
PROCEEDINGS Open Access

Medians seek the corners, and other conjectures
Maryam Haghighi, David Sankoff*

From Tenth Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on Com-
parative Genomics
Niterói, Brazil. 17-19 October 2012

Abstract

Background: Median construction is at the heart of several approaches to gene-order phylogeny. It has been
observed that the solution to a median problem is generally not unique, and that alternate solutions may be quite
different. Another concern has to do with a tendency for medians to fall on or near one of the three input orders,
and hence to contain no information about the other two.

Results: We conjecture that as gene orders become more random with respect to each other, and as the number
of genes increases, the breakpoint median for circular unichromosomal genomes, in both the unsigned and signed
cases, tends to approach one of the input genomes, the “corners” in terms of the distance normalized by the
number of genes. Moreover, there are alternate solutions that approach each of the other inputs, so that the
average distance between solutions is very large. We confirm these claims through simulations, and extend the
results to medians of more than three genomes.

Conclusions: This effect also introduces serious biases into the medians of less scrambled genomes. It prompts a
reconsideration of the role of the median in gene order phylogeny. Fortunately, for triples of finite length
genomes, a small proportion of the median solutions escape the tendency towards the corners, and these are
relatively close to each other. This suggests that a focused search for these solutions, though they represent a
decreasing minority as genome length increases, is a way out of the pathological tendency we have described.

Background
The median problem, namely to construct the genome,
the sum of whose distances from three given genomes is
minimized, is of biological interest because it is at the
heart of several approaches to phylogenetic inference
based on gene order. It is also of computational interest
since it represents one of the major axes of generaliza-
tions of simple pairwise gene order comparison, and
most but not all versions are NP-hard [1].
One concern about the median problem, perhaps of

more pertinence to applications than to theory, is that the
solution is generally not unique, and that different solu-
tions may be of considerable distance from each other
(e.g., [2]). A second concern has to do with a tendency, if
the three input gene orders are relatively highly rearranged
with each other, for the median to fall on or near one of

these input orders (e.g., [3]), rather than “in the middle”,
as might be more intuitively satisfying.
In this study, based on a series of simulations, we inves-

tigate the simplest median problems, that of unsigned
genes under the breakpoint distance and that of signed
genes under the breakpoint distance. We make use of a
reduction of the problems into the Traveling Salesman
Problem (TSP) [4], which we can now rapidly solve for
genomes with thousands of genes [5]. We find that,
indeed, as gene orders become more random with
respect to each other, and as the number of genes
increases, the median does indeed tend to approach an
input genome, in terms of the distance normalized by the
number of genes. Moreover, with the same input gen-
omes, there are different solutions that approach each of
the corners. We formalize these observations in terms of
a conjecture.
We generalize this conjecture to the case of the median

of four or more genomes. We also conjecture that the
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phenomenon of medians “seeking corners” carries over to
other distances often applied to gene orders. Finally we
discuss how it fits in with more general ideas of loss of
evolutionary signal as gene orders become increasingly
rearranged.

The breakpoint median problem for circular
chromosomes
For the unsigned case, we consider genomes modeled as
(single) circular permutations on genes 1, …, n. Let A =
a1, …,an be such a permutation. The unordered pair (ai,
ai+1) are called adjacent; they constitute an adjacency
on A, for 1 ≤ i <n. In addition, circularity means that an
is adjacent to a1 .
Consider two unsigned genomes A = a1, ..., an and B =

b1, ..., bn on the same set of n genes. If two genes g and h
are adjacent in A but not in B (that is, gh or hg do not
appear in B), then they determine a breakpoint. The
breakpoint distance d(A, B) between A and B is defined
as the number of breakpoints in A (or, equivalently,
in B). This can be calculated as d(A, B) = n − adj(A, B),
where adj(A, B) is the number of adjacencies in common
between A and B.
For a signed genome, each gene is assigned a positive

or negative orientation. If gene h, with a given orienta-
tion in A, follows gene g, also with a given orientation,
which we write gh, then if either gh or −h − g is in B,
this constitutes a common adjacency in the two gen-
omes. Otherwise the two genes determine a breakpoint.
Given three genomes A, B, and C on the same set of n

genes, the breakpoint median problem is the problem of
finding a genome M, called the median, such that d(M,
A) + d(M, B)+ d(M, C), the median sum, i.e., the sum of
the breakpoint distances between M and the given gen-
ome is minimized. This definition holds for both
unsigned and signed genomes.
More generally, for k ≥ 3, the k-median problem for

breakpoints requires, for k given genomes A1, …, Ak on
the same set of n genes, finding a genome M such that
the median sum

∑k
i=1 d (M,Ai) is minimized. Where the

meaning is clear, we will use the term “median” to refer
to 3-medians.
The unichromosomal breakpoint median problems are

known to be NP-hard ([6] and [7]), as are most, but not
all, versions of the median problem, with metrics differ-
ent from the breakpoint distance and/or on spaces of
genomes different from that of circular unichromosomal
genomes [1].
Nevertheless, by reducing the k-breakpoint median pro-

blem to the TSP [4], we can solve instances containing
many thousands of genes rapidly [5], making use of Con-
corde, a software package that combines many of the recent
advances in the field to rapidly produce TSP solutions [8].

Given k ≥ 3 genomes A1, …, Ak , to reduce the k-med-
ian problem for unsigned genomes to the TSP on n ver-
tices, let G be a complete graph of the n vertices, where
each vertex represents one gene. For each edge xy let v
(xy) be equal to the number of times the genes corre-
sponding to x and y are adjacent (do not form a break-
point) in genomes A1, …, Ak, so v(xy) can be any value
among 0, …, k. Define the edge weight w(xy) = k − v
(xy). Then a solution of the TSP on G with weights w(·),
namely a minimum weight Hamilton cycle, defines a
genome with a minimum sum of breakpoint distances
to the k given genomes.
A similar strategy transforms the median problem for

the signed genome problem to the TSP.

The conjectures
We start with the unsigned case. For a given n ≥ 1, con-
sider a number of random genomes drawn indepen-
dently from the set of all circular permutations, each
with probability 2/(n − 1)!.
Let Pn be the set of genomes containing n genes. For

A Î Pn, let the neighbourhood of A be

Nε(A) = {B ∈ Pn|d(A,B)
n

< ε}, (1)

in other words, the set of genomes that are close to A
in the normalized sense.
We note that for all A, B Î Pn

d(A,B)
n

≤ 1, (2)

because there can be no more than n breakpoints
between two genomes of length n.
We impose a uniform measure pn on Pn, so that pn(A) =

1/(n − 1)! for all A Î Pn. Then for random A, B Î Pn, for
large n the number of adjacencies approaches a Poisson
distribution with parameter l = 2 [9], so that

E
(
d(A,B)

n

)
∼ n − 2

n

→ 1

(3)

as n increases.
We propose the following:
Conjecture 1 “Medians Seek the Corners” For any

ε > 0, δ > 0, there is an n′, such that if A1, …, Ak are k
genomes drawn at random from Pn, where n >n′, and M
is a k-median for these genomes, then

|pn{M ∈ Nε(Ai)} − 1/k| < δ, (4)

for i = 1, …, k.
It is important to note that not only would a median

tend to be close to one of the input genomes A1, …, Ak,
but other median solutions for the same input genomes
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would simultaneously be close to each of the other
input genomes, in equal proportions.
Corollary 1 For n = 1, …, if A1, …, Ak are k genomes

drawn at random from Pn, then the expected normalized
median sum

E

(∑k
i=1 d(M,Ai)

n

)
→ k − 1, (5)

as n ®∞.
Corollary 2 As n ®∞, if A1, …, Ak are k genomes

drawn at random from Pn, and M1 and M2 are two
medians of these k genomes, then

E
(
d(M1,M2)

n

)
→ k − 1

k
. (6)

We now turn to the case of signed genomes. Here, not
only are there (n − 1)! gene orders, but there are 2n ways
of assigning orientations to the genes. Thus the setQn of
all genomes contains 2n(n − 1)! elements. The definition of
a neighborhood in Eq. (1) carries over with Pn replaced by
Qn. For the uniform measure qn onQn, the Poisson para-
meter for the number of common adjacencies in two gen-
omes is 1

2 instead of 2 [9], but the limiting value of the
normalized breakpoint distance is still 1, as in Eq. (3).
Then Conjecture 1 and Corollaries 1 and 2 are also

proposed for the signed case, where Pn replaced by Qn

and pn is replaced by qn.
The conjecture, and its corollaries, might seem coun-

terintuitive, especially if the median is conceived of as
being “in the middle” of the input genomes. For example
we could imagine constructing a genome containing a
proportion 1/k of its adjacencies in common with each of
the random input genomes. Its normalized distance
would then be approximately (k − 1)/k from each of
them, for a combined median sum of k − 1, the same as
in the Corollary 1. Moreover, this would accord well with
the notion of the median as being in the middle. How-
ever, such medians would not satisfy Corollary 2.

Results
While awaiting formal proof of the conjecture, or its
disproof, we can offer some observations based on
simulations.
To generate a random genome we applied a series of

rearrangements to the identity permutation 1, …, n.
Though there are many alternative ways of gradually ran-
domizing the genome, for convenience, our rearrange-
ments all consisted of swapping the positions of two
genes, chosen at random on the genome. This does not
privilege any particular biological model for evolution,
but simply represents a general way of gradually introdu-
cing randomness differences among the genomes.

For signed genomes, we also randomized the orienta-
tion of each swapped gene.
To get a sample of many alternative solutions to the

median problem, we varied the seed used by Concorde
to initialize its solution to the TSP. For our purposes it
is desirable to sample uniformly from the entire set of
medians for any one instance. Lacking an analysis of the
internal workings of Concorde, we simply noted that the
solutions seemed maximally diverse, as predicted by
Corollary 2, and they showed symmetric tendencies with
respect to the presentation order of the input genomes;
i.e., there was no tendency for more genomes to be
close to Ai than to Aj, for any i, j = 1, …, k.
The first set of simulations for unsigned genomes

depicted in Figure 1 shows how, for k = 3, the average
normalized median sum increases at an identical rate
(when not only the sum but also the number of rearran-
gements is normalized), for n = 100 and n = 1000, and
approaches an asymptote of 2 at about 50 or 60 rearran-
gements per hundred genes. Of note is that the limiting
value for n = 100 is slightly lower than that for n = 1000.
For these same simulations, Figure 2 shows how the

average distance between different solutions to the same
instance of the median problem grows in the same way
for n = 100 and n = 1000, and approaches an asymptote
of 0.6 at about 50 or 60 rearrangements per hundred
genes. Again, the limiting value for n = 100 is slightly
lower than that for n = 1000, and both are considerable
lower than the value of 2/3 predicted by Corollary 1;
this observation will be understandable in the light of
the results of the next section.
Simulations involving signed genomes gave very simi-

lar results to those depicted in Figures 1 and 2. The key
analysis will be detailed in the next section.

Medians at the middle
In the simulations, most of the solutions to the median
problem were distributed evenly to the neighborhoods
of the three input genomes. But a few were approxi-
mately equidistant from the the three of them: d(M, A1)
~ d(M, A2) ~ d(M, A3). This did not affect the median
sum trends since, of course, as medians, these have the
same sum as the ones near the input genomes. They do,
however, affect the average distance between solutions,
since they are closer together and, more important, clo-
ser to all of the input medians than the latter are to
each other.
To further investigate the role of these “medians in the

middle” we measured the average distance of median
solutions from the closest input genome, and counted
the number of centrally located medians out of 50 for
each simulation. To ensure randomness, the inputs were
generated with 300 random swaps (each swap involving
up to four new breakpoints) per 100 genes in a genome,
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so that there will remain very few adjacencies in common
with the identity permutation and, especially, with the
other input genomes. The results are depicted in Figure 3
for both unsigned and signed median problems, where it

can be seen that as n gets larger, the proportion of med-
ians in the middle gets smaller and the average distance
of medians from the nearest input genome drops at the
same time.

Figure 1 Evolution of the average distance between median solutions as the input genomes become randomized.

Figure 2 Evolution of the median sum as the input genomes become randomized.
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In sum, while there are four types of median solution
to each instance of the median problem with random
input, three in the neighbourhoods of the input gen-
omes, and one in the middle, the latter is of diminishing
frequency; its measure goes to zero as n ®∞.

Generalization to higher k
Simulations with k > 3 unsigned genomes confirm that
our conjecture is valid beyond the usual 3-median case.
Figure 4 shows that while convergence towards the
asymptote (k − 1)/k slows as k increases, there is little
doubt that this value is correct.
Figure 5 again shows that the average normalized

median sum converges to the asymptote k −1 predicted
by Corollary 1, and this convergence is faster than that
of the average distance between solutions.
Taken together, Figures 4 and 5 suggest that the set of

medians in the middle has a greater measure and is
slower to disappear as k becomes larger. Nevertheless,
our ability to analyze genomes with thousands of genes
enables us to affirm that the eventual trend towards
“medians in the corners” holds for these k as well.

Discussion
Although it would of course be good to have a proof of
our conjecture and its corollaries, the simulations allow
us a degree of confidence that they are true. There is a
remote possibility that varying the seed used by Con-
corde does not lead to a uniform sample of median
solutions, but this seems unlikely. One indication that

there is no presentation-order artifact is that all three
corners accumulate solutions to the same extent.
The solutions, of course, pertain only to random gen-

omes. The gradual increase seen in Figure 2 may in part
be due to a bonafide increase in the distances from a
centrally located median to the corners. Nevertheless
this increase in the median sum necessarily involves a
component caused by the drift towards the input gen-
omes, a component that dominates as the asymptote is
approached. Furthermore, the increase seen in Figure 1
is more definitively suggestive of a set of three alternate
solutions, each heading, with increased n, towards the
input genomes in the corners.
These results imply that an unreflecting use of the

median in comparing three even moderately scrambled
genomes, and as the inner optimization step of a small
phylogeny analysis, with ancestral gene reconstruction,
is methodologically dangerous. A median at a corner
contains no compromise information from the other
two genomes. The tendency for the medians to seek a
corner is a mathematical artifact of the notion of break-
point or of some more general concept in the compari-
son of permutations, and should certainly not be
attributed any biological significance.
All is not lost, however! Recall that we have actually

identified four median tendencies, not three. (Or k +1,
not just k.) A minority of medians remain near the mid-
dle, and these definitely represent compromises among
the three (or k) input genomes. Of course, these medians
are rare, and become rarer as the inputs become longer

Figure 3 Median drift towards the corners and transience of the middle solution. Left: unsigned genomes. Right: signed genomes.
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and more random, as in Figure 6. Nevertheless, they
exist, and are eminently interpretable biologically.
As a consequence, we suggest that applications of med-

ian methods should entail the comparison of many alter-
native medians, the identification and discarding of those
contaminated by the drift towards the corner, and the
search for the rare median that genuinely reflects a com-
promise among the input genomes. This may be done in
an objective way since the set of medians will have four

regions of high probability in the space of genomes, sepa-
rated by large regions of low probability. Most of the prob-
ability will be concentrated on the neighborhoods of the
input genomes. Finding the “poor cousin” in the middle
may require the generation of large numbers of candidate
solutions, but given the computing resources, this seems
imperative if we want to make biological sense.
The computational difficulty traditionally ascribed to

the median problem, especially when the input genomes

Figure 4 Evolution of the average distance between median solutions as k input genomes become randomized.

Figure 5 Evolution of the median sum as k input genomes become randomized.
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are highly rearranged with respect to each other, would
seem to preclude this approach. With breakpoint med-
ians, however, computing time need not be a problem.
Use of an efficient TSP solver allowed us to find med-
ians when n = 3000, with maximally rearranged gen-
omes, in seconds, and thus explore a fairly large sample
of optimal solution space. Indeed, the limiting factor in
our experimental set-up was memory, not time. Another
advantage of breakpoints via the TSP approach is that it
is not appreciably harder when the genomes are highly
scrambled than when they are only moderately rear-
ranged, or for larger k compared to k = 3.
Finally, we offer a further conjecture, which seems

compelling to us, but for which we have only rough justi-
fication, and which moreover is unlikely to win many
believers. We conjecture that breakpoint medians for the
minimum reversals metric or the double-cut-and-join
metric will also seek the corners as genomes become
longer and more rearranged, although this effect may
require relatively large n to become dominant. Further-
more, this should obtain for multichromosomal genomes
as well, as long as the number of chromosomes (and
hence chromosome ends) is bounded. This conjecture is
motivated by the closeness with which these metrics fol-
low the breakpoint metric when genomes are randomly
generated [10], or have very high “breakpoint re-use”
scores. Unfortunately it will be difficult to resolve this
conjecture for rearrangement-based metrics using simu-
lations. Using the best current methods [11], computing
exact medians for genomes of size n ≥ 100 under these
metrics is computationally costly when the input gen-
omes are even moderately scrambled.
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