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Abstract

which new therapeutic approaches can be developed.

bacterial species.

Background: Mycobacterium tuberculosis is an infectious bacterium posing serious threats to human health. Due to
the difficulty in performing molecular biology experiments to detect protein interactions, reconstruction of a
protein interaction map of M. tuberculosis by computational methods will provide crucial information to
understand the biological processes in the pathogenic microorganism, as well as provide the framework upon

Results: In this paper, we constructed an integrated M. tuberculosis protein interaction network by machine
learning and ortholog-based methods. Firstly, we built a support vector machine (SYM) method to infer the protein
interactions of M. tuberculosis H37Rv by gene sequence information. We tested our predictors in Escherichia coli
and mapped the genetic codon features underlying its protein interactions to M. tuberculosis. Moreover, the
documented interactions of 14 other species were mapped to the interactome of M. tuberculosis by the interolog
method. The ensemble protein interactions were validated by various functional relationships, i.e, gene
coexpression, evolutionary relationship and functional similarity, extracted from heterogeneous data sources. The
accuracy and validation demonstrate the effectiveness and efficiency of our framework.

Conclusions: A protein interaction map of M. tuberculosis is inferred from genetic codons and interologs. The
prediction accuracy and numerically experimental validation demonstrate the effectiveness and efficiency of our
method. Furthermore, our methods can be straightforwardly extended to infer the protein interactions of other

Background

M. tuberculosis which causes tuberculosis affecting lungs
and other organs is the second largest cause of death
from infectious diseases [1]. An extensive protein-
protein interaction (PPI) network of M. tuberculosis can
lead to more comprehensive screens of cellular opera-
tions. In this context, development of approaches to
infer its interactome will contribute to identifying
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infectious mechanisms, detecting important drug target
proteins and promoting potential therapy innovations.
To date, genome-wide experimental and computational
systems for studying PPIs in M. tuberculosis are unavail-
able [2]. It is necessary to develop approaches capable of
converting available genomic data into functional infor-
mation of protein-interaction map for M. tuberculosis.
E. coli is one of the best model systems to study bacter-
ial physiology [3], with relatively well-characterized
interactome, genome and transciptome [4]. It is believed
that the protein interactions are conserved in different
organisms [5]. The interaction features can be learned
by machine learning methods, such as support vector
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machines (SVMs) [6,7], and also it is common to predict
protein interactions from the known interactions of
other organisms by interolog method [8].

Compared with other methods, sequence-based pre-
diction methods are superior for their simple require-
ment on the data, which could be implemented when
the species have completely sequenced genomes. There
were some studies that are based on sequence informa-
tion have been successfully performed on PPI prediction
of some model organisms such as H. sapiens, S. cerevi-
siae and E. coli [6,9-12]. However, a limitation of these
methods is the requirement of large size of training data
to meet a satisfactory accuracy criterion. For model
organisms, we have a large volume of prior PPIs that
can be used as training data, but there are few experi-
mental data of PPI for some dangerous bacteria like M.
tuberculosis. Thus, a novel integration method is neces-
sary to be developed. In this work, we provided cross-
species PPI predictions in M. tuberculosis by integrating
different types of protein interaction information of
other species. Genetic information in the form of
codons, i.e. tri-nucleotide sequences, are translated into
proteins [13]. It is well known that codon usage is cor-
related with expression level [9,13]. The codon which
carries genetic information specifies the amino acid
sequence in the polypeptide during the synthesis of pro-
teins. The genetics of coding sequences is not only the
blueprint for translating amino acids, but also the con-
tinuous original information for genetic transcription of
gene expression. Here, genetic codons will be selected
as the sequence features in the learning of interaction
patterns. Moreover, the corresponding orthologs of
interacting proteins in other organisms will provide
more information about the potential interaction map-
pings by comparative genomics.

In this work, we developed a systematic method com-
bining heterogeneous data sources to infer a compre-
hensive protein interaction map for M. tuberculosis. The
codon features of interacting protein pairs are detected
and used to train an SVM classifier. Then the interac-
tome of M. tuberculosis is predicted by the codon-based
method. Moreover, the interactions from 14 other spe-
cies are mapped to M. tuberculosis by the interolog
method. The available data from multiple levels includ-
ing gene coexpression, evolutionary relationship and
functional similarity are implemented to assess these
predicted interactions by confidence significance. The
evidence from various sources validates the effectiveness
of our method. The network properties of the con-
structed protein-interaction map are also identified. The
predicted protein interaction network as well as the pro-
posed method provide a framework for the functional
specificities study of M. tuberculosis.
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Results

Predictor performance

E. coli is one of the best characterized organisms [3,4]
and we chose it as a model system for building the pro-
tein interaction map of M. tuberculosis. The positive
and negative sets of protein interactions in E. coli were
designed to test the performance of our codon-based
prediction methods. The genome and proteome of E.
coli were downloaded and prepared for the interacting
sets as well as all known opening reading frames (ORFs)
[14]. The distance of two ORFs in terms of usage of
codon c is defined as

dij(c) = Ifi(c) = fi(9)l,

where f;(c) and fi(c) are relative frequencies of codon c
in ORF i and ORF j. By codon definition, X fi(cx) = 1 and
Yxfilex) = 1 for k =1, 2,..,, 64 in all codons. There are
14058 pairs of interactions and 27882 pairs of non-inter-
actions in 4227 proteins of E. coli. A five-fold cross vali-
dation process is implemented in these pairs, i.e., we
train the SVM classifier based on the related codons in
the 80% interacting pairs forming the training part and
test the prediction in the rest part. Figure 1 shows the
performance of prediction results of receiver operating
characteristic (ROC) curves by the SVM predictor using
genetic codon features. As we know, there are several
codons corresponding to the same amino acid in genetic
code. The prediction performance of merging the fre-
quency of these degenerate codons (‘codon-mer’) is also
shown in Figure 1. The details of prediction precision
and accuracy are listed in Table 1. The SVM predictor
can achieve the prediction accuracy (ACC) of 0.9003 and
the area under curve (AUC) of 0.9507 in the PPI of
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Figure 1 ROC curves of the five-fold cross validation
predictions in E. coli.
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Table 1 Prediction performances of the codon-based SVM
predictor in E. coli

Feature ACC SN SP PRE AUC
Codon 0.9003 0.7576 0.9486 0.8327 0.9507
Codon-mer 0.9595 0.8986 0.9801 0.9386 0.9835

E. coli. These results provide pieces of evidence for the
effectiveness and efficiency of predicting protein interac-
tions from the genetic codons by machine learning
method.

Protein interactions in M. tuberculosis

To explore protein interactions in M. tuberculosis, we
used the formerly trained SVM classifier to infer the
interactions of M. tuberculosis by the codon message of
OREFs in gene sequence level. Based on the genetic
codons of the laboratory strain H37Rv of M. tuberculosis,
we predicted 12,899 interactions in 3,266 proteins.
Furthermore, the known protein interactions of other
species were mapped to the proteome of M. tuberculosis
by interolog method. We collected the documented
interactions of 14 species from PPI databases, IntAct and
DIP, and the sequence features of interacting proteins
were transferred into the M. tuberculosis proteome by
ortholog detection. Table 2 lists the detailed prediction
results by interolog method. So far, we also found 530
pairs of protein interactions of M. tuberculosis from var-
ious databases, such as BIND [15] and Reactome [16].
Combining with these known interactions, we built a
comprehensive protein interaction map totally with
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46,119 interactions of 3,465 proteins in M. tuberculosis.
The inferred protein interaction map of M. tuberculosis
is shown in Figure 2.

Validation results
Interacting protein pairs have been identified with close
relationship of gene coexpression [17], coevolution [18],
similar GO annotations [19], phenotype association and
similar physicochemical elements [20]. For M. tuberculo-
sis species, we got these available heterogeneous data
sources to annotate every predicted interacting pairs.
Firstly, we annotated the predicted interacting protein
pairs by their corresponding Pearson’s correlation coeffi-
cient (PCC) of gene coexpression. For comparison, we cal-
culated the corresponding correlation values of these
same-size random selected protein pairs. Every prediction
was then annotated by a coexpression value in gene
expression profiling. Figure 3(a) shows the boxplot of
coexpression values in the predictions. From Figure 3(a),
we identified that the coexpression values in the predicted
interacting pairs tend to be more correlated when com-
pared to the same-size randomly selected pairs (P-value =
4.69 x 107, Mann-Whitney U test). Secondly, we identi-
fied the evolutionary relationship of the interacting pro-
teins by the clusters of orthologous group (COG)
information. The interacting proteins were detected in
their own COG individually. Figure 3(b) shows the boxplot
of evolutionary relationship values in the predicted inter-
acting pairs and that of the same-size randomly selected
protein pairs. Their difference measured by the Mann-
Whitney U test (P-value = 0.53) is not significant, while

Table 2 Details of predicted protein interactions in M. tuberculosis

Species Database Original PPI Predicted PPI Percentage (%)
By machine learning
E. coli ECID 14,058(positive)+ 12,899 27.97
27,882(negative)
By interolog
Escherichia coli IntAct 14,158 16,468 3571
Campylobacter jejuni IntAct 11,870 7,674 16.64
Treponema pallidum IntAct 3,744 324 0.70
Synechocystis IntAct 2,625 2481 538
Myxococcus xanthus IntAct 384 253 0.55
Synechocystis sp. IntAct 219 220 048
Rickettsia sibirica IntAct 282 24 0.05
Streptococcus pneumoniae IntAct 193 47 0.10
Drosophila melanogaster DIP 22,650 1,558 3.38
Saccharomyces cerevisiae DIP 21,769 2,701 5.86
Caenorhabditis elegans DIP 3,979 229 0.50
Homo sapiens DIP 1,485 84 0.18
Mus musculus DIP 287 36 0.06
Rattus norvegicus DIP 69 2 0.15

Total: 46,119 interactions in 3,465 proteins (with 530 known PPIs)
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Figure 2 Inferred protein interaction map in M. tuberculosis.
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Figure 3 Boxplot of coexpression (a), coevoluation (b) and cofunction values (c)-(e) of the predicted interactions and that of the
same-size random selected protein pairs.
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every predicted interaction gets a confidence value of evo-
lutionary relationship. Thirdly, we calculated the func-
tional similarities underlying these predicted interactions.
We detected the semantic similarity between the gene
ontology (GO) term pairs of interacting proteins. We have
considered the hierarchical structure of GO directed acyc-
lic graph and the specificity of GO terms in the identifica-
tion. We identified the functional relationships between
predicted interacting proteins by three ontology categories,
i.e. cellular component ('CC’), molecular function (‘MF’)
and biological process ('BP’), respectively. The boxplots of
the three values of GO similarities in the random pairwise
proteins and that in predicted pairs are shown in Figure 3
(c), (d) and 3(e), respectively. The predicted interactions
have higher values of functional similarity than random
ones (P-values are 6.63 x107%, < 2.2 x10™® and < 2.2 x107*¢,
respectively), which further provides evidence for the effec-
tiveness of our methods. After annotating from various
information, we provide the evaluation confidence to every
predicted interactions.

Network analysis

For global views of the protein-interaction map, we iden-
tified the topological features of the integrated protein
interaction map and the features of particular interac-
tions. Firstly, we detected the original features in the pri-
mary constructed network by machine learning and
interologs combined with the known interacting protein
pairs. The measures of degree distributions, clustering
coefficients, characteristic shortest path and network dia-
meter are identified individually. Table 3 lists some net-
work properties. Network diameter is the longest path
between any two proteins. The characteristic path length
is calculated by averaging minimum distance between

Page 5 of 10

protein pairs. Clustering coefficient is a measure of
degree to which nodes in a network tend to cluster
together [21]. A network whose degree distribution fol-
lows a power law is often called a scale-free network [22].
These measures refer to the details of the properties of
the inferred protein-interaction map of M. tuberculosis.
The hub proteins as well as interested proteins can be
selected to analyze for particular dysfunctions of
M. tuberculosis. From the validations of gene coexpres-
sion, evolutionary relationship in COGs and functional
similarity, we can check and filter out those pairs consis-
tently included in various level information by evaluating
the reliability of interactions. We then calculated the fea-
tures in the filtered network by omitting the pairs with
lower confidence values, while we kept the predictions
when there are no available evaluations for them. We
also identified the distribution of node degree and found
that the constructed protein interaction network satisfied
the topology features of complex networks [22]. The pro-
cesses are based on the network analysis of fitting the dis-
tribution of a scale-free network, and the parameter y
value is asymptotically in the range 1 <y < 2 in the
power-law distribution fitting. There are 477 hub pro-
teins in the protein interaction map when the degree
threshold is 50. The hub proteins from different thresh-
olds can be found in Additional file 1.

Discussions

In this work, we proposed a method to build the pro-
tein-interaction map in M. tuberculosis by machine
learning and interologs. We obtained the interaction fea-
tures of genetic codon underlying interacting proteins in
relatively well-established interactome of E. coli. The
features of genetic codons of interacting proteins of

Table 3 Topological parameters of protein-interaction map in M. tuberculosis

Threshold Node Edge Diameter Characteristic path length Clustering coefficient Power law fitting
None 3465 46119 8 3341 0.093 1237
05 (PCO) 3409 35582 8 3419 0.074 1.310
0.5 (COQG) 3397 43425 8 3445 0.099 1.220
0.5 (GOCQ) 3461 45193 8 3.355 0.091 1.245
0.5 (GOMF) 3400 31045 8 3632 0.067 1431
0.5 (GOBP) 3373 26200 9 3.713 0.076 1.440
05+05+03 3383 26827 9 3.730 0.062 1522
(GOCC + GOMF + GOBP)

05+ 07 3324 33134 9 3616 0.080 1.289
(PCC + COG)

05+ 09+ 08 3304 29891 9 3.691 0.072 1336
(PCC + COG + GOCQ)

05+ 07+ 04 3212 13244 9 4.388 0.044 1.803
(PCC + GOMF + GOBP)

05+ 0.7 3281 21240 1 3.920 0.081 1414

(COG + GOBP)
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E. coli were mapped to the proteome of M. tuberculosis
by training an SVM classifier. The cross validation
showed the effectiveness and efficiency of our predictor.
We also implemented the interolog method to map the
documented protein interactions of other organisms
into M. tuberculosis. Moreover, the available functional
genomic information about M. tuberculosis has been
used to evaluate the predicted interactions. These het-
erogeneous data were combined in a novel framework
to infer the interactions in M. tuberculosis. The pre-
dicted pairs were checked and can be filtered with these
information for potential applications. The constructed
protein interaction network of M. tuberculosis provides
more information for the infectious bacterium threaten-
ing human health.

We used multiple sources of available functional geno-
mic data to provide evaluation of these predicted interac-
tions. Gene coexpression, evolutionary relationship and
functional similarity are implemented to check the reliabil-
ity in the targeted pairs. The information could be directly
used to build the functional relationship of protein pairs
[23-25]. Due to the limited knowledge in M. tuberculosis,
we integrated the heterogeneous information in an alter-
native framework for assessing the predictions rather than
predicting the interactions. Filtering interactions by differ-
ent confidence values result in different networks of differ-
ent size and reliability. This will provide valuable resources
for biological information in tuberculosis research, which
implies the promising applications based on our con-
structed protein interaction map, which are our future
research topics.

In our framework, we proposed a cross-species predic-
tion by mapping the documented interactions of other spe-
cies into M. tuberculosis. For completeness, we collected
some known curated interactions. We also tested the pre-
dictions in these known interactions in M. tuberculosis by
training the codon features to check our predictions.
Figure 4 shows the ROC curves of prediction performance.
Our method can achieve high AUC of 0.945 by the codon-
based method and of 0.951 by merging the frequency of
these degenerate codons in these known protein interac-
tions. Table 4 shows the results of prediction perfor-
mances. We achieved similar accuracy by merging the
codons as that by the codon-based method. In our pre-
vious work, we concluded that there is subtle difference
between the two encoding schemes for predicting protein
interactions [7]. Both methods are rational and their differ-
ences are underlying the data sets. The results provide
more evidence for the effectiveness and efficiency of our
proposed methods.

Basically, we implemented two pipelines of building the
protein-interaction map of M. tuberculosis, i.e., the SVM-
based machine learning method and the interolog map-
ping method. The two methods are essentially close-
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Figure 4 ROC curves of predicting performance in the known
interactions in M. tuberculosis.

related. The gene sequence information of interacting
pair of proteins has been learned by the predictor and
that of these known interactions is mapped to the protein
pairs of M. tuberculosis. In the same manner, the intero-
log method identifies the interaction between a pair of
proteins which have interacting homologs in another
organism. The protein sequence information of known
interaction is mapped by the cross-species sequence simi-
larity detection. It is an interesting research topic to iden-
tify the quantitative relationship between the prediction
results of the two methods. The various mapping
schemes of the sequence information have been inte-
grated in our predictions. The gene sequence information
as well as the protein sequence information is exploited
to infer the protein-interaction map of M. tuberculosis.
The other research direction is to implement other
schemes to encode the sequence information in the
machine learning method, such as the autocorrelation
encoding scheme [26] and triplet residues method [6].
We combined the gene sequence information and the
protein sequence information into an integrated frame-
work. It is also an interesting topic to investigate the pre-
diction difference of the two-level sequence information.

Conclusion

In conclusion, we provided a novel framework to inte-
grate genomic data to infer a protein interaction map of
M. tuberculosis. We predicted the protein interactions in

Table 4 Prediction performances of the SVM predictor in
these known protein interactions of M. tuberculosis

Feature ACC SN SP PRE AUC
Codon 0.8728 0.8932 0.8524 0.8582 0.9454
Codon-mer 0.8738 0.8971 0.8505 0.8571 0.9507
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M. tuberculosis by an SVM based classifier by genetic
codons. And the documented protein interactions from
various species were also mapped to the proteome of
M. tuberculosis by interolog method. The information
from gene expression, evolutionary and functional rela-
tionship provided reliability measures of evaluating our
predictions. The validations provided clear evidence for
the effectiveness of our method. Our framework can
easily be extended to infer the large-scale protein inter-
action map in other species. These predicted interac-
tions provide a valuable reference of interactome for
M. tuberculosis research. The PPIs build a frame to
further study the functional implications underlying the
interactome of M. tuberculosis. They are listed in Addi-
tional file 2. The details are available at: http://www.
aporc.org/doc/wiki/MTBPPL

Methods

Framework of prediction

Figure 5 shows our framework to infer the protein inter-
action map of M. tuberculosis. The protein interactions
were predicted by two main pipelines. Firstly, we built
the protein interaction network of M. tuberculosis from
codon features of interacting proteins in E. coli by a
machine learning approach. The integrated interaction
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map and gene sequences of E. coli were downloaded
from EcID, which collects comprehensive PPIs in E. coli
by combining various knowledge [4]. We used the infor-
mation of protein interactions of E. coli to train an SVM
classifier to get the genetic codon features underlying
these interacting pairs. The interactions in M. tuberculo-
sis were then predicted by the trained SVM predictor
with the genetic codons of ORFs in gene sequences of
M. tuberculosis. We chose the laboratory strain of H37Rv
as our model organism [14]. The processes are shown in
the upper-left square frame of Figure 5. Secondly, we
inferred the protein interactions of M. tuberculosis by
interolog method from the documented protein interac-
tions in 14 other species. We collected these interactions
from IntAct [27] and DIP [28]. The interacting proteins
of each species were detected their homologous proteins
of M. tuberculosis by BLAST [29] individually. The
homologs of two interacting proteins will be identified as
the predicted interactors. The pipeline is shown in the
upper-right square framework of Figure 5. As for the
validation of predicted results, we tested our method in
E. coli and in the known interactions of M. tuberculosis.
Three pieces of available information of M. tuberculosis,
i.e., gene expression profiling, evolutionary relationship
from ortholog database and functional similarity, were
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Figure 5 Framework of inferring protein interaction map in M. tuberculosis.
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used to evaluate the confidence of prediction results. The
known protein interactions were of course included in
our constructed interactome of M. tuberculosis. Finally,
we inferred an integrated protein interaction map of M.
tuberculosis.

SVM-based predictor

We used the SVM method [30] as the classifier. The
software libsvm 2.84 [31] was employed and a radial
basis function was chosen as the kernel function in our
implementation. The positive pairs of training are those
known interactions which are experimentally validated
in EcID. There were 14,058 pairs of positive interac-
tions. We selected the negative set by choosing the pairs
when the length of shortest path between the two term-
inals in EcID network is larger than a given cutoff of 6
for the small-world property of a complex network [21].
There is few possibility for two proteins to interact with
each other when the distance is bigger than the thresh-
old. There were 27,882 pairs of proteins which are
included in the negative set. A five-fold cross validation
process was implemented to test the accuracy of our
SVM-based classifier. We applied the trained predictor
to infer the protein interactions in M. tuberculosis.

The prediction performance was evaluated by various
parameters, such as sensitivity (SN), specificity (SP), accu-
racy (ACC) and precision (PRE). The evaluation is usually
displayed in a ROC graph with measure of area under
curve (AUC). Mathematically, these measures are defined
as

TP
SN = ,
TP + FN
TN
SP = ,
TN + FP
TP + TN
ACC = 2
TP + TN + FP + EN
TP
PRE = ,
TP + FP

where TP, TN, FP and FN refer to number of true posi-
tive, number of true negative, number of false positive,
and number of false negative predictions, respectively.
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Validation from multiple resources

We constructed the protein interaction map of M.
tuberculosis by genetic codons and ortholog mapping.
We also deposited known interactions in databases from
experimental results about M. tuberculosis in literatures.
Integrated with these known protein interactions, we
built a comprehensive PPI map of M. tuberculosis. We
collected multiple available resources to access the con-
structed protein interaction map in M. tuberculosis. The
confidence of interactions was evaluated by three extra
data sources, namely, gene expression, evolutionary rela-
tionship and functional similarity.

Firstly, we identified the PCCs of gene coexpression of
pairwise proteins in the predicted network. We down-
loaded the gene expression profiling data of M. tubercu-
losis H37Rv from NCBI GEO (ID: GSE9776) [32].
Correlation between genes is calculated by

EQxi = 1) (%5 — 145)
cor(xi, x;) = /
0i0j

where My and My are the means of gene expression
profile x; and x;, 0; and o; are the standard deviations of
them. Secondly, we presented the evaluation of evolu-
tionary relationship between the predicted interacting
proteins. COGs were delineated by comparing protein
sequences encoded in complete genomes, representing
major phylogenetic lineages [33]. Figure 6 presents the
method to identify the evolutionary information between
the predicted interacting proteins. Each COG consists of
individual proteins or groups paralogs from at least 3
lineages and thus corresponds to an ancient conserved
domain [33]. The maximum of COG value between two
groups in which the interacting proteins are located
were regarded as the value representing their evolution-
ary relationship. Thirdly, GO [34] similarity between the
predicted pairs was identified to evaluate their func-
tional relationship. We downloaded the annotations for
M. tuberculosis H37Rv from GOA [35]. In GO hierarch-
ical acyclic graph, the terms far from the root would be
more informative than those close to the root. We cal-
culated the GO probability for specific GO terms [36].
The frequency of a GO term in a database is defined as

Maximal
weight

Figure 6 Identification of evolutionary relationship between two interacting proteins. The maximum of COG value between two groups
in which the interacting proteins are located are used as the value of their evolutionary relationship.
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> freq(h),

hechildren(c)

freq(c) = anno(c) +

where anno(c) is the number of proteins annotated
with this terms in our database. The set of child nodes
of term c is the children(c). The probability of a term ¢
is then defined as p(c) = freq(c)/freq(root), where freq
(root) is the frequency of the root term [37,38]. We used
semantic similarity measures [36-38] to evaluate the
similarity of GO term lists corresponding to the inter-
acting proteins. Based on these validations, we can
check those interactions consistently validated in various
information and detect an ensemble protein network by
omitting low reliability pairs.

Additional material

Additional file 1: Hub proteins in the protein interaction map of M.
tuberculosis.

Additional file 2: The protein interaction map of M. tuberculosis.
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