ℓk ≠ ε

and let r1 = v1x1v2x2v3x3v4 be a B -run. We can start the
accumulation with a DCJ of type BB

B � A on partners v2
and v3, creating v2-3 = g3ℓ2ℓ3g6 and g4g5, reducing r1 to r2
= v1x1v2-3x3v4. We then apply another DCJ of type

BB
B � A on partners v1 and v2-3, creating v1-2-3 =

g1ℓ1ℓ2ℓ3g6 and g2g3, reducing r2 to r3 = v1-2-3x3v4. Finally,
we apply a DCJ of type BB

B � A on partners v1-2-3 and
v4, creating v1-2-3-4 = g1ℓ1ℓ2ℓ3ℓ4g8 and g6g7, reducing r3 to
r4 = v1-2-3-4. If we follow the accumulation of a run, con-
sidering only the labeled vertices, we obtain a rooted tree
that is built from the leafs to the root (see Figure 8). The
root of the tree indicates the possible positions of a
deletion.
The inversion of the run accumulation described in the

example above is the inverted-split of the label of the
compact-run r4 = v1-2-3-4 into the labeled vertices v1 =
g1ℓ1g2, v2 =g3ℓ2g4, v3 = g5ℓ3g6 and v4 = g7ℓ4g8. We start by
applying a B≺A

AA DCJ on v1-2-3-4 = g1ℓ1ℓ2ℓ3ℓ4g8 and g6
g7, obtaining v1-2-3 = g1ℓ1ℓ2ℓ3g6 and v4 = g7ℓ4g8. We then
apply a B≺A

AA on v1-2-3 and g2g3, obtaining v2 = g1ℓ1g1
and v2-3 = g3ℓ2ℓ3g6. Finally we apply a B≺A

AA on v2-3 and
g4g5, obtaining v2 = g3ℓ2g4 and v3 =g5ℓ3g6. If we follow the
inverted-split of a run, considering only the labeled ver-
tices, we obtain a rooted tree that is built from the root
to the leafs (see Figure 8 again). In this case, the first
inverted-split defines the root. Then, each one of the sub-
sequent inverted-splits must be chained with a DCJ in

Figure 7 (i) Two sequences of lengths 3 and 2, sorting A = {◦ayc̄bx̄d̄e◦} and B = {○azbwcde○} into I = {◦ab̄cde◦} .
(ii) A corresponding sequence of length 5 sorting A into B. (Unique markers are represented in red.).

Table 1 Accumulating and splitting DCJ operations

Operation Direction Effect Inverse

AA
A � B A®B Accumulate labels of an A -run (AA

A � B)−1 = B≺A
AA

A≺B
BB A®B Inversely split label of a B -run (A≺B

BB)
−1 = BB

B � A

BB
B � A B®A Accumulate labels of a B -run (BB

B � A)−1 = A≺B
BB

B≺A
AA B®A Inversely split label of an A -run (B≺A

AA)−1 = AA
A � B

da Silva et al. BMC Bioinformatics 2012, 13(Suppl 19):S14
http://www.biomedcentral.com/1471-2105/13/S19/S14

Page 7 of 11

this tree. The root of the tree indicates the possible posi-
tions of an insertion.

An indel does not have to occur while a circular
chromosome exists
We now show that an indel must not be applied while a
circular chromosome exists.
Proposition 3 shows that an insertion can always be

“moved up” in a DCJ-indel sorting sequence.
Proposition 3 Let s = r1r2 ... rn-1rn be a DCJ-indel

sequence sorting genome A into genome B, such that, for
an integer 1 ≤ i <n, ri is a DCJ operation and ri+1 is an
insertion. Then ri ri+1 can be replaced θ1θ2, such that θ1
is an insertion and θ2 is a DCJ and s’ = r1r2 ... ri-
1θ1θ2ri+ 2 ... rn-1rn is also a DCJ-indel sequence sorting
genome A into genome B.
Proof: Observe that, if ri and ri+1 are independent, it

is easy to see that they can be simply switched, that is:
θ1 = ri+1 and θ2 = ri. We still need to examine the case
in which ri and ri+1 are chained.
Observe that a DCJ in any optimal sorting scenario

either accumulates or does not change the composition
of runs. Take ri = ({g1ℓ1|g4, g3|ℓ2g2} ® {g1ℓ1|ℓ2g2, g3|g4}).
Furthermore, since an insertion in any optimal sequence
is performed without breaking any existing label, with-
out loss of generality, take ri+1 = (g1ℓ1ℓ2|g2 ® g1ℓ1ℓ2|ℓ3|
g2). Then riri+1 could be replaced by: θ1 = (g3ℓ2|g2 ®

g3ℓ2|ℓ3|g2) followed by θ2 = ({g1ℓ1|g4, g3|ℓ2ℓ3g2} ®
{g1ℓ1|ℓ2ℓ3g2, g3|g4}).
Similarly, a deletion can always be “moved down” in a

DCJ-indel sorting sequence.
Proposition 4 Let s = r1r2 ... rn-1rn be a DCJ-indel

sequence sorting genome A into genome B, such that, for
an integer 1 ≤ i <n, ri is a deletion and ri+1 is a DCJ
operation. Then riri+1 can be replaced by θ1θ2, such that
θ1 is a DCJ operation and θ2 is a deletion and s’ = r1r2 ...
ri-1θ1θ2ri+2 ... rn-1rn is also a DCJ-indel sequence sorting
genome A into genome B.
Proof: Analogous to the proof of Proposition 3. □
From the previous propositions we observe that finding a

position to perform an indel imposes no difficulties to
design a restricted DCJ-indel sorting algorithm. The trick is
how to determine the DCJ part of the sorting sequence, so
that we reincorporate each circular chromosome after its
creation and achieve the indel-potential per component.

Restricted DCJ-indel sorting
Basically, our approach disregards recombinations and
sorts the components of the graph separately, using opti-
mal DCJ operations to achieve the minimum number of
indels per component, that is given by the indel-poten-
tial. In this way, we achieve the distance given by the
upper bound of Lemma 1, as we will see in the remainder
of this section.

Figure 8 The rooted tree of an accumulation of a B -run is built from the leafs to the root (bottom to up). Inversely, the rooted tree of
an inverted-split of a B -run is built from the root to the leafs (top to down).

da Silva et al. BMC Bioinformatics 2012, 13(Suppl 19):S14
http://www.biomedcentral.com/1471-2105/13/S19/S14

Page 8 of 11

Capping
Disregarding recombinations, we can first perform the
genome capping, a technique that helps us to avoid diffi-
culties and special cases produced by telomeres: we
adjoin new markers (caps) to the ends of the chromo-
somes (and new chromosomes composed of caps only, if
necessary) so that we do not change the distance and we
do not have to worry about telomeres [4]. After the cap-
ping, the two genomes have the same number of chro-
mosomes and the corresponding adjacency graph
contains only clean paths of size 1 and cycles. Recall that,
since AG(A, B) is bipartite, all cycles have even length
and can have 0, 1 or an even number of runs. Capped
genomes can be then sorted with translocations (which
mimic also fusions and fissions), inversions, circular
chromosome excisions and reincorporations.
Merging runs in cycles
An important step of the DCJ-indel sorting is to merge
runs in cycles with at least 4 runs, so that the indel-
potential for each cycle is achieved.
Proposition 5 The indel-potential of a cycle C with at

least 4 vertices and 2 or more runs can be achieved by
extracting from C a cycle with a single run.
Proof: For any positive integer i let λ(i) =

⌈ i+1
2

⌉
. If

Λ(C) = 2, we can split C into two cycles containing a sin-
gle run each, and the indel-potential is preserved. For any
cycle C with 4 or more runs, since the number of runs in

this case is always even, we have λ(i) = i
2 + 1 . We then

denote by l’ the alternative potential, obtained by extract-
ing cycles with a single run from C. Observe that, for any
i = 4, 6, 8, ..., l’(i) = l(i - 2) + 1. It is easy to check the
base case, that is λ′(4) = λ(2) + 1 = 2 + 1 = 3 = 4

2 + 1 = λ(4).
By induction, for i = 6, 8, 10 ..., we have

λ′(i) = λ(i − 2) + 1 = i−2
2 + 1 + 1 = i

2 + 1 = λ(i) . □
Chromosome reincorporation
In the restricted sorting of linear genomes a circular
chromosome has to be immediately reincorporated after
its excision - these two consecutive operations mimic
either a transposition or a block-interchange [2,4]. As
we have seen before, the general DCJ-indel sorting is bi-
directional - the operations can be applied on genome
A or B, depending on whether we accumulate runs in A
or in B. However, when a DCJ creates a circular chro-
mosome, we need to apply the subsequent DCJ on the
same genome, and it is not easy to see how this inter-
feres with the indel-potential of AG(A, B).
Suppose that a DCJ performed an excision of a circu-

lar chromosome. Let (v1, v2) be a pair of vertices,
such that v1 and v2 are in the same genome and belong
to the same cycle in AG(A, B), v1 is an adjacency at the
circular chromosome and v2 is an adjacency at a linear
chromosome. The pair (v1, v2) is called a link. Since v1
and v2 are in the same cycle, a chromosome

reincorporation can always be done by applying a DCJ
on the two vertices v1 and v2 [8].
The cycle to which a link (v1, v2) belongs is called a

connection cycle. Let C be a connection cycle of AG(A,
B) with 2k ≥ 4 vertices. Since C has k vertices in each

genome, there are at least k - 1 and at most
⌈
k
2

⌉
.
⌊
k
2

⌋

distinct links in C.
The two vertices v1 and v2 of a link in a connection

cycle C are connected by two distinct subpaths of C. The
distance between v1 and v2 is given by the number of
edges in the shortest path connecting them. Since both
v1 and v2 are in the same genome, this distance is always
even and positive. If the distance between v1 and v2 is 2,
v1 and v2 have a common neighbor, and (v1, v2) is called
a short-link.
Proposition 6 After the excision of a circular chromo-

some by a DCJ, there is at least one short-link in AG(A, B).
Proof: Suppose that the circular chromosome is in gen-

ome A. If AG(A, B) contained no connection cycle, gen-
ome B would also have a circular chromosome, which
would be a contradiction. Let C = v1x1v2x2 ... vnxn be a
connection cycle in AG(A, B), in which the vertices v1, ...,
vn are in A and the vertices x1, ..., xn are in B, and let (vi,
vj) be a link in C such that vi is in the circular chromo-
some and vj is in a linear chromosome of A. Consider
without loss of generality that i <j. Then take the vertex vk,
i ≤ k <j, such that k is the largest index of a vertex between
vi and vj belonging to the circular chromosome. Then (vk,
vk+1) is a short-link. □
In order to find out whether the indel-potential of the

connection cycle C can be preserved after applying a DCJ
on a certain link (v1, v2), basically we need to analyze
how the connection cycle C is split, by analyzing the ver-
tices that are between v1 and v2 in C.
We focus on the short-links only. Let (v1,v2) be a short-

link in a connection cycle C, such that v1 = g1ℓ1g2 and v2 =
g3ℓ2g4 (ℓ1 and ℓ2 can be equal to ε). Without loss of gener-
ality, let z = g2ℓ3g3 be the common neighbor of v1 and v2
(ℓ3 can also be equal to ε). We then define the optimal
DCJ r(v1, v2) = ({v1, v2} ® {x1, x2}), such that x1 = g2g3 and
x2 = g1ℓ1ℓ2g4. Observe that r(v1, v2) always extracts z
together with a new clean vertex x1 into a cycle, and accu-
mulates the labels of v1 and v2 into a new vertex x2, which
is extracted into a cycle with the remaining vertices of C.
There are three different cases:

1. Gaps: If the two vertices of a short-link have a
clean common neighbor, it is called a gap. A DCJ
applied to a gap of a connection cycle C splits C
into a clean cycle C’ and a cycle C’’ that has the
same indel-potential of C.
2. Compact-runs: Let (v1, v2) be a short-link in AG
(A, B), such that the common neighbor z of v1 and

da Silva et al. BMC Bioinformatics 2012, 13(Suppl 19):S14
http://www.biomedcentral.com/1471-2105/13/S19/S14

Page 9 of 11

v2 is a compact-run. An optimal DCJ r(v1, v2)
extracts the compact-run z and a new clean vertex
into a new cycle. According to Proposition 5, r(v1,
v2) preserves the indel-potential of AG(A, B).
3. Inverted-splits: If a short-link (v1, v2) is not a gap
nor is separated by a compact-run, only one possiblity
remains: the common neighbor z of v1 and v2 is
labeled and belongs to a long-run r. Observe that an
optimal DCJ r(v1, v2) splits C into a cycle C’ contain-
ing a new clean vertex and z (Λ(C’) = 1) and a cycle
C’’ containing all remaining runs of C and the
remaining vertices of r, that is, we have Λ(C’’) = Λ(C).
Although the overall indel-potential seems to be
increased, the DCJ described above is an inverted-
split of type A≺B

BB if the circular chromosome is in
A and r is in B (or, symmetrically, of type B≺A

AA , if
the circular chromosome is in B and r is in A). We
have seen that inverted-splits, if properly applied, do
the backtracing of the insertion position of a run in
the opposite genome and do not increase the indel-
potential of AG(A, B).
It is important to guarantee that, after applying a DCJ
that inversely splits a run r1 and another DCJ that
inversely splits another run r2, the runs r1 and r2 are
not merged. We do this by simply extracting the resi-
dual part of an inversely split run into a new cycle.
Furthermore, during the merging or accumulation of
runs, a run r can be inversely split by successive
DCJs. In this case, we need to guarantee that each
new inverted-split of r is either the first or chained
with one of the previous inverted-splits.

We can always reincorporate the circular chromosome
with a DCJ applied to any short-link (v1, v2), except if r(v1,
v2) splits a run r that is already inversely split and r(v1, v2)
cannot be chained with a previous inverted-split of r.
However, in this case, r will be separated alone in a cycle
(each run is immediately separated after its first inverted-
split).
After an excision, suppose that the circular chromo-

some is in genome A (respectively in B). Let C be a con-
nection cycle in AG(A, B). For each vertex v of C in A
(respectively in B), there is at least one link containing v.
Due to this fact, when we have a cycle containing a single
inversely split run r, it is easy to find a link chained with
a previous inverted split of r.
Proposition 7 If a connection cycle C with a single

run r has links in one genome and its run r is in the
other genome, we can always reincorporate the circular
chromosome and preserve the indel-potential.
Proof: Let C have links in genome A. Each short-link of

C is either a gap, or a compact-run, or the first inverted-
split of the B -run r. Otherwise, C has in genome A a ver-
tex v that was created by a previous inverted-split r of r.

Since each vertex of C in A is part of a link, we can
choose a link that contains v and, consequently, is
chained with r. □
The sorting algorithm and an upper bound for the
restricted DCJ-indel distance
We put everything together in Algorithm 1 (Additional
file 1) and describe the sorting of capped genomes for
the restricted model, in which each circular chromosome
is reincorporated immediately after its creation. Applying
this procedure we can find a sequence of optimal DCJs
that sort A into B while preserving the indel-potential. In
other words, this algorithm results in a sorting sequence
in the restricted model that has exactly the same cost
given by the upper bound of Lemma 1.

Conclusions
In this work we have presented a method to compute a
restricted DCJ-indel sequence of operations that sort a lin-
ear genome into another linear genome. This method leads
to a tight upper bound for the restricted DCJ-indel dis-
tance. The general DCJ-indel distance can be computed
exactly and is a lower bound for the restricted DCJ-indel
distance. However, the question whether these bounds are
equal, meaning that both distances are equal, remains open.
Algorithm 1 Restricted sorting of genome A into B with
optimal DCJs and indels
Input: Two linear genomes A and B
Output: A restricted sequence of DCJ and indel

operations sorting A into B
cap genomes A and B;
[MERGING:]

r ¬ null;
if there is a cycle C Î AG(A,B) with at least 4 ver-

tices and at least 2 runs then
r ¬ run from C;

while r ≠ null do
extract r into a cycle; [this preserves the indel-

potential of AG(A,B) according to Proposition 5]
r ¬ null;
if a circular chromosome was created then

find a short-link (v1, v2); [Proposition 6]
if (v1, v2) is a gap or a compact-run then

apply the optimal DCJ r(v1, v2);
else

let r1 be the run that would be inversely
split by r(v1, v2);

if r(v1, v2) is the first inverted-split of r1
then

apply the optimal DCJ r(v1, v2);
let r2 be the residual part of r1;
if r2 is in a cycle with more runs then

r ¬ r2; [extract r2 from its cycle in
the next step]

else

da Silva et al. BMC Bioinformatics 2012, 13(Suppl 19):S14
http://www.biomedcentral.com/1471-2105/13/S19/S14

Page 10 of 11

[r1 was inversely split before and is
separated alone in cycle]

find a link (x1, x2) such that x1 is a vertex
created by a previous inverted-split of r1; Proposition 7]

apply the optimal DCJ r(x1, x2);
if r = null and there is a cycle C Î AG(A,B)

with at least 4 vertices and at least 2 runs then
r ¬ run from C;

[ACCUMULATING: (each cycle with 4 or more
vertices has at most one run)]

while there is a long-run r in AG(A,B) do
apply an optimal DCJ accumulating the

labels of two partners of r;
if a circular chromosome was created then

find a short-link (v1, v2); [Proposition 6]
if (v1, v2) is a gap or a compact-run then
apply the optimal DCJ r(v1, v2);
else
let r1 be the run that would be inversely

split by r(v1, v2);
if r(v1, v2) is the first inverted-split of r1

then
apply the optimal DCJ r(v1, v2);

else
[r1 was inversely split before and is sepa-

rated alone in cycle]
find a link (x1, x2) such that x1 is a vertex

created by a previous inverted-split of r1; [Proposition 7]
apply the optimal DCJ r(x1, x2);

[DCJ-SORTING: (each remaining cycle with 4 or
more vertices has at most one compact-run)]

while there is cycle C Î AG(A,B) with at least 4
vertices do

extract a cycle from C, with an optimal DCJ
applied on genome A;

if a circular chromosome was created then
find a short-link (v1, v2); [Proposition 6]
[at this stage this short-link is a gap or a

compact-run]
apply the optimal DCJ r(v1, v2);

invert all DCJs applied on genome B;
insert each B -run r before the first inverted-split of
r;
move up insertions that occur in circular
chromosomes;
delete all A -runs from the DCJ-sorted components;

Additional material

Additional file 1:

Acknowledgements
This research was partially supported by the Brazilian research agencies
CNPq and FAPERJ.
This article has been published as part of BMC Bioinformatics Volume 13
Supplement 19, 2012: Proceedings of the Tenth Annual Research in
Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics. The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcbioinformatics/supplements/
13/S19.

Author details
1IME, Universidade Federal Fluminense, Niterói, Brazil. 2Inmetro - Instituto
Nacional de Metrologia, Qualidade e Tecnologia, Duque de Caxias, 25250-
020, Brazil.

Authors’ contributions
PHS, MDVB, RM and SD have elaborated the model, proved the results and
written the paper.

Competing interests
The authors declare that they have no competing interests.

Published: 19 December 2012

References
1. Hannenhalli S, Pevzner P: Transforming men into mice (polynomial

algorithm for genomic distance problem). Proc of FOCS 1995 1995,
581-592.

2. Yancopoulos S, Attie O, Friedberg R: Efficient sorting of genomic
permutations by translocation, inversion and block interchange.
Bioinformatics 2005, 21:3340-3346.

3. Bergeron A, Mixtacki J, Stoye J: A unifying view of genome
rearrangements. Proc of WABI 2006 LNBI 2006, 4175:163-173.

4. Kovác J, Warren R, Braga MDV, Stoye J: Restricted DCJ Model:
rearrangement problems with chromosome reincorporation. Journal of
Computational Biology 2011, 18(9):1231-1241.

5. Braga MDV, Willing E, Stoye J: Double Cut and Join with Insertions and
Deletions. Journal of Computational Biology 2011, 18(9):1167-1184.

6. da Silva PH, Braga MDV, Machado R, Dantas S: DCJ-indel distance with
distinct operation costs. Proceedings of WABI 2012, Lecture Notes in
BioInformatics 2012, 7534:378-390 [http://link.springer.com/chapter/10.1007/
978-3-642-33122-0_30].

7. Blanc G, Ogata H, Robert C, et al: Reductive genome evolution from the
mother of Rickettsia. PLoS Genetics 2007, 3:e14.

8. Braga MDV, Stoye J: The solution space of sorting by DCJ. Journal of
Computational Biology 2010, 17(9):1145-1165.

doi:10.1186/1471-2105-13-S19-S14
Cite this article as: da Silva et al.: Restricted DCJ-indel model: sorting
linear genomes with DCJ and indels. BMC Bioinformatics 2012
13(Suppl 19):S14.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

da Silva et al. BMC Bioinformatics 2012, 13(Suppl 19):S14
http://www.biomedcentral.com/1471-2105/13/S19/S14

Page 11 of 11

http://www.biomedcentral.com/content/supplementary/1471-2105-13-S19-S14-S1.PDF
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S19
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S19
http://www.ncbi.nlm.nih.gov/pubmed/15951307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15951307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21899428?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21899428?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21899423?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21899423?dopt=Abstract
http://link.springer.com/chapter/10.1007/978-3-642-33122-0_30
http://link.springer.com/chapter/10.1007/978-3-642-33122-0_30
http://www.ncbi.nlm.nih.gov/pubmed/17238289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17238289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20874401?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	The DCJ model
	DCJ operations
	Adjacency graph and the DCJ distance

	The DCJ-indel model with distinct costs
	Indel operations
	Runs, indel-potential and the DCJ-indel distance

	Results
	Chained operations
	Bi-directional approach
	Accumulating x splitting labels
	Accumulation-deletion x insertion-split

	An indel does not have to occur while a circular chromosome exists
	Restricted DCJ-indel sorting
	Capping
	Merging runs in cycles
	Chromosome reincorporation
	The sorting algorithm and an upper bound for the restricted DCJ-indel distance

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

