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Abstract

estimation the model parameters.

problem is solved by Levenberg-Marquadt algorithm.

Background: In this paper we deal with modeling serum proteolysis process from tandem mass spectrometry
data. The parameters of peptide degradation process inferred from LC-MS/MS data correspond directly to the
activity of specific enzymes present in the serum samples of patients and healthy donors. Our approach integrate
the existing knowledge about peptidases’ activity stored in MEROPS database with the efficient procedure for

Results: Taking into account the inherent stochasticity of the process, the proteolytic activity is modeled with the
use of Chemical Master Equation (CME). Assuming the stationarity of the Markov process we calculate the
expected values of digested peptides in the model. The parameters are fitted to minimize the discrepancy
between those expected values and the peptide activities observed in the MS data. Constrained optimization

Conclusions: Our results demonstrates the feasibility and potential of high-level analysis for LC-MS proteomic data.
The estimated enzyme activities give insights into the molecular pathology of colorectal cancer. Moreover the
developed framework is general and can be applied to study proteolytic activity in different systems.

Background

Motivation and related research

Recent advances in high throughput technologies, which
evaluate tens of thousands of genes or proteins in a single
experiment, are providing new methods for identifying
biochemical determinants of the disease process. One of
the experimental technologies allowing us to study mole-
cular basis underlying specific disease phenotype is mass
spectrometry (MS) [1,2]. Observed large variability in
mass spectrometry images of blood samples was attributed
to ex vivo proteolysis.

Paradoxically, one can take advantage of these findings
in cancer diagnostics [3,4] as diagnostic peptides originate
after ex vivo proteolytic processing of high abundance
protein fragments.
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As development in hardware and software progresses,
we can obtain better and better estimates of peptide con-
centrations in body fluids, which give many insights into
the peptide degradation process. Proteolysis modeled in
this paper is the process in which a protein is broken
down partially, into peptides, or completely, into amino
acids, by proteolytic enzymes present in blood serum.
Among proteolytic enzymes two main groups are distin-
guished. One group includes exopeptidases which require
a free N-terminal amino group, C-terminal amino group
or both and cut the peptide not more than three amino
acids from the terminus. Enzymes belonging to the sec-
ond group are called endopeptidases and they tend to
cleave away from the end of the peptide.

Our results

In this paper we present formal mathematical model
describing serum proteolysis dynamics. We focus here
on the activity of peptide cutting enzymes (peptidases).
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The model parameters are inferred from liquid chroma-
tography tandem mass spectrometry data (LC-MS/MS).

The dynamical changes in peptide composition caused
by proteolytic degradation are described by means of bio-
chemical reactions network. It corresponds to Markov
process whose evolution is governed by the system of
stochastic differential equations (i.e. Chemical Master
Equation).

The current approach significantly extends the exopep-
tidase activity model presented in [5]. The integration
with peptidase database MEROPS (http://merops.sanger.
ac.uk) [6,7] allows for modeling the endopeptidase activ-
ity as well. Moreover the model parameters inferred from
MS data correspond directly to specific proteolytic
enzymes present in each sample. On the other hand tak-
ing the splitting reaction (coming from endopeptidase
cleavage A — B + C) into account significantly compli-
cates the mathematical description. There is no analytical
solution of the CME as in [5]. Instead we calculate the
expected amount of peptides in the stationary state of the
process. Those values are compared to the MS readouts
for the corresponding peptides. The model parameters
are calculated to minimize the discrepancy between
expected and observed amount of each peptide.

Organization of the paper

We start by description of our model presented with the
use of so called cleavage graph, then we present computa-
tional methods to interpret MS data (to fill the graph with
appropriate readouts values) and to infer the model para-
meters. The constrained optimization problem is formu-
lated and solved with Levenberg-Marquadt [8] algorithm.
We estimate the convergence and statistical significance of
estimation procedure outcomes. Finally, identified active
peptidases for both groups of healthy donors and colorec-
tal cancer patients are presented. A preliminary version of
this paper was presented at 1st IEEE International Confer-
ence on Computational Advances in Bio and medical
Sciences (ICCABS 2011). In this extended version we have
significantly modified the Results section, by updating the
MEROPS data, fixing some errors in scripts for data pre-
processing and presenting more statistical analyses.

Model of proteolysis process
To illustrate the process of peptide degradation we
introduce the cleavage graph, whose vertices correspond
to peptides and proteolytic events. More formally, con-
sider the bipartite digraph, (V UW, &), where the first
set V (peptide nodes) corresponds to all subsequences
of the peptides considered and the second set of event
nodes YV corresponds to all possible proteolytic events.
By proteolytic event we mean the cleavage of a speci-
fic substrate at specific site made by a specific peptidase.

Page 2 of 9

Hence each event node is labelled by a peptidase, and
has one ingoing edge and two outgoing edges (leading
to peptide prefix and suffix obtained by cutting the sub-
strate at a single site).

Now we visualize the peptide subsequences as parti-
cles placed at peptide nodes of the cleavage graph. The
particles are flowing through the edges of the graph
according to the Petri net operational semantics, i.e. the
transition (event node) consumes one substrate particle,
and produces two particles. To assure the stationarity of
the system we allow for creation and degradation of par-
ticle at any node. We also add the source and the sink
in the graph modeling the creation of precursor peptides
(e.g. caused by the activity of some endopeptidases,
which is not captured by our model) and complete
degradation of short peptides. The cleavage graph is
constructed for every processed MS sample. The peptide
nodes are appropriately filled with mass spectrometry
readouts and specific enzymes are assigned to event
nodes according to data about real cleavage events (see
the next section for details).

A small exemplary fragment of the cleavage graph is
depicted in Figure 1 five proteolytic events which engage
four peptidases are presented. For U, v, w € ) we use
the notation u = viw when peptides v and w can be
obtained directly by cutting u (v is a non-empty strict
prefix and w is a non-empty strict suffix of u).

The operation } can be viewed as string concatena-
tion. To identify a cleavage site we write simply viw.
Denote by P the set of all peptidases whose activity is
modeled. Coefficients pf,, (for peptidase p € P and
cleavage vfw) put near the event nodes in Figure 1 cor-
respond to the affinity between the peptidase cleavage
pattern and the cleavage site composition (we call them
affinity coefficients). They are defined for every possible
pair of cleavage viw and peptidase p and calculated at
the graph construction stage. We assume that the clea-
vage process has reached the equilibrium. Then for
every peptide node y € V' the following balance equa-
tion [9] holds:

(/7; + Z xupgw)\p"' Z xup(r,y)\r =xv(§0j_ + Z p;y)\t) (1)
u=viw u=qtv v=xty
where ¢ is an activity of creation the sequence
represented by v, ¢ is a degradation activity, *x and %y
are expected amounts of peptides u and v, pf;y is an affi-
nity coefficient and Ay is the activity of cleaving by the
peptidase P engaged in the cleavage xty. Left hand side
of the equation above refers to the sum of particles that
flow into the node v, while right hand side to the sum
of particles that flow out from this node. From the bal-
ance equation above one can easily calculate the
expected number of particles in every peptide node Xy.
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Figure 1 Exemplary cleavage graph. The cleavage graph for precursor peptide (apolipoprotein E fragment) AATVGSLAGQP, proteolytic events
are based on MEROPS database [6].

Methods
In this section we describe the process of cleavage graph
construction. It has several phases: firstly the set of
nodes are determined. Peptide nodes correspond to the
sequences identified in tandem MS experiment, while
event nodes are selected carefully according to the
knowledge from MEROPS database (version 9.4.). Dur-
ing the second stage the graph should be filled with
appropriate readouts from LC-MS spectra. To this aim
we have to determine which signal in two-dimensional
spectral map corresponds to a given peptide sequence
(i.e. node in the graph) and to assign to this node the
number of particles reflecting the signal strength.
Having the cleavage graph we solve the constrained
optimization problem to infer the unknown enzyme
activity coefficients which minimize the discrepancy
between expected number of peptides (calculated
according to the model) and the observed signals in MS
samples.

Cleavage graph construction
Let us define the set of amino acids together with the
space letter Z ={A,C,D, ...} U{—} and the set of loci
surrounding (4 from both sides) the cleavage site
J ={P4,...,P1,Pl,..., P4},

For each peptidase p € P we construct (based on data
collected in MEROPS database) the frequency matrix

FP = (F); for ic T, j€ J. The value f/ is the fre-

1
quency of amino acid i on position j in all cleavage
events, in which p is involved. Exemplary frequency
matrices for elastase and trypsin enzymes are presented
in Figure 2.

Using frequency matrix we construct so called
sequence logo [10] to represent the consensus sequence
surrounding given cleavage site. Then for any peptidase
p € P we detect the cleavage event cutting given pep-
tide sequence if it matches the consensus sequence well.
For more detailed description see Web Supplement
(http://bioputer.mimuw.edu.pl/papers/proteolysis/).
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Figure 2 Frequency matrix for elastase-2 and trypsin-1. Frequency matrices for elastase-2 (left) and trypsin-1 (right) based on MEROPS
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Affinity coefficients
Let us consider cleavage viw made by peptidase p € P.
Assume, that the cleavage point is surrounded by the
sequence of amino acids (possibly with some empty
positions at the ends) dapr...dpiapr...dpr where
1<kl<4

We define J' ={Pk,...,P1, P1’,...,PI'} C J. Then
we calculate the coefficients p}, as follows (¥ is the
normalization constant):

p Py
pow =y (T fia) el )
jed

Filling the graph with LC-MS readouts

MS samples were acquired from the blood serum of 20
colorectal cancer patients and 19 healthy donors. Each
sample was digested by trypsin before LC-MS proces-
sing. Having so called precursor peptides (which were
sequenced by tandem MS), we determine all their subse-
quences that can be observed during the cleavage pro-
cess; they form the peptide nodes of the cleavage graph.
To this end we digest the precursor peptides in silico
using the set of human enzymes from MEROPS.

Then we look for corresponding signals in MS spectra
as follows: using mz2m tool [11] we obtain a list of
mono-isotopic peak coordinates (m/z, retention time
and charge) together with their intensities. The search is
processed for each sequence charged by each of eight
possible charges (values from 1 to 8) detected by FTICR

spectrometer. Expected value of retention time for each
peptide is predicted from its amino acid composition by
linear regression model [12] (trained by the set of
known retention times for precursor peptides). Then we
look for MS signals that are closest to expected ones
(nearest neighbor classifier) and their distances do not
exceed given threshold. Notice, that we ignore LC-MS
signals corresponding to peptides not sequenced by tan-
dem MS and theirs degraded forms. Therefore we use
only partial information about degradation scheme, and
possibly the activity of some enzymes engaged in the
process cannot be inferred. By applying this procedure
we fill many peptide nodes by appropriate peptide
amount. However a large percent of the nodes remain
empty. Finally, we prune the cleavage graph by remov-
ing recursively empty sources and empty leaves.

Constrained optimization

Let us denote by S, £ C V respectively, sets of sources
(i.e. nodes without ingoing edges) and leaves (nodes
without outgoing edges) in the cleavage graph. Let
n=|S|+I|L]+|P| and z = ((Sﬂﬁ)ue& (‘/’d})weﬁr (Ap)pep) eR"
denote the vector of model parameters to be inferred.
We are mainly interested in estimation of the para-
meters (Ap)pe which describes activities of peptidases.
We define ® = (¢,)vev recursively for all y € V' sorted
topologically: o

1.if v S then $(z) = > phhe
v=x{y



Dittwald et al. BMC Bioinformatics 2012, 13(Suppl 5):57
http://www.biomedcentral.com/1471-2105/13/S5/S7

2. if vgS and ve¢ L then
> du(@)phurp + X bul2) ol
TOEE o
' Z P,tcy)\t
v=xty
> ¢u(z)p5w)\p+ > ¢u(z)p2vkr
3.if v¢ L then _u=viw usgty )
9.(c) - o

The graph pruning grants that SN L =0, and the
topological ordering assures that the function v is well-
defined.

Denote by y; the amount of peptide sequences identi-
fied in LC-MS/MS experiment in the i-th peptide node,
and by O C V set of vertices with y; > 0, |O] = m. We
solve non-linear least squares problem with objective
function ¥ = (¥3)yeo defined for each v e @ by the
formula v, (z) = ¢y(z) — yy, which is well formulated and
solvable for m > n (fortunately holding in our case for
all investigated MS samples). We applied Levenberg-
Marquadt algorithm (LMA) [13] to find optimal config-
uration of model parameters.

Compositional data

To make the outcome of estimation procedure compar-
able across different MS samples we normalized the vec-
tor of parameters corresponding to peptidases’ activities.
Notice, that normalization does not change the value of
function ¢, for any v € @ . The normalized activities,
say vector x, lies on the simplex, therefore we should
apply the appropriate transformation (called centered
log ratio clr(x)) to deal with them in Euclidean space
(see the theory of compositional data analysis [14] for
details). Let g(x) denotes the geometric mean for vector
x, centered log ratio is defined as follows:

.....
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Results

The optimization procedure was applied to infer
the enzymatic activity for 39 LC-MS samples, i.e.
for each sample we obtained optimal parameters
2= ((@2)ues (93 wess (hp)pep)-

We run LMA for each data set 7 times (each time
from different starting point) and use the maximal num-
ber of iterations set up to 200 as a stop criterion. To
measure the quality of estimation we use relative
squared errors (rse) [15], i.e.:

Zie@ (i — }’i)2
Yico (i —vi)?

where §; = ¢;(z) and y; = ,1, Yico Vi

1se(z) =

Adequacy of the model

Aiming in justifying the adequacy of the proposed
model we made the following experiment. The estima-
tion procedure was run to obtain the expected number
of peptide sequences j, in every peptide node v e O.
Then we have filled the cleavage graph with synthetic
data y; generated independently from normal distribu-
tions with mean j, and standard deviation o € {0.1,
0.01, 0.001} (with additional constraint y, > 0). In this
way we obtained three synthetic data sets, which are in
the good, moderate and weak accordance with our
model. As we expect, the quality of estimation proce-
dure reflects the discrepancy with the model. Figure 3
compares median relative squared error for real data
and three data sets generated from the model with dif-
ferent level of discrepancy.

Statistical significance of estimation quality

Optimization procedure yielded rather small rse errors
for most samples. However, we were interested how the
final relative squared error depends on the input data,
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Figure 3 Comparison of median value of relative squared error. Comparison of median value of relative squared errors for real data and
synthetic data generated according to the model (plot for the sample no. 5 on the left and for the sample no. 19 on the right).
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and whether results obtained by us are statistically sig-
nificant. To answer this question for each MS sample x
we have generated vector { of 1000 randomly permuted
variants (i.e. the topology of cleavage graph remained
the same, while the amounts of peptides assigned to
nodes were permuted). Then we run the optimization
procedure for all data set to obtain the experimental dis-
tribution of rse values. Now, we can define p-value for
rse(x) as follows:

{i: rse(¢&;) < rse(x)} | (3)

|
p - val(rse(x)) = 1000

Table 1 presents p-values and corresponding rse
values for all analysed MS samples.

Biological significance of inferred enzymes
Figure 4A and Figure 5A present the inferred peptidases’
activities for samples no. 5 (healthy donor) and 19 (col-
orectal cancer patient). Subfigures B-D illustrate the
accuracy of estimation procedure for synthetic data sets
for which the estimated parameters are known and
equal to those inferred from real data (red line). We
observe once more, that the quality of estimation corre-
lates well with the discrepancy of data (for smallest stan-
dard deviation, i.e. Figure 4D and Figure 5D, the
estimated parameters are close to real ones). Analogous
results are obtained for other analyzed samples.

The set of identified enzymes do not vary significantly
between all investigated samples: there are 6 peptidases

Table 1 Final relative squared errors (rse) and p-values
(calculated from rse distribution).

sample final rse  p-value sample final rse  p-value

19 0.008 <0.001 20 0.011 <0.001
5 0.012 <0.001 1 0.016 0.001
9 0.034 0.001 2 0.026 0.005
14 0.091 0.005 13 0.061 0.007
4 0.063 0.008 10 0.065 0.008
" 0.031 0.01 30 0.136 0.021
6 0.125 0.026 29 0.163 0.029
15 0.058 0.032 28 0.185 0.057
7 0.131 0.076 24 0.11 0.078
16 0.134 0.093 32 0.392 0.11
8 0.156 0.144 23 0379 0215
33 045 023 22 0358 0234
27 0483 0.257 26 0471 0.29
21 0.367 0.301 18 0.262 0317
25 0.521 0.324 12 0.332 0434
34 0.589 0436 38 0.589 044
35 0.628 0452 31 0436 0623
37 0478 0.529 36 0.567 0.64
3 0.637 0.729
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identified in all samples and 19 peptidases found in at
least one sample (listed in Figure 6). For further analysis
we selected 37 samples (19 healthy, 18 diseased),
for which acceptable estimates had been obtained (c.f.
Table 1). We excluded two colorectal cancer samples
(no. 17 and 39) as they perform significantly different
than others (one required much higher threshold in
nearest neighbor classifier during MS signal detecting
phase and the other returned relative squared error
much higher than 1).

Heatmap in Figure 6 presents the activities of pepti-
dases identified for these samples. Hierarchical clustering
of activity profiles groups samples into clusters being in
good accordance with patient’s diagnosis. The diverse
serum proteolytic activity for cancer patients and healthy
donors has been reported in many papers (see e.g. [3]). In
[16] has been showed that patients exhibit different enzy-
matic activities than healthy subjects for following pepti-
dases (identified by our method as well): trypsin,
cathepsin D and elastase (c.f. Figure 6). We have also
detected the family of matrix metallopeptidases, whose
role in cancer development and progression is significant
[17,18]. Similarly calpain enzyme is used as a marker for
the early detection of colorectal carcinoma [19] and inhi-
bitors of cathepsins as possible therapeutics in colorectal
diseases [20]. Moreover, cathepsins (because of their abil-
ity to degrade extracellular matrix proteins) have been
implicated to play a role in invasion and metastasis of
colorectal cancer.

We have conducted principal component analysis for
enzyme activities inferred for 19 samples having smallest
p-values (c.f.Table 1). The scatterplots in Figure 7 illus-
trate the outcome of the analysis. Well separation of two
groups of patients is visible on projection to the plane
determined by the second and third principal compo-
nent. Closer look at corresponding loadings suggests the
crucial role of elastase and cathepsin enzymes in those
components.

Conclusions

In this paper we significantly extend formal model of
protein degradation proposed in [5]. The extension is
twofold: firstly current approach encompasses endopep-
tidase activity as well (while [5] deals with exopeptidases
only), and secondly we integrate our model with knowl-
edge about proteolytic events stored in MEROPS data-
base [6]. Moreover, we formulate the task of inferring
parameters of our model as constrained optimization
problem, which we solve by standard procedure for
non-linear least squares. This approach turned out to be
more time efficient for complex MS data when compar-
ing to previous Markov Chain Monte Carlo method (in
[5] the Metropolis-Hastings algorithm was applied to
sample parameters from the posterior distribution).
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Being aware of the problems with quality and reprodu-
cibility of the LC-MS experiments we selected for
detailed analysis only a part of accessible data, namely
those for which the parameter estimation procedure con-
verges and yields small error. The expected retention
time for investigated substances is obtained by rather
unsophisticated approach (i.e. linear regression model),
which may have impact on the analysis. Preliminary out-
comes for these samples are very promising: identified
enzymes are known to play a crucial role in colorectal
cancer. However, our results are far from any medical
diagnosis. The proposed method constitutes the proof of
concept and requires more profound investigations meet-
ing all clinical standards. We also should discuss here the
limitations of our methods applied to MS data obtained
by present technologies. There is a lot of tryptic peptides
which are not identified by tandem mass spectrometry.
LC-MS signals corresponding to these peptides and
theirs degraded forms are missed during cleavage graph
filling phase. Therefore the inference of proteolytic
enzymes’ activities is based on only partial information
and could be incomplete as well. However, it is worth to
noting here that our method would demonstrate its full
potential while applied to high quality data hopefully
obtained from the future MS technologies. One direction
for further development is to focus on cleavage detection
and to apply recently proposed ice-logo instead of
sequence logo [21]. Ice-logo contains the information not
only about residues that are statistically overrepresented
but also about those, that are underrepresented. This
approach could be valuable especially in cases, when, as
in the case of data stored in MEROPS database, we know
only fraction of all proteolytic events.
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