
PROCEEDINGS Open Access

Multiple genome comparison based on overlap
regions of pairwise local alignments
Katharina Jahn1,2*, Henner Sudek2, Jens Stoye2

From Tenth Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on Com-
parative Genomics
Niterói, Brazil. 17-19 October 2012

Abstract

Background: Mancheron, Uricaru and Rivals (Nucleic Acids Res. 39:e101, 2011) recently introduced a new approach
in the context of multiple genome comparison that allows to detect regions of strong overlaps in a set of pairwise
local alignments between several reference genomes and one target genome. Such overlap regions are an
important source of information in genome annotation.

Results: In this paper we introduce a series of algorithms that improve over the approach of Mancheron et al.,
both in terms of computational complexity and in practical runtime. We also extend the problem definition such
that overlaps to different reference genomes can be rated differently and regions overlapping only a subset of the
reference genomes are detected.

Background
Comparative approaches are an important source of
information when it comes to the analysis of newly
sequenced genomes. On the level of genes, the use of
reciprocal BLAST hits is the most widely accepted
approach suitable for tasks like gene annotation and the
inference of homologies. However, it is a notoriously
slow process, especially when it comes to all-against-all
comparisons of several genomes, as commonly used in
multiple genome comparisons. The alignment of whole
genomes is known to be a computationally hard pro-
blem [1]. Heuristic approaches such as Shuffle-LAGAN
[2] or MAUVE [3] involve a combination of chaining
local alignments and inferring the history of large-scale
genome rearrangement processes, which is an NP-hard
problem of its own [1].
Recently, Mancheron et al. [4] pointed out that for many

goals in multiple genome comparison, such as gene anno-
tation, whole genome-based approaches as well as all-
against-all BLAST comparisons are too involved. Instead
they suggest to identify regions of strong overlaps in a set

of pairwise local alignments between one target genome
and any number of reference genomes. A strong overlap is
a region that maps to at least one segment in every refer-
ence genome. If it is not contained in a bigger region that
fulfills the same property, it is called a maximum common
interval (MCI). In the same paper, Mancheron et al. pre-
sent an algorithm to compute all MCIs for k genomes and
a total number of n mappings in O(n log k) time and O(n)
space. Note that the term “common interval” has been
used previously in a different context, in order to describe
a set of genes that occur as a consecutive block in two or
more genomes [5,6]. To avoid confusion of the two con-
cepts, we use the term maximum overlapping interval
(MOI) in this paper when referring to the concept of max-
imum common interval by Mancheron et al.
In this paper, we re-visit the above problem and intro-

duce three new algorithms that improve the asymptotic
time complexity as well as the practical performance over
the approach of Mancheron et al. [4]. At first we present
an algorithm that requires O(n) time and space. Then we
show two variations of this basic algorithm: While the first
modification reduces memory consumption but keeps the
O(n) running time, the second one gives up on linear
worst case runtime, but seems to have linear average

* Correspondence: kjahn@cebitec.uni-bielefeld.de
1Department of Mathematics and Statistics, University of Ottawa, Canada
Full list of author information is available at the end of the article

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S7
http://www.biomedcentral.com/1471-2105/13/S19/S7

© 2012 Jahn et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:kjahn@cebitec.uni-bielefeld.de
http://creativecommons.org/licenses/by/2.0

runtime and is very fast in practice. We also introduce a
generalization of the MOI problem, which includes the
case where an MOI may map to only q out of k reference
genomes. We show how the first two of our algorithms
can be adapted to this variant.

Methods
Preliminaries
For the basic definitions of maximum overlapping inter-
vals we follow closely the notation of Mancheron et al.
[4]. Given a finite sequence S, let |S| denote its length.
An interval I of a sequence S is a pair I = [s(I), e(I)] of
start and end positions within S, i.e. 1 ≤ s(I) ≤ e(I) ≤ |S|.
The length of I is defined as e(I) - s(I) + 1. The subset
relation is defined as usual for intervals, i.e. I1 ⊆ I2 if
and only if s(I2) ≤ s(I1) and e(I1) ≤ e(I2).
In the following a target genome is given as a

sequence T together with k reference genomes G1, . . .,

Gk. For each j, 1 ≤ j ≤ k, let Cj = (Ij1, I
j
2, ..., I

j
nj) be the

collection of base intervals representing mappings of Gj

to T.
An interval J is an overlapping interval of a set of col-

lections C = {C1, . . ., Ck} if and only if there exists an
interval Iji in every Cj with J ⊆ Iji. An overlapping interval
J = [p, q] with p ≤ q is maximum if neither [p - 1, q]
nor [p, q + 1] are overlapping intervals.
The computational problem we study in this paper is

the following: given a set of collections of base intervals,
find all its maximum overlapping intervals (MOIs).

Upper bound for the number of MOIs
Before presenting our algorithms, we derive a tight
upper bound for the number of MOIs in a set of k col-
lections with a total number of n base intervals.
As already shown in supplementary file 1 of [4],

asymptotically there can only be O(n) MOIs: every MOI
starts at the beginning of a base interval and no MOI
can be included in another MOI, which means that no
two MOIs can have the same starting point, so clearly
there can not be more than n MOIs. In fact, the bound
can be given more precisely:
Lemma 1. For k collections with a total number of n

base intervals, there can be at most n -k + 1 maximum
overlapping intervals. This is a tight bound.
Proof. Assume the MOIs to be ordered by their begin-

ning from left to right. Clearly, the leftmost MOI must
contain at least k base intervals. Moreover, moving to
the right, the next MOI requires at least one new inter-
val, otherwise it would be identical to the previous one.
This argument can be repeated for all remaining MOIs.
Since after the first MOI there are only n - k intervals
left, the total number of MOIs can not be larger than
1 + n - k.

To show that the bound is tight, we construct an exam-
ple where the number of MOIs is actually n - k + 1. We
set the length of all base intervals to k. The first base
interval of the jth collection starts at index j, and the base
intervals within each collection follow one after the other
such that the ith interval of the jth collection starts at
index j + k(i - 1). By doing this, the intersection of the
first k base intervals defines the first MOI. After that we
can replace the left-most starting interval by the next one
from its collection. The intersection of the new interval
set gives us the next MOI. This can be repeated n - k
times until all intervals have been processed. Figure 1
illustrates this construction. □

Algorithms for finding maximum overlapping intervals
In this section we present three new algorithms to find
maximum overlapping intervals. Without loss of gener-
ality we assume that the set of base intervals is compact,
meaning that at least one interval starts or ends at every
position in T and thus l := |T | ∈ O(n). We also assume
that the list of base intervals is already sorted by
increasing start positions. This can be done in linear
time using the radix sort algorithm.
Algorithm LinearMOI
The outline of our first algorithm, LinearMOI, is as fol-
lows: while going through the sorted list of base inter-
vals, we track for each of the k collections the largest
end point of any of its intervals processed so far. Once
we have processed all intervals with the same start posi-
tion, we test whether the smallest of the current end
points, denoted as min, is smaller than the recent start
position. If so, there is at least one collection that does
not cover the start position, and there is no MOI. If
min is greater than the recent start position, then the
segment in between is covered by all collections, and is
therefore part of an MOI. We only need to test if we
have already used min as end point for an MOI starting
further to the left. Otherwise the interval ranging from
the recent start position to min is an MOI.
Obviously, min can change with each new base interval.

To update it efficiently, we use a counter array c, indexed
from 0 to l, where l is the length of the target genome. In
this array we store at each position the number of collec-
tions that have their current end point at this position.
Clearly, min equals the index of the smallest non-zero
entry. The following observation helps us to track this
position.
Observation 1. Values in c at indices smaller than the

current leftmost non-zero entry do not change when a
new base interval is considered.
Using Observation 1 we can find the current leftmost

non-zero entry in c simply by starting from the former
leftmost non-zero entry and going to the right until we
encounter the first non-zero value. Although we may

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S7
http://www.biomedcentral.com/1471-2105/13/S19/S7

Page 2 of 9

need several steps for one update of min, the total num-
ber of steps can not be larger than l, as min is never
decreased. As all other operations for processing a base
interval take constant time, and c and endPoint have at
most n entries, we get a total runtime of O(l). By our
assumption of compactness we thus have a runtime lin-
ear in the number of base intervals O(n).
Pseudocode of the algorithm is shown in Algorithm 1

(LinearMOI). An example with k = 3 collections and
n = 7 base intervals is shown in Figure 2.
Algorithm CircularMOI
The space needed to store the counter array c of algo-
rithm LinearMOI may become problematic when large
genomes are processed. Assuming the human genome
as our target, an additional 4GB of memory would be
required. However, we find that only a small part of c is
informative in each step of the algorithm:
Observation 2. We only need to know if there is any

non-zero entry in c left of the recent start position and
not where or what this value is.
Observation 3. All positions in c that are further to

the right of the recent start position than the length of
the longest base interval have value 0.
Based on these observations we can replace array c by

a circular memory structure that is just as long as the
longest base interval as well as a single counter in which
we store the sum of all values that would be on the left
of our current position in the counter array.
To employ the new data structure, several modifica-

tions need to be made in algorithm LinearMOI.
Obviously we need to use the modulo operation when-
ever accessing c. We also have to make sure that we do
not update c at indices smaller than the recent start posi-
tion as these positions are no longer represented in the
array. For that purpose, we introduce a new variable open
to count the number of collections that cover the recent
start position.
To keep open updated, we change the role of variable

min: when processing a new interval, we increase min
until the recent start position is reached. Any non-zero
value encountered in this process is subtracted from

open and then set back to 0, so that the respective array
positions can be re-used. We also need to update open
whenever a collection gets a new endpoint and is not
already counted in open.
Finally, we know that we can only have an MOI if open

equals k. Therefore we add a test for this condition in
line 11. Note that if this condition holds, we use min in
its original role to find the endpoint of a potential MOI.
The final test before reporting an MOI reduces to testing
whether prevEnd is smaller than min. The complete
pseudocode of this algorithm is shown in Algorithm 2
(CircularMOI).
In practice this approach is quite slow because of the

extensive use of the modulo operation. However when
extending the length of c to the next power of two, the
modulo operation can be replaced by a very fast bitwise
AND operation, and one gets about the same perfor-
mance as in the first algorithm. This variant of algo-
rithm CircularMOI was used in the benchmark tests
described in the Results section.
Algorithm TestMOI
Having concentrated on asymptotic runtime so far, we
now focus on practical performance. Even though the
previous algorithms perform very well in our benchmark
experiments, as we will demonstrate in the Results sec-
tion they use linear extra memory which might limit
their usability for larger datasets.
We present a third algorithm, TestMOI, that works

without a counter array. To find min, it just takes the
minimum stored in endPoint. Finding this smallest value
takes O(k) time and might be needed for every interval, so
we get a total runtime of O(kn). Using the following obser-
vation as a runtime heuristic, we get back to near-linear
performance.
Observation 4. The minimum value of a set of num-

bers can only increase if a value equal to the smallest
value in the set is removed or increased.
Therefore a test for a new minimum needs to be per-

formed only when the smallest of the current endpoints
changes. This gives rise to the procedure shown in
Algorithm 3 (TestMOI).

Figure 1 Interval collections with a maximized number of MOIs. Example of interval collections with a maximized number of MOIs. The bars
indicate the location of the n = 12 base intervals in T, their colors define the distribution into k = 3 collections (dark, light, medium gray). MOIs
are drawn as black lines at the bottom. Their number equals the upper bound n -k + 1 = 10.

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S7
http://www.biomedcentral.com/1471-2105/13/S19/S7

Page 3 of 9

Assuming the endpoints of the intervals are randomly
distributed, the chance of two or more values in end-
Point to be identical is very small and the chance that
an interval is in the same collection as the smallest

current value is 1/k. According to this the expected run-
time would be O(kn · 1/k) = O(n). However, this model
is possibly oversimplified as there surely is a correlation
between the start and the endpoint of an interval, as the

Figure 2 Example of algorithm LinearMOI. Example of algorithm LinearMOI with C1 = {(1, 4), (6, 8), (6, 9)} (dark gray), C2 = {(2, 6), (4, 9)} (light
gray) and C3 = {(3, 5), (7, 10)} (medium gray). The left column shows the state of endPoint, c is shown above the intervals, and min is
represented by the dotted vertical line. The arrow points to the interval currently processed. Output is (3, 4) in step (d) and (7, 9) in step (h).

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S7
http://www.biomedcentral.com/1471-2105/13/S19/S7

Page 4 of 9

base intervals are not the result of a random process but
come from local alignments between the target and the
reference genomes. Nevertheless the benchmark experi-
ments in the Results section show that in practice the
behavior is indeed linear.

Weighted maximum overlapping intervals
We now introduce the concept of weighted maximum
overlapping intervals. One constraint for MOIs was that
there had to be at least one interval in every collection
that covers the MOI. For weighted MOIs we replace
this constraint by the following: we assign a positive
integer weight to every collection, and require the sum
of the weights of all collections covering a weighted
MOI to be at least as high as a predefined threshold w.
The formal definitions are as follows:
Given a positive integer weight w, an interval J is a w-

overlapping interval of a set of collections C = {C1, . . .,
Ck} if and only if the sum of weights of all collections Cj

that contain an interval Iji with J ⊆ Iji is at least w.
A w-overlapping interval J = [p, q] with p ≤ q is maxi-

mum if neither [p - 1, q] nor [p, q + 1] are w-overlapping
intervals.
We refer to maximal w-overlapping intervals as

weighted MOIs. Note that this concept subsumes the
natural extension of MOIs by a quorum parameter q,

where an interval is considered an MOI whenever it is
covered by base intervals from at least q ≤ k collections.
We only need to assign weight 1 to every collection and
set the threshold to w = q. By choosing appropriate
weights, weighted MOIs allow us to solve more general
problems like finding all MOIs that must have an interval
in C1 and one interval either in C2 or in C3. An example
of weighted MOIs for different thresholds is given in
Figure 3. Our first two algorithms LinearMOI and Circu-
larMOI can be adapted straightforwardly to weighted
overlapping intervals as shown in the following.
Algorithm LinearWeightedMOI
This algorithm follows the same ideas as Algorithm 1
(LinearMOI) but we have to make several small adjust-
ments. First we need to change the counter array such
that it stores the weights of the collections. The second
modification is a bit more complicated. In the unweighted
case all values in c left of min are 0, which is not true in
the weighted case. To deal with this, we use a similar tech-
nique as we already used in Algorithm 2 (CircularMOI).
But instead of counting how many collections cover the
recent start position, we count the sum of their weights in
a variable named openWeight.
In the beginning, openWeight is set to zero. When

updating min or c, we have to make sure that open-
Weight gets updated appropriately, which we do in lines
10-12 and 17 in Algorithm 4 (LinearWeightedMOI). We
increase min (line 18), as long as openWeight exceeds
minWeight. If min was increased since the last weighted
MOI was reported and is not smaller than the recent
start position, we have found a new weighted MOI.
Algorithm CircularWeightedMOI
In order to adapt Algorithm 4 (LinearWeightedMOI) to
using the circular memory structure, we basically follow
the same strategy as we did in the unweighted case. How-
ever there is no need to introduce an additional variable
as was done for Algorithm 2. This is because we already
use variable openWeight which takes over the function of
open in Algorithm 2. Apart from this, there is only one
non-trivial change in comparison to the unweighted case:
a second condition in the if statement in line 12 to
ensure that the endpoint of the current base interval is
not smaller than the current min. This is because in the
weighted case the current base interval can end to the
left of the current location of min, and we have to make
sure not to update c at indices smaller than min. The
details are left to the reader.

Results and discussion
To analyze the practical run times of our algorithms, we
implemented them in C++ and compared them to the
original implementation of the approach by Mancheron
et al. [4] which is part of the QOD-1.0.0 software pack-
age and available under the CeCILL software license.

Table 1

Algorithm 1 (LinearMOI)

Input: sorted list of all intervals interval[1..n]; number of
collections k

Variables: largest end point seen so far in each collection
endPoint[1..k]; c[0..l]

1: endPoint[1..k] ← 0

2: prevEnd ← 0

3: min ← 0

4: c[0] ← k; c[1..l] ← 0

5: for all (Iji = [start, end]) ∈ interval[1..n] do

6: if end > endPoint[j] then

7: c[endPoint[j]] ← c[endPoint[j]] - 1

8: c[end] ← c[end] + 1

9: endPoint[j] ← end

10: end if

11: if all intervals with recent start position processed then

12: while c[min] = 0 do

13: min ← min + 1

14: end while

15: if prevEnd < min and min ≥ start then

16: output MOI(start, min)

17: prevEnd ← min

18: end if

19: end if

20: end for

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S7
http://www.biomedcentral.com/1471-2105/13/S19/S7

Page 5 of 9

All benchmarks were performed using an Intel(R) Core
(TM)2 Duo CPU T8100 @ 2.10GHz processor with 4GB
RAM running Linux 3.3.4. We used the gcc version 4.7
with compiler flags -Ofast and -march = nativeset. If no
other values are given, the length of the target genome is
10 Mb and the length of the base intervals is normally
distributed around a mean of μ = 2 Kb with a standard
deviation of s = 0.5μ. A total of 5 million intervals are
distributed randomly into 200 collections. In order to
compare the weighted and unweighted algorithms we set
all weights to 1 and the threshold minWeight to k. Please
note that the time for sorting the input is not included in
any of the reported timings. In any case, sorting the input
will virtually take the same time for all algorithms, even
though QOD sorts every collection separately, while we
sort all base intervals in a single list.

We ran several tests in order to evaluate the perfor-
mance of the algorithms for various parameter settings.
The results are shown in Figure 4. In all tests our algo-
rithms outperformed the algorithm used by QOD, and
TestMOI is the fastest of all.

Conclusions
In this paper we studied an algorithmic problem that was
recently introduced by Mancheron et al. [4] in the con-
text of multiple genome comparison. The goal is to find
regions of strong overlaps in a set of pairwise local simi-
larities between several reference genomes and one target
genome.
We have presented efficient algorithms to solve this pro-

blem, two of which have asymptotically optimal, linear
runtime. The third one excelled in terms of practical per-
formance. All three algorithms were shown to outperform
the approach introduced by Mancheron et al. [4]. We
have also generalized the problem such that segments in
overlap regions can be scored differently based on the
reference genome they originate from. We have shown
how this problem can still be solved in linear time.
For further work it may be interesting to assign indivi-

dual weights to the base intervals. However we would
then have to consider also intervals that are nested into
other intervals of lower weight and therefore lose the

Table 2

Algorithm 2 (CircularMOI)

Input: sorted list of intervals interval[1..n]; number of collections k;
length of the longest interval ℓ

Variables: largest end point seen so far in each collection
endPoint[1..k]; c[0..l]

1: endPoint[1..k] ← 0

2: prevEnd ← 0

3: min ← 0

4: c[0..ℓ] ← 0

5: open ← 0

6: for all (Iji = [start, end]) ∈ interval[1..n] do

7: while min < start do

8: open ← open - c[min mod ℓ]

9: c[min mod ℓ] ← 0

10: min ← min + 1

11: end while

12: if end > endPoint[j] then

13: if endPoint[j] ≥ min then

14: c[endPoint[j] mod ℓ] ← c[endPoint[j] mod ℓ] - 1

15: else

16: open ← open + 1

17: end if

18: c[end mod ℓ] ← c[end mod ℓ] + 1

19: endPoint[j] ← end

20: end if

21: if all intervals with recent start position processed and open = k
then

22: while c[min mod ℓ] = 0 do

23: min ← min + 1

24: end while

25: if prevEnd < min then

26: output MOI(start, min)

27: prevEnd ← min

28: end if

29: end if

30: end for

Table 3

Algorithm 3 (TestMOI)

Input: sorted list of all intervals interval[1..n]; number of
collections k

Variables: largest end point seen so far in each collection
endPoint[1..k]

1: endPoint[1..k] ← 0

2: prevEnd ← 0

3: min ← 0

4: newEndPoint ← false

5: for (Iji = [start, end]) ∈ interval[1..n] do

6: if end >endPoint[j] then

7: if endPoint[j] = min then

8: newEndPoint ← true

9: end if

10: endPoint[j] ← end

11: end if

12: if newEndPoint and all intervals with recent start position
processed then

13: min ← mini = 1..k{endPoint[i]}

14: newEndPoint ← false

15: if prevEnd < min and min ≥ start then

16: output MOI(start, min)

17: prevEnd = min

18: end if

19: end if

20: end for

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S7
http://www.biomedcentral.com/1471-2105/13/S19/S7

Page 6 of 9

Figure 3 Example of weighted MOIs. Example for weighted MOIs in four collections (distinguished by different gray shadings). The weights of
the collections are w(C1) = 2, w(C2) = 3, w(C3) = 3 and w(C4) = 4.

Table 4

Algorithm 4 (LinearWeightedMOI)

Input: sorted list of intervals interval[1..n]; number of collections k; weight of the collections weight[1..k]; length l of the target genome;
minimum weight a weighted MOI must have minWeight

Variables: largest end point seen so far in each collection endPoint[1..k]; c[0..l]

1: endPoint[1..k] ← 0

2: prevEnd ← 0

3: min ← 0

4: openWeight ← 0

5: c[0..l] ← 0

6: for all (Iji = [start, end]) ∈ interval[1..n] do

7: if end > endPoint[j] then

8: c[endPoint[j]] ← c[endPoint[j]] - weight[j]

9: c[end] ← c[end] + weight[j]

10: if endPoint[j] < min and end ≥ min then

11: openWeight ← openWeight + weight[j]

12: end if

13: endPoint[j] = end

14: end if

15: if all intervals with recent start position processed then

16: while openWeight -c[min] ≥ minWeight do

17: openWeight ← openWeight - c[min]

18: min ← min + 1

19: end while

20: if prevEnd < min and min ≥ start then

21: output MOI(start, min)

22: prevEnd ← min

23: end if

24: end if

25: end for

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S7
http://www.biomedcentral.com/1471-2105/13/S19/S7

Page 7 of 9

Figure 4 Benchmark experiments. Dependency of practical runtimes on parameter settings. First line: number of collections, on average
25.000 intervals per collection; Second line: number of intervals, fixed number of collections; Third line: length of target genome, fixed number
of collections and intervals; Fourth line: average interval length relative to genome length for collections generated with μ between 1 and the
genome length. The dotted line shows the number of non-redundant base intervals (scaled by secondary y-axis times 105); the dashed line
shows the number of MOIs (scaled by secondary y-axis times 103).

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S7
http://www.biomedcentral.com/1471-2105/13/S19/S7

Page 8 of 9

strict-linear ordering for processing the intervals. Hence,
we can not expect that the algorithms we presented here
will be easily adaptable to this problem and still run in
linear time.

Acknowledgements
Part of this work was funded by a postdoctoral fellowship of the German
Academic Exchange Service (DAAD).
This article has been published as part of BMC Bioinformatics Volume 13
Supplement 19, 2012: Proceedings of the Tenth Annual Research in
Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics. The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcbioinformatics/supplements/
13/S19.

Author details
1Department of Mathematics and Statistics, University of Ottawa, Canada.
2Technische Fakultät, Universität Bielefeld, Germany.

Authors’ contributions
KJ, HS and JS jointly developed the algorithms for the unweighted MOI
problem. HS developed the algorithm for the weighted case and carried out
the computational studies. KJ and JS drafted the manuscript. All authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 19 December 2012

References
1. Pevzner PA: Computational Molecular Biology - An Algorithmic Approach MIT

Press; 2000.
2. Brudno M, Malde S, Poliakov A, Do CB, Couronne O, Dubchak I,

Batzoglou S: Glocal alignment: finding rearrangements during alignment.
Bioinformatics 2003, 19:i54-i62.

3. Darling A, Mau B, Blattner F, Perna N: Mauve: Multiple Alignment of
Conserved Genomic Sequence With Rearrangements. Genome Res 2004,
14:1394-1403.

4. Mancheron A, Uricaru R, Rivals E: An alternative approach to multiple
genome comparison. Nucleic Acids Res 2011, 39:e101.

5. Heber S, Mayr E, Stoye J: Common Intervals of Multiple Permutations.
Algorithmica 2011, 60:175-206.

6. Uno T, Yagiura M: Fast Algorithms to Enumerate All Common Intervals of
Two Permutations. Algorithmica 2000, 26:290-309.

doi:10.1186/1471-2105-13-S19-S7
Cite this article as: Jahn et al.: Multiple genome comparison based on
overlap regions of pairwise local alignments. BMC Bioinformatics 2012
13(Suppl 19):S7.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S7
http://www.biomedcentral.com/1471-2105/13/S19/S7

Page 9 of 9

http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S19
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S19
http://www.ncbi.nlm.nih.gov/pubmed/12855437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15231754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15231754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21646341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21646341?dopt=Abstract

	Abstract
	Background
	Results

	Background
	Methods
	Preliminaries
	Upper bound for the number of MOIs
	Algorithms for finding maximum overlapping intervals
	Algorithm LinearMOI
	Algorithm CircularMOI
	Algorithm TestMOI

	Weighted maximum overlapping intervals
	Algorithm LinearWeightedMOI
	Algorithm CircularWeightedMOI

	Results and discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

