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Abstract

Background: A Gene Reference Into Function (GeneRIF) describes novel functionality of genes. GeneRIFs are
available from the National Center for Biotechnology Information (NCBI) Gene database. GeneRIF indexing is
performed manually, and the intention of our work is to provide methods to support creating the GeneRIF entries.
The creation of GeneRIF entries involves the identification of the genes mentioned in MEDLINE® citations and the
sentences describing a novel function.

Results: We have compared several learning algorithms and several features extracted or derived from MEDLINE
sentences to determine if a sentence should be selected for GeneRIF indexing. Features are derived from the
sentences or using mechanisms to augment the information provided by them: assigning a discourse label using a
previously trained model, for example. We show that machine learning approaches with specific feature combinations
achieve results close to one of the annotators. We have evaluated different feature sets and learning algorithms. In
particular, Naïve Bayes achieves better performance with a selection of features similar to one used in related work,
which considers the location of the sentence, the discourse of the sentence and the functional terminology in it.

Conclusions: The current performance is at a level similar to human annotation and it shows that machine learning
can be used to automate the task of sentence selection for GeneRIF annotation. The current experiments are limited
to the human species. We would like to see how the methodology can be extended to other species, specifically the
normalization of gene mentions in other species.

Background
The large growth of the biomedical literature makes it dif-
ficult reading or simply identifying relevant information.
For instance, MEDLINE� growth is over 700k citations
in 2011 [1]. There are efforts that investigate methods
to support transferring the existing information in the
biomedical literature to curated databases [2,3] or to index
the biomedical literature [4-7]. Biocuration workflows are
usually composed of the following main processing tasks
[8-11]: (1) collecting related documents, (2) identifying
and indexing entities of interest and, (3) collecting infor-
mation for curating specific relations. A supporting tool
for a given curation effort has to fulfill these tasks. In
this work, we present research that we have performed to
address the indexing of GeneRIF sentences.
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A Gene Reference Into Function (GeneRIF) describes
novel functionality of genes. The creation of GeneRIF
entries involves the identification of the genes mentioned
in MEDLINE citations and the citation sentences describ-
ing a novel function. GeneRIFs are available from the
National Center for Biotechnology Information (NCBI)
Gene database [12]. An example sentence is show below
linked to the BRCA1 gene with gene id 672 from the
citation with PubMed� identifier (PMID) 22093627:

FISH-positive EGFR expression is associated with gender
status, but not correlated with the expression of ERCC1
and BRCA1 proteins in non-small cell lung cancer.

The Index Section [13] at the National Library of
Medicine (NLM) has performed gene indexing since
March 2002 [14]. NLM creates upwards of 80,000 GeneR-
IFs annually from articles indexed for MEDLINE.
GeneRIF indexing is performedmanually, and the inten-

tion of our work is to provide a support tool similar to
other indexing tools like the Medical Text Indexer (MTI)
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[4,15] already available at the NLM. The aim of the Gene
Indexing Assistant (GIA) project at the NLM is to support
creating the GeneRIF entries.
There is limited previous work related to GeneRIF span

extraction. Most of the available publications are related
to the TREC Genomics Track in 2003 [2]. There were two
main tasks in this track, the first one consisted on iden-
tifying relevant citations to be considered for GeneRIF
annotation. In the second task, the participants had to
provide spans of text that would correspond to relevant
GeneRIF annotations for a set of citations.
Considering this second task, the participants were not

provided with a training data set. The Dice coefficient
was used to measure the similarity between the submitted
span of text from the title and abstract of the citation and
the official GeneRIF text in the test set.
Surprisingly, one of themain conclusions was that a very

competitive system could be obtained by just delivering
the title of the citation as the best GeneRIF span of text.
Few teams (EMC [16] and Berkley [17] being exceptions),
achieved results better than that simple strategy. Another
conclusion of the Genomics Track is that the sentence
position in the citation is a good indicator for GeneRIF
sentence identification, either the title or sentences close
to the end of the citation.
Subsequent to the 2003 Genomics Track, there has been

some further work related to GeneRIF sentence selection.
Lu et al. [18,19] sought to reproduce the results already
available from Entrez Gene (former name for the NCBI
Gene database). In their approach, a set of features is
identified from the sentences and used in the algorithm:
Gene Ontology (GO) token matches, cue words and sen-
tence position in the abstract. Gobeil et al.[20] combined
argumentative features using discourse-analysis models
(LASt) and an automatic text categorizer to estimate
the density of Gene Ontology categories (GOEx). The
combination of these two feature sets produces results
comparable to the best 2003 Genomics Track system.
During a pre-analysis of this problem, we mapped the

sentences already in the GeneRIF records in the NCBI
Gene database to candidate sentences in the related
MEDLINE abstracts, similar to [18]. The idea was to
identify the relevant sentences in the abstract and to
compare them to the other sentences that were not
selected in order to identify rules for sentence extrac-
tion based on commonly occurring patterns. After the
analysis of the mappings, one of our conclusions is that
there are sentences in the abstract that could be sug-
gested for GeneRIF indexing in addition to the sentences
already indexed in the database. For instance, there is
redundant information in the abstract and, in a small
number of cases, genes not available in the NCBI Gene
database will not have a GeneRIF sentence recorded for
that abstract.

This is in contrast to previous work that focused on
identifying the best span denoting a GeneRIF for a par-
ticular gene in a citation. These systems were evaluated
comparing the overlap of the gold standard sentences
based on the Dice coefficient. We find that this approach
does not meet our needs since there is often more than
one suitable sentence in the abstract. Our goal is to
indicate, given a MEDLINE title and abstract, which
sentences are more likely to be selected for GeneRIF
annotation as well as additional alternative sentences.
This motivated us to prepare a manually annotated
gold standard for our work, including candidate sen-
tences which were not selected in the original GeneRIF
indexing.
Since there are cases where more than one GeneRIF

sentence seems a plausible choice, the indexer will be
presented with the top three options based on the con-
fidence level returned by the system. The indexer is free
to choose none, one, or more of the sentences to use
in creating their GeneRIF. The current implementation
of the GeneRIF annotation tool, includes a questionnaire
screen with the tool recommended genes asking Cor-
rect, Not a Gene, Wrong Species, Incorrect ID, and Irrele-
vant. The information from the questionnaire is collected
to improve the quality of the GeneRIF annotation tool and
will likely be removed once full integration and implemen-
tation is completed.
The manual development of GeneRIF extraction rules

did not prove to be very efficient in time and general-
ization of the prepared rules. We have explored the use
of learning algorithms and several features extracted or
derived from the sentences that might be combined to
determine if it should be selected for GeneRIF index-
ing. In contrast to previous work, the features we use are
derived from the sentences or using mechanisms to aug-
ment the information provided by them, e.g. assigning
a discourse label using a previously trained model. The
current study is limited to the human species. We would
like to see how the methodology presented for GeneRIF
sentence identification can be extended to other species.
We have focused on humans for two reasons: 1) identi-
fying genes in different species is non-trivial [21], and 2)
the number of human GeneRIFs far surpasses the num-
ber of any other species. Humans make up over 61% of
the GeneRIF entries, followed by Mus Musculus (Mouse)
18.82% and Rattus norvegicus (Rat) 6.95% (statistics based
on the GeneRIFs available from NCBI ftp site [22]). By
initially focusing on humans, we can provide more accu-
rate recommendations for the largest segment of GeneRIF
creation.
We show that machine learning approaches with a spe-

cific feature combination achieve performance close to
annotators performance. The outcome of this work is
being integrated into the current indexing support system.
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The paper is organized as follows. In the next section,
the development of our dataset is described and then the
machine learning algorithms and features used in this
work are presented. Then, we show the results, discuss
their significance and suggest future work.

Methods
In this section, we describe the methods, features and
learning algorithms we used for GeneRIF sentence index-
ing. We describe as well the annotated data set that we
have used in our experiments.

GeneRIF data set
We have developed a data set to compare and evaluate
our GeneRIF indexing approaches. This is performed in
two steps described below. As mentioned in the introduc-
tion, the current scope of our work is limited to the human
species. The first step consists of selecting citations from
human species journals. During the second step we apply
Index Section rules for citation filtering plus additional
rules to further focus the set of selected citations. Only
articles from 2002 through 2011 from the 2011MEDLINE
Baseline [23] (11/19/2010) were used to build the data
set. There was no GeneRIF indexing before 2002. Figure 1
shows the citation filtering pipeline.

Figure 1 Citation filtering pipeline. The figure shows the citation
filtering flow from all of MEDLINE to the training and testing sets.

Step 1: Journal selection for human genes
The journal selection is divided into a filtering step based
on the journal subject and a manual selection, focusing on
humans and genetics.
The steps to create the list of journals are:

1. Selection of journals indexed for MEDLINE with the
journal descriptor Human genetics. Journal
Descriptors are broad categories used by the
Bibliographic Services Division (BSD) to denote the
research topics covered by a journal.

2. Manual removal of journals devoted to non-human
species (e.g. Journal of experimental Zoology) and
other journals primarily concerning gene therapy,
genetic counseling, or ethics; e.g. “Law and the
Human Genome Review".

3. From the set of journals found in the two previous
steps, further journal filtering is performed based on
the mention of common model species in their
citations. Citations with mentions of 11 common
model species terms are discarded: mouse, murine,
yeast, fly, drosophila, cow, cattle, bovine, worm, c.
elegans, and plant. Journals with fewer than 40% of
their citations confounded by representative
non-human species were selected to form our
test bed.

Step 2: Citation filtering
Step 1 resulted in a total of 105,225 citations from 43
journals. Citations were selected from this set and then
filtering as follows:

1. Filter out citations that do not have an abstract.
2. Filter out citations denoting species other than

humans based on the MeSH headings assigned to the
citations.

3. Return citations with at least one gene mention.
Gene mentions have been identified by a dictionary
approach as described in the Gene mention and
normalization section.

The rules presented below describe our implementation
of the Index Section Rules [24]. The following filtering
steps have been implemented based on the Index Section
Rules:

1. Keep review articles only if they focus on a particular
gene. This means filtering out review citations with
three or more different gene mentions.

2. Do not link news items, editorials or letters
commenting on genes or proteins in another article.
This is done by filtering by Publication Types Journal
Article, Meta-Analysis, or Review.

3. Restrict to organisms in the taxonomic list for NCBI
Gene database; we apply this rule to humans only.
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After applying these rules, 23,518 citations were kept.
In addition, the following rules require manual filtering of
the citations. We are investigating ways of automating this
processing for the production version of the system.

1. Link a citation in which the basic biology of a gene
from an in-scope organism is the primary point of
the article. Do not create a link where the focus is
genetic engineering, genetic databases, sample banks,
population genetics unrelated to disease or function,
and any topics other than the basic biology of the
gene. In clinical articles, do not create links unless the
focus of that article is some new aspect of that gene.

2. Do not create links for case reports with only a single
patient.

Finally, applying this filtering, 373 citations were ran-
domly selected for training and 151 citations for testing of
the algorithms.

Data set annotation
The above subset of filtered citations were collected for
annotation.
The annotations were performed by two annotators.

Guidelines were prepared and tested on a small set by the
two annotators and refined before annotating the entire
set.
The following items are available from the data set:

1. Annotation of gene mentions. An initial annotation
based on a dictionary approach is refined by the
annotators. Identifiers from the NCBI Gene database
are added to the gene mentions identified in the text.

2. Discourse annotations of the sentences. The
following categories are used: Background,
Conclusions, Methods, Purpose, Results, and Title.

3. Claim annotations of the sentences. The following
categories are used: Established, Putative, and
Non-Claim.

4. Annotation of GeneRIF categories of the sentences.
Sentences have been labeled as either GeneRIF or
non-GeneRIF sentences. From this annotation, the
F-measure for the annotation agreement is 0.81.
Since geneRIF sentences might have more distinctive
characteristics, we performed a sub-categorization of
the sentences, with the goal of assisting the learning
algorithms. The GeneRIF sentences have been
sub-categorized as: Expression, Function, Isolation,
Other, Reference, and Structure. The F-measure of
the agreement considering this set of categories is
0.60. Initial experiments with this sub-categorization
showed that the learning algorithms had problems
identifying these sentences, which might be due to
the size of our corpus and the low agreement
between the annotators on the sub-categorization.

Table 1 shows the distribution between GeneRIF and
non-GeneRIF sentences in the training and testing sets.

Machine learning algorithms
For the experiments presented in this work, we have cho-
sen a set of machine learning algorithms which are usually
considered for text categorization problems. The algo-
rithms used in our work are available from the Weka
package [25] and are: decision tree (J48), Naïve Bayes
(NB), Support Vector Machine (SVM) with linear ker-
nel (we have used the Sequential minimal optimization
(SMO) implementation) and AdaBoostM1 (using J48 as
the base learner). Several feature sets evaluated in the
experiments are presented in the Results and Discussion
sections.

Features
Previous work has proved the effectiveness of several fea-
tures for GeneRIF indexing. For instance, Lu et al. [18] and
Gobeil et al. [20] have shown that positional information,
GO term annotation and argumentative features are rele-
vant for GeneRIF indexing. In this section, we present the
feature sets that we have explored during the training and
testing of the learning algorithms.

Representation of the sentence text
Sentences are one source of features. Manual identifi-
cation of indicative features has been used in Lu et al.
[18]. The text of the citation sentences is turned into a
bag-of-words prior to the training of a machine learn-
ing algorithm. Stop words have been removed based on
Weka’s list, and tokens are lowercased. Given this pre-
processing, we have performed tests with either unigrams
or bigrams (determined by two consecutive tokens in the
original text).

Sentence position information
Sentence position in a givenMEDLINE citation has shown
to be very relevant for GeneRIF sentence identification.
For example, in Genomics TREC 2003, a system deliv-
ering the title of the citation as GeneRIF sentence was
already a competitive system. Lu et al. [18,19] extended
the position information adding the position of the sen-
tence starting from the end of the abstract. Considering
our data set, we can see in Figure 2 the frequency of
GeneRIFs in each position. The titles and the last sen-
tences in the citation seem to contain a larger number of
the GeneRIFs.

Table 1 GeneRIF sentence distribution

Set Total Positive Negative

Training 1987 829 (41.72%) 1158 (58.28%)

Testing 999 433 (43.34%) 566 (56.66%)
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Figure 2 GeneRIF and sentence distribution. The y-axis denotes
the number of GeneRIF sentences while the x-axis denotes the
position of the sentence in the title and abstract of the citations. The
position 1 is for the title, position 2 is the first sentence of the abstract
and then increases by one. The negative numbers at the end of the
x-axis denote the position of the sentence from the end of the
abstract. The position -1 is for the last sentence of the abstract.

We have incorporated the position information into two
features. The first one is the sentence number starting at
the beginning of the citation.
The second feature is the total number of sentences

minus the current sentence number, which allows us to
identify the sentences closer to the end of the citation.

Sentence discourse feature
Gobeill et al. [20] have shown that argumentative features
help in the identification of GeneRIF sentences. We have
explored two candidate features as discourse annotation
of the sentences.

1. Our data set includes annotation about the discourse
of the sentences. We have performed two
experiments with this feature. First, we trained and
tested the GeneRIF classifier with this feature as
shown in the Results section. Since this annotation
would not be available in a production system, we
have trained a learning algorithm to identify these
sentences. Results for this classifier show poor
performance on this set, probably due to the small
size of the training set, and thus it is not used.

2. Discourse labels for sentences are available from
Structured Abstracts [26]. Structured Abstracts have
assigned labels for the sections in the abstract of the
MEDLINE citations. Currently, a quarter of the
abstracts added to MEDLINE include section labels
such as: BACKGROUND, OBJECTIVE, METHODS,
RESULTS and CONCLUSIONS. We have collected
one million citations with Structured Abstract labels.
This set has been divided into 2/3 for training and 1/3
for testing. The features are the text of the sentence
and the position of the sentence in the abstract.
AdaBoostM1 from the MTI ML package [27] has

been used due to the large size of the problem. One
binary classifier per discourse label has been used.

3. Structured Abstracts seem to have a logical discourse
structure that graphical models could use to improve
discourse sentence annotation. This has been
exploited in previous work [28,29], and we have
trained a CRF model [30] based on Mallet [31] for
Structured Abstract annotation. Due to the
computational cost of this algorithm, we have limited
the training and evaluation to 5,000 abstracts each.

Genemention and normalization
Gene mention and normalization has been the focus
of various challenges. Within the gene normalization
task, dictionary approaches provide the link to existing
resources. We have tried existing approaches like GNAT
[32] on a set of abstracts relevant to our task in hand. The
results in gene normalization performance were lower
than we require. As part of the project, we have developed
a gene mention and normalization approach that reuses
available resources and algorithms.
We are interested in techniques that provide a map-

ping from gene mentions in text to NCBI Gene database
entries. Thus we have prepared a dictionary for human
gene names based on a filtered version of the NCBI
Gene database and Online Mendelian Inheritance in Man
(OMIM) that we have used with dictionary matching.
We removed duplicates and filtered out certain mislead-
ing or ambiguous gene names, such as those ending
with disease, syndrome, or susceptibility. The dictionary
was then expanded with variants of each term to account
for author preferences in punctuation and spacing. Vari-
ants were created for gene names that have a single dash
in them. The variant generation algorithm creates a ver-
sion replacing the dash with a space, and another variant
with the dash simply removed. For example, cortexin-
2 would generate cortexin 2 and cortexin2 as variants.
Variant generation will be improved in the next phase.
One possibility will be to use one of the existing tools
with a more advanced variant generation or identification
algorithm.
Each resulting entry in the dictionary is linked to its

originating NCBI Gene identifier. In the case of an entry
that is common to multiple NCBI Gene records, all rel-
evant identifiers are associated with the dictionary entry.
The final list was then sorted into longest to shortest gene
name order to facilitate identifying the longest possible
matches in the text before identifying a component of
the gene name. Sentences in an abstract are detected and
tokenized using MetaMap [33].
Abbreviation resolution has been performed with

MetaMap, which has reduced false positives significantly.
MetaMap replaces locally defined abbreviations in the
text with the original long form, using a Schwartz and
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Hearst [34] style algorithm to match long forms with
parenthetical abbreviations. False positives are further
reduced by using case-sensitive checks on mentions
with common English homonyms and implementing
domain-specific context rules. Although these modifi-
cations were successful, the extensive manual review
required to make the latter two adjustments is not scal-
able to additional species or sustainable in genomes still
being mapped.
Many gene names are ambiguous and may make ref-

erence to more than one gene identifier even within the
human species. As of January 2012, 5,396 duplicate gene
designations were included in 42,113 total Gene designa-
tions for humans. These designations include synonyms
other than the official symbols and names used widely
in the literature. However, these duplicates do include
52 official gene symbols. Just under 10% of our test set
gene mentions are ambiguous and could refer to more
than one Gene ID. These genes require disambiguation to
normalize them to the correct identifier.
We tried two approaches to normalization. In the first

one, we prioritized possible identifiers for a givenmention
according to a heuristic of officialness. For example, if one
identifier matched the gene mention to an official name
or symbol from the relevant organism naming authority, it
was preferred over an identifier that matched a synonym
or other alternate name.
In our second approach, we follow a method similar

to Xu et al. [35]. In their work, for each gene a profile
is given different types of information from MEDLINE
abstracts. Information is extracted automatically and the
abstracts are selected based on their annotation in the
NCBI Gene database. The extracted information from the
abstracts includes words, MeSH terms, UMLS concept
identifiers, Gene Ontology terms and relations extracted
using BioMedLEE [36].
We have implemented this approach using Gene entries

to generate the profiles. The ambiguous cases are found
based on an ambiguous term candidate list generated dur-
ing the dictionary creation. When an ambiguous gene is
found, the surrounding terms are used as context for their
disambiguation. The context terms are used to generate
a profile that is compared to the profile of the candidate
Gene identifiers and the one closer to the context profile
is selected.

Gene Ontology annotation
Gobeill et al. [20] have shown that the annotation of
Gene Ontology (GO) contributes to the identification of
GeneRIF sentences. We have used the EAGLi system [37]
used by Gobeill et al. in their experiments and use the
score as value for the GO annotation feature. This score is
a numeric value that indicates the evidence of GO term in
text based on [38].

Results
In this section, we show the result of applying several
features to several learning algorithms for the problem
of finding GeneRIF sentences. Since we are interested
in identifying the sentences instead of selecting the span
of text with the message, as done in TREC Genomics
2003, the problem is similar to text categorization tasks.
Sentences are labeled as relevant or not, and each combi-
nation of classifier and features is evaluated on how many
sentences are identified correctly as relevant. Precision,
recall and F-measure are used as evaluation measures.
The overall results are shown in Table 2.
The position information (pos) alone shows good per-

formance using AdaBoostM1 (0.71 F-measure). The per-
formance is even slightly higher if we consider, in addition,
the information of the position of the sentence relative to
the end of the citation (posf ) (0.72 F-measure).
The tokens extracted from the evaluated sentences

(text) perform poorly compared to position information.
In the case of AdaBoostM1, the F-measure decreases
sharply while the precision is higher; this might be due to
overfitting on the training set.
The gene mention feature (gene) achieves lower perfor-

mance than that obtained with the position features (pos,
posf ). On the other hand, it performs better than using
tokens from the text of the sentences (text).
As introduced in the Methods section, we have trained

learning algorithms to enrich the sentences with discourse
categories. We proposed two sources for the discourse,
the annotation from our data set and annotation distilled
from Structured Abstracts. We have trained classifiers on
the position of the sentence and the tokens from the sen-
tence. The discourse classifiers on the classes distilled
from our data set achieve poor performance as we can
see in Table 3, probably due to the reduced number of
sentences available.
On the other hand, the discourse classifier on Struc-

tured Abstracts shown in Table 4 has a better result. To
this set, we have added the Title category to indicate that
the sentence is the title of the paper. This discourse fea-
ture (dis) derived from the Structured Abstracts classifier
is an even better indicator compared to the manual anno-
tations. Despite of the CRF model (disg) performance
on structured abstracts as shown in Table 5, the perfor-
mance on GeneRIF indexing is lower compared to the
AdaBoostM1 classifier.
If we combine the pos feature, which contains the posi-

tion of the sentence from the beginning of the citation,
the posf feature, which contains the position of the sen-
tence from the end of the citation, and the dis feature,
the performance improves considerably. Adding informa-
tion from gene mentions annotation seems to make the
performance drop. On the other hand, the performance
with our gene ontology (GO) feature seems to improve the
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Table 2 GeneRIF prediction results

NB SVM ABM1

p r f p r f p r f

pos 0.6052 0.3256 0.4234 0.6052 0.3256 0.4234 0.6594 0.7691 0.7100

posf 0.6705 0.5358 0.5956 0.6798 0.5196 0.5890 0.7218 0.7252 0.7235

text 0.5941 0.6051 0.5995 0.6322 0.6351 0.6336 0.8250 0.0762 0.1395

gene 0.5533 0.6952 0.6162 0.5533 0.6952 0.6162 0.5533 0.6952 0.6162

dis 0.6960 0.8037 0.7460 0.6755 0.8268 0.7435 0.7284 0.6628 0.6941

posf + dis 0.6974 0.8568 0.7689 0.6755 0.8268 0.7435 0.7323 0.7390 0.7356

posf + dis + gene 0.6996 0.8337 0.7608 0.6976 0.8152 0.7519 0.7875 0.7275 0.7563

posf + dis + go 0.6972 0.8614 0.7707 0.6755 0.8268 0.7435 0.7323 0.7390 0.7356

posf + dis + go + text 0.6751 0.7968 0.7309 0.7282 0.6559 0.6902 0.7342 0.7529 0.7434

disg 0.6061 0.9630 0.7440 0.6061 0.9630 0.7440 0.6061 0.9630 0.7440

posf + disg 0.6798 0.7552 0.7155 0.7250 0.7667 0.7452 0.7259 0.7644 0.7447

posf + disg + gene 0.7047 0.7991 0.7489 0.7886 0.7321 0.7593 0.7810 0.6836 0.7291

posf + disg + go 0.6708 0.7575 0.7115 0.7249 0.7667 0.7452 0.7259 0.7644 0.7447

posf + disg + go + text 0.6759 0.7321 0.7029 0.7802 0.6559 0.7127 0.7393 0.7206 0.7298

The results are show for each feature or their combination on the test set after training a Naïve Bayes (NB), Support Vector Machine (SVM) or AdaBoostM1 (ABM1). For
each feature or feature combination, the precision (p), recall (r) and F-measure (f) are shown. The individual features are: sentence position from the beginning of the
abstract (pos), sentence position from the end of the abstract (posf), text features from the sentence (text), gene mention and normalization (gene), discourse features
predicted by the AdaBoostM1 classifier (dis), discourse features predicted by the CRF model (disg) and Gene Ontology score (go).

recall of the classifiers, which makes NB achieve the best
performance on this set. Again, adding tokens from the
sentences made the performance drop.

Discussion
Results show that some of the selected features achieve
good performance in sentence selection for GeneRIFs.
The highest F-measure is obtained with NB and the fol-
lowing three features: posf, dis and go. The recall in this
case is the highest as well: 0.86.
As found in previous work, the position of the sentence

and the discourse of the sentence are already good indica-
tors to categorize sentences according to their relevance
to GeneRIF sentence selection. On the other hand, more
specific features like the tokens from the sentence or even
the features provided by gene mention do not achieve as
good performance. In performing error analysis of our
results, we have seen that the gene is not always explicitly

mentioned in the relevant sentences. Instead, it is often
referenced indirectly in other sentences.
Machine learning approaches did not produce results

comparable to sentence position with the tokens extracted
from the sentences. One possible explanation is that the
tokens from the sentences are sparse and not generaliz-
able for this task given the data set. On the other hand, the
selected abstracts are related to genetic studies in humans
which seem relevant to GeneRIF annotation. Then, the
task is simply to identify where in the abstract the gene
function is discussed or summarized. This might be in the
title or at the end of the abstract, where the results and
conclusions of the article are denoted.
Another reason for the low performance of the sentence

tokens might be due to the small size of the data set. This
is already an issue for the discourse classifier trained on
our data set, compared to the one trained with Struc-
tured Abstracts annotation. Analyzing candidate tokens

Table 3 GeneRIF data set discourse prediction

Discourse Positives TP FP Precision Recall F-measure

Background 258 180 78 0.7692 0.6977 0.7317

Conclusions 165 108 57 0.6316 0.6545 0.6429

Methods 179 105 74 0.5412 0.5866 0.5630

Purpose 36 24 12 0.3750 0.6667 0.4800

Results 260 163 97 0.6417 0.6269 0.6342

Results of a classifier trained on the discourse labels annotated in our data set. For each label we show the number of instances in the data set for each label
(Positives), the number of True Positives (TP), the number of False Positives (FP) and the precision, recall and F-measure values.
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Table 4 Structured abstracts discourse label prediction based on an AdaBoostM1model

Discourse Positives TP FP Precision Recall F-measure

Background 18875 11045 8820 0.5560 0.5852 0.5702

Conclusions 53396 37402 12844 0.7444 0.7005 0.7218

Methods 85764 69003 21382 0.7634 0.8046 0.7835

Objective 26425 19237 7883 0.7093 0.7280 0.7185

Results 117546 93250 29424 0.7601 0.7933 0.7764

Results of an AdaBoostM1 classifier trained on structured abstracts. For each label we show the number of instances in the data set for each label (Positives), the
number of True Positives (TP), the number of False Positives (FP) and the precision, recall and F-measure values.

from the training sentences, we find that tokens like sig-
nificant, observed and novel have high precision, between
0.75 and 0.8, but low recall, around 0.03. This is in con-
trast to previous work that used these features within
their rule-based system [18]. The decision trees used in
AdaBoostM1 would have identified relations among the
features. On the other hand, identifying these relations
seemed to achieve low performance. We believe that a
larger set is needed to identify the relations between the
tokens properly and avoid overfitting on a limited number
of examples.
The GO annotation density alone achieves poor classi-

fication performance with all the classifiers. On the other
hand, it helps improve the performance of NB with posf
and dis features. We find this surprising since previous
work has shown that GO annotation was relevant [20].We
find that the distribution scores are similarly distributed
between GeneRIF (mean 15965.7 and standard devia-
tion 25957.55) and non-GeneRIF sentences (mean 16553
and standard deviation 27401.1). Furthermore, we have
a larger number of sentences which we have considered
GeneRIF candidates, which could explain this difference.
Compared to the combinations of classifier and fea-

tures, NB achieves the best performance using a selection
of features: the position of the sentence from the begin-
ning of the citation and from the end of it, the discourse
label and the GO density. SVM achieves similar but lower
performance compared to NB. SVM is high bias and
low variance and might be more fitted to the data than
NB or not as robust considering the differences between

training and test data. In addition, the small number of
independent features might give an advantage to NB com-
pared to other classifiers. AdaBoostM1 achieves higher
precision with lower recall. The results with SVM and
AdaBoostM1 indicates that results might improve with a
larger training set.
Our data set has labels for claims and discourse

sentences. Even though we could not reproduce this
annotation efficiently, we have evaluated a theoretical
classifier performance using the annotation from the data
set. The best result obtained with the claims sentence
label and the best performing feature configuration is
0.8148 in the F-measure, obtained with AdaBoostM1.
The best result obtained with the discourse sentence label
and the best performing feature configuration is 0.8092
in the F-measure, obtained as well with AdaBoostM1.
These results shows that improving the performance of
the claims and discourse annotation algorithms would
improve the performance of GeneRIF sentence selection.
Surprisingly, even though the performance in sentence

classification in Structured Abstracts for the CRF model
is much better compared to our previous model, we find
that the classification of GeneRIF abstract sentences is not
as good. One possible reason is that not all the GeneRIF
abstracts have the same structure as compared to Struc-
tured Abstracts. Similar results have been identified in
the literature [39]. This might explain why the model
based on a set of discriminative binary classifiers could be
performing better. Looking at the annotation performed
by both classifiers, in some cases when an annotation

Table 5 Structured abstracts discourse prediction label based on a CRFmodel

Discourse Positives TP FP Precision Recall F-measure

Background 6161 4154 2259 0.6477 0.6742 0.6607

Conclusions 10126 8455 1683 0.8340 0.8350 0.8345

Methods 15617 13473 2357 0.8511 0.8627 0.8569

Objective 4657 2810 1634 0.6323 0.6034 0.6175

Results 22228 18724 3240 0.8525 0.8424 0.8474

Results of a CRF trained model on structured abstracts. For each label we show the number of instances in the data set for each label (Positives), the number of True
Positives (TP), the number of False Positives (FP) and the precision, recall and F-measure values.
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was incorrect by the CRF model, there was no discourse
annotation proposed by the discriminative one.

Conclusions
In this work, we have evaluated different feature sets and
learning algorithms for GeneRIF indexing. NB achieves its
best performance with a selection of features similar to
the features used in previous work [18,20]: the position of
the sentence from the beginning of the citation and from
the end of it, the discourse label and the GO density. We
find as well that their combination is different compared
to previous similar work. This might be explained by our
focus on identifying candidate sentences from the title
and abstract of the paper. Compared to the F-measure for
inter-annotator agreement for GeneRIF indexing, our best
results perform at a level similar to that of human annota-
tion. This result is obtained by an optimal combination of
the features based on learning algorithms. Current work
is focused on humans, we would like to evaluate the per-
formance of our approach to other species, which might
require, among other things, adapting our gene mention
and normalization algorithm.
We have found that performance is improved when

adding information to the sentences (e.g. discourse and
claim annotations).
Latent information derived from other types of annota-

tion could be included and used with features extracted
from the sentences. Topic discovery based on latent
Dirichlet allocation [40] could be considered to augment
the information in the sentences with topical information.
Even with the effort required to develop our data set,

it is not enough to train a classifier based on sentence
tokens or combinations of them. A larger data set might
help in that regard. A larger manual effort would improve
the result obtained by the learning algorithms. Annotation
time could be reduced using active learning methods.
The data set used in the experiments is based on a selec-

tion of citations that is not fully automatic. Future work
would involve providing a mechanism to automatically
filter the citations following the definition in the Meth-
ods section in the citation filtering process. As we have
seen during the development of the corpus, this requires
several steps. We plan to further investigate the use of
machine learning approaches to leverage the expansion of
this work to cover a larger set of citations.
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