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Abstract

be modeled with precision and rigor.

hematopoietic progenitor cells.

Background: Gradual or sudden transitions among different states as exhibited by cell populations in a biological
sample under particular conditions or stimuli can be detected and profiled by flow cytometric time course data.
Often such temporal profiles contain features due to transient states that present unique modeling challenges.
These could range from asymmetric non-Gaussian distributions to outliers and tail subpopulations, which need to

Results: To ensure precision and rigor, we propose a parametric modeling framework StateProfiler based on finite
mixtures of skew t-Normal distributions that are robust against non-Gaussian features caused by asymmetry and
outliers in data. Further, we present in StateProfiler a new greedy EM algorithm for fast and optimal model
selection. The parsimonious approach of our greedy algorithm allows us to detect the genuine dynamic variation
in the key features as and when they appear in time course data. We also present a procedure to construct a well-
fitted profile by merging any redundant model components in a way that minimizes change in entropy of the
resulting model. This allows precise profiling of unusually shaped distributions and less well-separated features that
may appear due to cellular heterogeneity even within clonal populations.

Conclusions: By modeling flow cytometric data measured over time course and marker space with StateProfiler,
specific parametric characteristics of cellular states can be identified. The parameters are then tested statistically for
learning global and local patterns of spatio-temporal change. We applied StateProfiler to identify the temporal
features of yeast cell cycle progression based on knockout of S-phase triggering cyclins Clb5 and Clb6, and then
compared the S-phase delay phenotypes due to differential regulation of the two cyclins. We also used
StateProfiler to construct the temporal profile of clonal divergence underlying lineage selection in mammalian

Background

Flow Cytometry is among the most widely used plat-
forms in biomedical research and clinical labs. It is used
for investigation of a wide variety of biological problems
at single cell level. Classical applications of flow cytome-
try include quantitative measurements of DNA content
and cell cycle progression [1]. It is also one of the key
platforms for studying dynamic cellular properties such
as differentiation, proliferation and apoptosis, especially
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in the contexts of stem cells and cancer [2]. Such appli-
cations make flow cytometry the ideal platform for the
purpose of identifying and monitoring the myriad states
and functions in different specimens that vary over time
under particular conditions and stimuli.

Typically, a flow sample is stained with fluorescent
dyes, possibly attached to antibodies, and per cell events
such as the expression of a cell-surface marker or the
DNA content are measured in terms of fluorescence
intensity. The distribution of these events are then
plotted or modeled statistically for identification of
important features in the sample. While developments
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in computational cytomics have produced many useful
analytical methods (e.g. [3]), several important problems
have not yet been addressed adequately. One such issue
involves precise parametric modeling of dynamic fea-
tures in temporal profiles such that the model para-
meters can characterize the transition of the populations
in a sample through different cellular states. Often sim-
ple statistics such as population mean or size can be
imprecise in the presence of unusually shaped distribu-
tions and outliers in temporal profiles. The modeling
scenario could be complicated further by the adoption
of different trajectories by different subpopulations.
Indeed a rigorous algorithm for modeling cellular state
transitions can not only automate the traditionally man-
ual approach, which is subjective and labor-intensive,
but also extend it to increasingly complex and high-
throughput experiments.

Many major cytometric studies have highlighted the
importance of characterizing temporal profiles at single
cell resolution for a variety of purposes such as cell
cycle expression kinetics (e.g. [4,5]), pharmacodynamics
(e.g. [6,7]), signaling alterations in specific subpopula-
tions (e.g. [8,9]), dynamics of differentiation into distinct
lineages (e.g. [10,11]), and so on. Clearly, mathematical
formulation of a cellular state-space, and the transitions
therein, can help us model a given collection of tem-
poral flow cytometric profiles with the required rigor.
Thereupon we can study the changes in features (say, in
comparison with those in control profiles) and monitor
trends in parametric detail. Precise probabilistic model-
ing of sample distributions at each stage can automati-
cally reveal such dynamic features as emergence of a tail
subpopulation or change in the skewness of a cluster
that are statistically well-defined as well as biologically
insightful [3].

Temporal profiling of cellular state transitions in flow
data can, however, present unique modeling challenges.
Often the transient states produce non-Gaussian fea-
tures such as asymmetric or trailing subpopulations
owing to rush or delay in progression from one state to
another [5]. Intermediate states might also produce out-
liers that cannot be clearly distinguished from the more
distinctive states. Moreover certain metastable states
may appear only inconsistently in a given time course
[11]. Often the transient features appear and disappear
at the tails of the more prominent distributions, and
may be hard to model via automation. Thus a frame-
work that uses robust probabilistic density functions to
model time course data may be the best way to repre-
sent the underlying state-space, and reveal any sudden
or gradual transition therein. In terms of the distribu-
tion of events in a flow sample, characteristics of differ-
ent states may be determined by variation in size (say,
percentage of cells in a peak or cluster), location (such
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as mean or mode) or significance (peak density) of the
model components. While traditionally such changes
were detected with manual or non-parametric techni-
ques, several model-based frameworks have recently
been applied with success, e.g. [3,12-15].

Here we present StateProfiler, a new framework based
on finite mixture models of skew ¢-Normal distributions
(STNMIX) for statistical characterization of flow cyto-
metric time course data. In particular, we present in Sta-
teProfiler a new greedy Expectation-Maximization (EM)
algorithm for fitting our STNMIX model. The greedy
EM algorithm starts with a minimum number of distri-
butions (or components) and sequentially inserts a new
component to the mixture until model convergence is
achieved. This parsimonious approach allows us to
detect the dynamic appearance (and disappearance) of
transient features that are characteristic of many state
transitions. In addition, intermediate states are known
to produce spatial features in the form of distributions
with unusual shapes or low separation, which can lead
to overlapping components, and hence to an overesti-
mated number of model components. For optimal
model selection, we therefore also provide in StateProfi-
ler a new procedure for merging skew t-Normal compo-
nents that are significantly overlapping in the mixture
such that the change in entropy of the resulting model
is minimal. Besides profiling of unusually shaped distri-
butions and less well-separated features, this allows Sta-
teProfiler to tackle cellular heterogeneity that exists
even within clonal populations.

We applied StateProfiler to learn the temporal features
of cell cycle progression in two mutant strains of bud-
ding yeast Saccharomyces cerevisiae. Based on knockout
of S-phase triggering cyclins Clb5 and Clb6, we com-
pared the S-phase delay phenotypes resulting from the
differential regulation of the two cyclins. Also we used
StateProfiler to construct the overall temporal profile of
clonal divergence underlying lineage selection in mam-
malian hematopoietic progenitor EML cells. By compar-
ing the fitted models at each time point, we observed a
slow and non-montonic convergence of clonal outlier
subpopulations to a final median state.

Results and discussion

Temporal profiling with StateProfiler has several distinct
advantages. First, the skew ¢-Normal mixture fitted to
the data is defined by a probability density function
(pdf). This function is well-defined at any resolution and
can be visualized as a smooth profile, which is, unlike
kernel-based non-parametric representations, not depen-
dent on bandwidth specification. Importantly, the pdf
rigorously specifies the significance of every feature,
which allows us to detect the significant ones in the
profile, while ignoring the ones which are not.
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StateProfiler bases its optimal modeling on 3 strategies:
(1) to begin with, asymmetric and heavy-tailed STNMIX
components model the data precisely even in the pre-
sence of outliers or skewed populations, further (2) the
parsimonious fitting of the model with greedy EM yields
accurately estimated components, and finally, (3) any
redundant components are merged into a well-fitted
output profile. By design, our STNMIX model is com-
putationally faster to fit than the skew ¢ mixture
(STMIX) model [3,12,16,17] without sacrificing preci-
sion or rigor. Ho et al. [13] summarized the differences
between the STMIX and STNMIX models and showed
the implementation of the STNMIX model is generally
much simpler and faster than that of STMIX model.

For temporal profiling, certain parameters of STNMIX
model such as shape are uniquely suited to detect lag-
ging or hastening trends in subpopulations (such as
delay phenotypes in gene knockout experiments) that
directly correspond to interesting cellular states and
functions. Clearly this is neither possible with non-para-
metric representations nor using traditional parametric
models based on Gaussian, ¢ or other symmetric compo-
nents [5]. Moreover, such shape or size parameters
could be used to test for separability among components
- i.e. to identify tendencies of subpopulations to move
towards or away from each other without actually chan-
ging their mean locations. Parametric “snapshots” of
such back-and-forth trends can shed light on the the
discrete (switch-like) or continuous (spectrum-like) nat-
ure of the state transitions, leading to statistical observa-
tion of systems exhibiting multistable dynamics [10].

To illustrate some applications of StateProfiler, we
analyzed two previously generated datasets for studying
(a) cell division cycle and (b) cell differentiation in dif-
ferent species.

Cell cycle profiling

We applied StateProfiler to identify the temporal fea-
tures of budding yeast cell cycle progression based on
knockout of S-phase triggering cyclins CIb5 and Clbé.
In late G1-phase, while both Clb5 and Clb6 activate
Cdc28p to promote initiation of DNA synthesis, the
exact mechanisms and extents of regulating this transi-
tion from G1 to S phase are distinct for the two cyclins
[4]. In particular, Clb5 knockout causes a more promi-
nent S phase defect during cell cycle progression in
yeast cells than Clb6 knockout. Since DNA replication
happens in S phase, we studied the dynamics of transi-
tion from the start and end states corresponding of one
and two copies of the chromosomes (respectively, G1
and G2-M phases) while passing through intermediate
states corresponding to S phase delay in the mutants.
Interestingly, while genetic mutations are long known to
produce delay phenotypes in cell cycle progression, few
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algorithms prior to StateProfiler could model the lag in
the DNA distributions with precision.

We fitted STNMIX models to flow samples from two
cell cycle time courses with 10 time-points each in yeast
cells with knockout of CIb5 (Clb5A) and Clb6
(CIb6A3P). The time courses spanned more than one
cell cycle period with respect to wild-type yeast cells
dividing under the same protocol. The fitted mixture
models identified two or more components in every
sample, which typically corresponded to the 1C and 2C
peaks before and after DNA synthesis, along with sub-
populations in the intermediate S-phase, thus character-
izing an overall spectrum of profiles of different state
transitions (Figure 1).

The smooth profiles of the noisy DNA histograms at
every time-point are constructed with StateProfiler
according to optimal change in the entropy values of
the fitted model (Figure 2). For example, the entropy
plot (Figure 2a, b) suggests a jump in entropy (or
elbow) beyond g = 2 components for CIb5A data at ¢ =
25 min (blue histogram in Figure 2c). The resulting 2-
component profile is depicted by the orange curve in
Figure 2c. The individual components involved in the
model are identified and shown as black dotted curves.
Their parameters could be used to detect features for
purposes like sorting cells (FACS) or monitoring trends
in specific subpopulations (e.g. note the lag in the left
component in Figure 2).

To determine the precision of STNMIX, we computed
log-likelihood maxima ¢, BIC values, and distances
D,, based on Kolmogorov-Smirnov (K-S) test statistic,
and compared in Table 1 with the same for four com-
peting 2-component mixture models (of normal, £, skew
normal, and skew t) known from the literature [3,18].
According to BIC, the optimal selection of the STNMIX
model with equal dfs is evident (e.g. the 2-component
model at ¢ = 25). As seen from Dn, we also conclude
that STNMIX achieves the most precise modeling in
terms of both the count and asymmetry of components
in the given data. Further, we used the models for objec-
tive comparison of profiles both within and across time-
courses. We computed the Gap statistic [19] as a mea-
sure of dispersion of cellular events between the two
extreme states corresponding to the 1C and 2C peaks or
clusters. Tested against a reference distribution of data
with no clustering, the Gap statistics support the biolo-
gical observation of Jackson et al. [4] that the Clb5
mutant shows more pronounced S-phase delay pheno-
types than the Clb6 mutant and hence has less well-
separated components in mid-cell cycle (e.g. ¢ = 25).
The contrast between the samples in terms of cells
showing a slower state transition from 1C to 2C may be
observed in Table 2 for different time-points. Finally, we
observe the gradual variation in the key features at each
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Figure 1 Cell cycle time-course profiles. Cell cycle time-course profiles. Overall spectrum of temporal profiles based on STNMIX modeling of
flow cytometric DNA content data.

successive time-point to gain insights into the differen-
tial regulation of the S-phase by the cyclins CIb5 and
Clb6 (Figure 3).

Cell differentiation profiling

Another key area in which flow data are extremely
insightful about different state transitions is cell differ-
entiation. In recent years, many important advances in

biology have been made by studying the modes and
mechanisms of differentiation especially in the context
of stem cells and cancer. Stem cell differentiation has
also been studied for their clinical applications such as
in the field of regenerative medicine. An excellent
review of the field is given in a recent text edited by
Krishan et al. [2]. Over the course of differentiation, the
profiles of expression of various markers - including
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Figure 2 Modeling a temporal flow cytometric profile. Modeling a temporal flow cytometric profile. (a) Entropy values for a profile
combining a given number of components (g) based on the results of the Greedy EM algorithm for CIb5A at t = 25 min. (b) Differences
between successive entropy values as g increases. (c) DNA distribution for Clb5A at t = 25 min, as depicted by a histogram, is modeled with a 2-
component skew t-Normal mixture. The orange curve shows the fitted profile while the underlying components are shown in dotted curves.

Log of fluorescence intensity

those indicating stemness or commitment to a lineage -
vary according to transitions of populations through
unstable, metastable and eventually stable states. Often
measurable phenotypic diversity appears due to cell-to-
cell variability even within clonal populations, which are
manifest and can be studied as outlier events or asym-
metric or tail subpopulations. Sometimes these features
are transient and peripheral, and could be hard to dis-
tinguish via automation. Accurate modeling of dynamic
flow profiles is thus essential to identify or monitor
transitional features as and when they appear (or disap-
pear) for objective temporal characterization of the
state-space components involved in differentiation.

In the present study, we analyzed clonal populations
of EML cells, a multipotent mouse haematopoietic cell
line that can differentiate into myeloid, erythroid, and
other lineages. In a recent study, Chang et al. [11] mea-
sured the expression levels of the stem cell marker Sca-
1 in different subpopulations of EML cells as time
course data. They observed that cell-to-cell heterogene-
ity in this clonal progenitor population gave rise to Sca-

1 outlier cells - cells that exhibit very high or low Sca-1
expression - and possessed distinct gene expression pat-
terns. The heterogeneity could not be attributed to mea-
surement noise or cell-cycle-dependent cell size
variation. Eventually, however, each of these distinct
Sca-1 subpopulations’ profiles became similar to that of
the median cells, thus revealing an attractor state. Yet it
was noted [11] that the divergence lasted long enough
to allow different propensities for either subpopulation,
i.e. low and high Sca-1, to enter into a transient state
that primes them for either the erythroid or the myeloid
lineage, as captured by their differential expression of
lineage-specific transcription factors.

For precise characterization of the dynamics by which
population heterogeneity arose in this clonal population
via outliers and subsided ultimately, cells with the low-
est, middle and highest levels of Sca-1 expression were
isolated by [11] using fluorescence-activated cell sorting
(FACS). We call these subsets Sca-1'°%, Sca-1™¢, and
Sca-1"&" Following FCAS, the sorted cells were imme-
diately stripped of the staining antibody and cultured in
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Table 1 Details of competing models for Clb5 data

t Criterion NMIX  TMIX  SNMIX  STMIX  STNMIX
0 fpax 253978 264735 268244 277112 275940
BIC  -503360 -5239.55 -530053 -546869% -544525
D, 00413 00262 00292  00164' 00185
10§, 120111 122487 135782 140531 140680
BIC ~ -235627 -239460 -265132 -2737.09  -2740.08*
D, 00424 00284 00312 00214 00190
20 Qo 546340 546264 486975 479267  -4791.62
BIC 1097272 1098037 980379 965880  9656.69*
D, 00758 00715  00251" 00264 00266
25 foa 704090 698107 699227 691817 691652
BIC 1412773 1401726 1404884 1390982 13906.53"
D, 00147 00145 00155 00077  00075'
30 Q725145 722616 722828 720305  -7201.55
BIC 1454876 1450734 1452076 1447946 1447646*
D, 00218 00175 00143 00129  00110'
35 fax 041358 641258 637492 632038 633420
BIC 1287296 12880.12 1281396 1271404* 1274169
D, 00196 00230 00136  00117' 00152
4§ 462643 462580 454610 442922  -4461.12
BIC 929855 930644 915618  8931.56* 899537
D, 00338 00306 00170  00123" 00184
50 Q128686 112126 -128653  -109380  -1086.34
BIC 261940 2297.35 263703 226070  2245.79*
D, 00222 00145 00218 00139  00132'
60  fpax 201629 -159675 -183523  -157397  -1568.82
BIC 407818 324821 373430 322089  321059*
D, 00540 00203 00339 00172  00131"
75 Qe 814657 781070 777260 777074  -7769.87
BIC 1639386 1573129 15682.55* 1568800 1568625
D, 00219 00119  00079" 00101 01104

Details of competing models for Clb5A data. Here, the notations stand for log-
likelihood maxima ¢ axMaxX BIC values, and distances D,, based on
KoImogorov-SmirnovI?K—S) test statistic. The abbreviation of models are the
normal mixtures (NMIX), the t mixtures (TMIX), the skew-normal mixtures
(SNMIX), the skew-t mixtures (STMIX) and the skew-t-normal mixtures
(STNMIX), respectively. According to BIC and D, the optimal selection of the
STNMIX model with equal dfs is evident for most points. The smallest values
of BIC and D, are indicated by * and , respectively.

standard growth medium. Subsequently, Sca-1 fluores-
cence intensity were measured individually for each of
the 3 subpopulations as time course data. Similar mea-
surements were made for an original clonal population
of EML cells for comparison (we call it Sca-121).

We applied the StateProfiler framework to model the
flow profiles for 14-point time course data for each of the
4 populations. Often finite mixtures of Gaussians are used
for modeling the theoretical subpopulation structure in
such profiles [11,20]. However, using Gaussian compo-
nents, precise modeling in the presence of outliers due to
cell-to-cell heterogeneity is particularly difficult for clonal
populations. This is because an optimal model must be
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Table 2 Measuring dispersion of events at each time
point

Time Gap1 Gap2 SE1 SE2
0 0.689 -0.170 0.016 0016
10 0436 -0.335 0.016 0.019
20 0.022 -1.245 0.012 0016
25 0.203 -0.789 0.013 0018
30 -0.338 -0.164 0.016 0.015
35 -0.439 -0.223 0.013 0014
40 -0.371 -0.403 0.015 0015
50 0.281 0.233 0.015 0015
60 0510 0.096 0.016 0014
75 -1.550 0.100 0.013 0014

Measuring dispersion of events at each time point. Gap statistics for CIb5A
(Gap1) and CIb6A3P (Gap2) and associated standard errors.

able to accommodate such heterogeneity without requir-
ing extra components, but Gaussian components with
sharp tails are hardly robust against outliers. It leads to
sub-optimal models with spurious subpopulations, which
makes their biological interpretation difficult.

StateProfiler addressed the modeling problem in two
ways. First, its skew £-Normal components are robust to
outliers and asymmetry in the distributions. This helps
in modeling transitional features even if they lead to
unusually shaped or heavy tailed distributions. Second,
even if redundant subpopulations were identified, the
new merging procedure in StateProfiler can re-construct
any significantly overlapping components in a statisti-
cally optimal fashion, i.e. to produce a combined profile
by causing minimal change in entropy of the model pre-
and post-reconstruction.

The dual advantages of the StateProfiler modeling algo-
rithm allowed us to compute highly accurate profiles of
Sca-1 expression in the time course datasets for the three
sorted and the unsorted EML cells. The steps of the mer-
ging procedure through which an optimal structure for
the model is “stitched” together are illustrated with an
example in Figure 4. Finally, we compared the divergence
of the 3 sorted subsets from the corresponding unsorted
population using Kullback-Leibler distances between the
probability density functions specifying their profiles. A
visual comparison of the profiles is shown in Figure 5. The
trend of decreasing divergence, as the 3 sorted profiles
become similar to the unsorted profile with progression of
time, is shown in Figure 6.

StateProfiler’s parametric characterization can reveal
various features and trends of interest in terms of specific
parameters. For instance, we observe that by 3 days, both
Sca-1™ and Sca-1M8" have already started to resemble
the unsorted population, and by 6 days, they actually have
their own low Sca-1 tails. Another trend of possible inter-
est is the slow but continuous fluctuation in the propor-
tion of low Sca-1 outliers in the unsorted population.
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Finally, it appears that the eventual stable state when the 3
profiles finally coincide is reached at a point of time much
later than 9 days, as suggested by [11], and takes probably
double that time (432 h). In the mean time, as we see in
Figure 6, the states might continue to drift closer and
apart as in a dynamical system exhibiting multistable

behaviour. If indeed the departure from the average state
has biological functionality in the priming of cell fate com-
mitment, then a non-monotonic, delayed restoration of
the underlying molecular mechanisms may be justified by
having more than a few cells with random fluctuation and
call for further investigation.
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Figure 4 An example of merging mixture components. The Sca-1 expression data for the unsorted population of EML cells at 264 h is
shown in the histogram. At each step of the merging algorithm, the fitted profile is shown as a thick grey curve, and the individual
components in think black curves. (a) Initial profile computed by Greedy EM with g = 5, Entropy = 2351. (b) Merged profile with g = 4, Entropy
= 573. Combining a group of components in the left significantly reduces entropy. (c) Merged profile with g = 3, Entropy = 297. (d) The final
merged profile with g = 2 components and Entropy = 48.

Conclusions

In this study, we described StateProfiler, a framework to
construct temporal profiles with flow data, which can
facilitate parametric modeling of cellular state transi-
tions Towards this, we presented 3 key features of the
framework. First, we described a finite mixture of skew
t-Normal distributions. Second, we presented a new
greedy EM algorithm for fast and optimal model selec-
tion. The parsimonious approach of our greedy algo-
rithm allows us to detect the variation in the features as
and when they appear and disappear at different points
of time thereby offering a parametric characterization of
the overall nature of state transition. Third, we designed
a mixture merging procedure for ensuring robust esti-
mation of the fitted profile. The code implementing the
framework is available from the authors upon request.
Indeed the proposed framework is effective, general and
may be applied to other similar domains.

Methods and materials

Mixtures of skew Student-t-normal distributions

We describe the skew ¢-Normal mixture model
(STNMIX) of StateProfiler. To simplify notation, we let
¢(.) and @(.) denote the probability density function
(pdf) and the cumulative distribution function (cdf) of
the standard normal distribution, respectively. Let

t(x|§, a2, V) =

I'(v+1)/2) 14
'(v/2)/mve

denote the pdf of the ¢ distribution with location ¢,
scale 6® and degrees of freedom (df) v, and #(x|v ) sim-
ply for the case when & = 0 and ¢ = 1; and let I'(o,8) be
the gamma distribution with density g(x|o, B) « x* 'exp
{-Bx}. We start by defining the STN distribution and
then note further properties.

As introduced by Gémez et al. [21], a random variable
Y is said to follow the STN with location parameter ¢ €
R, scale parameter o’e (0, o0), skewness parameter A €
R and degrees of freedom v € (0,e0) it is has the density

(x _ é:)2)—(u+1)/2

vo?

0 )= 20 0% (7€), 0

We shall write Y~ STN(¢,6%A,v) if Y has the density of
(1)

Ho et al. [13] give following hierarchical representa-
tion of STN to establish an EM-type algorithm [22].

] N (e ol o2
ITN + I’ 7
4 r+k2y T+A2
7+ 22
ylt ~TN|{0O, ;(0,00) ],
T

T ~ T (v/2,v/2),
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Figure 5 Comparison of time-course profiles. The temporal profiles of the 3 sorted subsets and the unsorted clonal population are
constructed with StateProfiler, and plotted for visual comparison.

where T N(y, 0% (a, b)) represents the truncated nor-
mal distribution for N(y, 6°) lying within the truncated

interval (a, b).

Consider # independent random variables Y3,..., Y},
which are taken from a mixture of STN distributions.

The pdf of a g-component STNMIX model is

8
Fi1©g) =Y wiyr (y;16:),

i=1

3)

Where w,’s are mixing proportions which are con-

strained to be positive and Zé_l w; = 1,%(yj16;)is the

STN density defined in (1) and ég: (Wi Woo1, Oy Op)
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KL distance

to be monotonic.

Figure 6 The trend of convergence to the unsorted profile. Kullback-Leibler (KL) distance of the profiles for each of the 3 sorted
subpopulations from the unsorted profile at a given time-point. While the distances decrease with time, the trend is slow and does not appear

72 144 168 216 264 336 384 432

Time (h)

represents all unknown parameters. Note that the com-
ponent vector 6; consists of (&, 07, Ai, ;).

Based on (2), a practical ECM/ECME algorithm [23,24]
proceeds are described by Ho et al. [13] as follows

E-step: Given O, ®( ) ,compute followmg z l(h),

(h)and A(h)forz—l,,gand]—l,,n !

A(h .
S _ Wi 1//(}’1‘|9i( ) ) _ Vl( Vi1
g fylom) oy ftfj(h)
~(h) ~(h) | ~2(h)
V. 1 v+ U
I’(\'lgh) =DG ( 1 2+ ) _ log 1 5 J ,
A(h)A(h)
_imgm , OO )
11] 1] d)(}\(h) (h )

where i u =(y— éi(h))/c?i(h).
CM- step Update the estimation by

Ah)  22(h)3(h) A (h)2(R)(h
cy B0 32000 50300500
= A(h) ) 3200500
271 ij + A

2(h+1) (h) A(h) (h+1)
Oi = A(h) Z Zi Ty (YJ )
1

A(h) (h) A (h+1
}“‘(h+1) _ Z]nl ij 11) 1]

i Zn Ah) %(hu)

o) = argmfx{ 2 10g<2) —logl’ (1;_1) * (2)1’5;")}'

wl(hn] _ flfh]/n

’

~(h ~(h 2 (h n A(h) A(h
where ng)—Z" 2, b“zzj l(]) 15)}’1’

j=1 1]
i (h) Toa(h) s (h) Q) ’ 21 ()
b31 Zj:l Zij ylij ’ b31 Z] 1 1] Vll] ’
~ (h+ hA+1 l;+1
ul]( - (YJ - éi( ))/Ui( )'and

~ (h+ hA+1 ;’.\1’1
“1]( 1) _ (Yj _ gi( ))/Ui( )_

If the dfs are assumed to be identical, say v; = ... = v,
= v, we could update {(h)by

) arg max '2108{2 A v (yiléi[ml)'&f(hﬂ)' ):,(M),v)]

The E-step and CM/CML-steps are alternately
repeated until a suitable convergence rule is satisfied, e.
g., the Aitken acceleration based stopping criterion
¢+ where ¢(+1)is the observed log-likelihood evalu-
ated at @éh)lggg”)is the asymptotic estimate of the log-
likelihood at iteration # + 1 (see [18]; Chap. 4.9) and ¢
is the desired tolerance. For numerical analyses in this
paper, a default value of ¢ = 107 was used to terminate
the iterations.

Greedy learning for STN mixtures

In this section, we present a new greedy version of the
EM algorithm to determine the optimum number of
components in the fitting of STNMIX models. The
greedy EM approach was first introduced by Vlassis and
Likas [25]. The fundamental concept of the greedy EM
algorithm is to start from a minimum number of
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components and sequentially insert a new component to
the mixture until convergence is achieved. The stopping
criterion can be a pre-specified maximum number of
components or a pre-specified convergence tolerance.

Suppose a new component ¥ (¥jl6g.1) is added to a g-
component f(¥j10,). The resulting mixture takes the
form of

fjlOg41) = (1 — a)f (y1Oy) + avr (¥jl0g41),

where 0 < a <1 and Og = (®g, a, 64.1) with

B.1being the added parameters (&¢+1. g”, Agels Vgel).
Given an old mixture f (y]|Og) the weight a and 0g,1are
optimally chosen to maximize the new log-likelihood

Lo =Y 10gf(Og1)
-1 (4)

=37 logl(1 — a)f (1Og) + a¥ (51611

To find the optimal solution in (4), we start by per-
forming a local search with for the newly inserted com-
ponent. This gives rise to the following partial EM steps
where g denotes and the partial ML estimates of 6. For
notational simplicity, the subscript (g + 1) is suppressed
below in the Partial E-step.

Partial E-step: Calculating the conditional expectation
of latent variables at the kth iteration, this yields

50 _ a®y (y16®))
] ~ A’ - ~ !
(1= a®)f(;105") + a1y (160
A = 5 (k) 7 (k)
o Wl s wge , 005 )
] Pk 4 ﬁ,z(k) NSV J (D(X(k)ﬁ(k))r
] J

50 4 1 ) 4 720
10 DG(U 2+ )—log( )

Where i ~(k) = (y; — EW)e®.
Partial M -step: Updating the new parameters in (a, 0,

+1), we get
n ~(k)
a0e1) _ 2%
0
g“‘”) E(k) + iz[k)g(k) _ 5(k);\(k)ggk)
g+l = S()=(k) | = ~(k)’
Z]nl () () Az(k)z;'zlz;)
) ~ (% z 2
o) _ 2o ]-() By — )
Tg+1 n 50 ‘
2%
n 2050k
)‘g:]) - Z n ~(k) 2[k+1) ’
Y% i

Ngql) =arg max{ log (;)

—logl’ (2) + ;Ei")} /
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Where

= (k n(k
b(2)=z ()YJ,

5 k) ~(k) (k)
b3 Z] 1 1] ’

b = X 2}’” & — 5 37",

The above partial EM steps constitute a fast and sim-
ple procedure to locally seek for the maximum of Lg.1.
To our experience, this local search scheme is very sen-
sitive the initialization of @ and ¢,.,. Similar to Vlassis
and Likas [25], we provided a global search strategy for
extracting proper parameter initialization for a4 and
g;fi, By a second-order Taylor expansion for Lg.1, we
obtain the following approximation:

— (Yj _ é(k+1))/&(k+l),

= (k n(k
b(2)=z ()YJ,

and

~ (k1)
Y

[Lgu (a0)]”

: , (5)
2£g+1 (do)

£g+l = »Cg+1(a0) -

where L,,1(ao) and Lg,;(ao) are the first and second
derivatives of L1 evaluated at a = ao. It can be
deduced from (5) that a local maximum of Lg.1 around
ap = 0.5 is given by

Ly =) log (f(m@g) +2‘/’(V1'|9g+1)>
i1

n 2 (6)
[Zj:l 3j(9g+1)]
+
2 Z;l:l 8]‘2(0g+1)
with
oy f0i1Og) = ¥ (316.1)
8j(Ogs1) = . .
f19g) + ¥ (j10g41)
So the the optimal value of a can be calculated as
n
1 - 8i(0qs
a-t (1o Zr i) o)
2 2 o187 (0g11)

Following the suggestion of Li and Barron [26], one
may set 4 =05 forg=1and a=2/(g+1) forg=>2as
a default recommendation when the estimated value (7)
fall outside the range of (0, 1).

In our global search, a convenience choice of a; ©
n'® times half of the sample variance sy whereas kgE?)
and vg12(?) are always fixed at 0 and 10, respectively.
For the initial choice of ., we search over the 5th,
10th, 15th, ... 95th quantiles of y and set Eg&% to the one
that maximlzes (6).

The implementation of the greedy EM algorithm is
summarized below.

)
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1. Start with ¢ = 1 and compute the ML estimates of
the single-component STNMIX model via the
ECME algorithm.

2. If g >1, estimate @, via the EM-type algorithms.

3. Perform a global search to find a proper initializa-
tion of @ and g, .

4. Apply thf: %)arfial EM-steps until convergence. For
instance, |£g;/£g:l) —1] <107°.

5. If Lo1 < Lo +m then terminate, where m >0 is a
penalty term. Otherwise allocate the new component
to the model and go to 2. Set g =g + 1.

Given r candidates (we have 19 quantiles of sample),
the time complexity of our greedy EM algorithm is O
(ngr). If overall sample was considered as candidates in
the global search, then the running time is similar to
Vlassis and Likas [25].

Merging mixture algorithm

The greedy EM algorithm provides a convenient method
for automatically selecting a number of components for
a mixture model under reasonable assumptions (such as
convexity of components). Yet if data have certain spa-
tial features due to distributions with unusual shapes or
low separation [8], it can lead to overlapping compo-
nents, and hence to overestimation in the number of
components in spite of the parsimonious approach. To
augment our greedy algorithm for obtaining a robust
estimate of the number of components, we extend the
merging mixture approach of Baudry et al. [27] to skew
t-Normal components. While merging techniques have
been applied in the past to symmetric distributions
[27,28], designing a procedure for asymmetric distribu-
tions obviates any need for spurious components that
may be required for the sole purpose of modeling asym-
metry, and thus avoids redundant merging.

The basic idea behind the procedure is to use the
maximum merged entropy to iteratively combine two
possibly overlapping clusters, until the result of combi-
nation belong a single cluster (see implementation in
[28]). The steps of the merging algorithm in StateProfi-
ler are described below.

1. Calculate the mean entropy of maximum estima-
tion for ¢ components as

n g
Ent(g) = — Z 22,7 lOgiij >0,

j=1 i=1

where Z;j denotes the posterior probability given @,
fix at O,.
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2. Two clusters [/ and !’ to be combined are those
maximizing the criterion:

n
— > {zalogZi + 2y logZa }
j=1
n
+ Y (20 +2a) log (2 + )

j=1

among all possible pairs of clusters (/, [).
3. Obtain the merged entropy

n

Ent(g—1)=—> 1) Zjlogz;

=1 |iAr

+Ziur logzir }

where Zijjur = Zii + Ziy is the posterior probability of
the new cluster [ U /.

4. Update % consists of the unmerged and merged
posterior probabilities.

5. Set g = g - 1 and go to 2. Repeat until g = 1.

6. A solution of number of components can be iden-
tified (i) a sudden jump or “elbow” in a plot of the
entropy of clustering versus the number of clusters,
or (ii) peaks in a plot of the number of clusters ver-
sus the difference in entropy.

Data and experiments

For details of the yeast cell cycle experiments and time-
course data analyzed by StateProfiler, see [4]. For details
of EML cell differentiation data, see [11].
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