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Abstract

Background: Drug side effects represent a common reason for stopping drug development during clinical trials.
Improving our ability to understand drug side effects is necessary to reduce attrition rates during drug development
as well as the risk of discovering novel side effects in available drugs. Today, most investigations deal with isolated side
effects and overlook possible redundancy and their frequent co-occurrence.

Results: In this work, drug annotations are collected from SIDER and DrugBank databases. Terms describing
individual side effects reported in SIDER are clustered with a semantic similarity measure into term clusters (TCs).
Maximal frequent itemsets are extracted from the resulting drug x TC binary table, leading to the identification of
what we call side-effect profiles (SEPs). A SEP is defined as the longest combination of TCs which are shared by a
significant number of drugs. Frequent SEPs are explored on the basis of integrated drug and target descriptors using
two machine learning methods: decision-trees and inductive-logic programming. Although both methods yield
explicit models, inductive-logic programming method performs relational learning and is able to exploit not only
drug properties but also background knowledge. Learning efficiency is evaluated by cross-validation and direct
testing with new molecules. Comparison of the two machine-learning methods shows that the
inductive-logic-programming method displays a greater sensitivity than decision trees and successfully exploit
background knowledge such as functional annotations and pathways of drug targets, thereby producing rich and
expressive rules. All models and theories are available on a dedicated web site.

Conclusions: Side effect profiles covering significant number of drugs have been extracted from a drug×side-effect
association table. Integration of background knowledge concerning both chemical and biological spaces has been
combined with a relational learning method for discovering rules which explicitly characterize drug-SEP associations.
These rules are successfully used for predicting SEPs associated with new drugs.

Keywords: Relational machine learning, Data integration, Drug discovery, Data mining, Drug side-effects

Background
Side effects are unwanted responses to drug treatment.
Some side effects are adverse, while others are more toler-
able. Many side effects are detected during clinical trials,
and adverse side effects are often responsible for the high
attrition rate of drug candidates. For example in 2008, the
French Department of Industry estimated that only 1 drug
out of 250 was approved by the FDA [1]. Beside toxicity, it
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is not desirable to prescribe for a long period drugs having
side effects like nausea or headache.Moreover, not all side
effects are detected during clinical trials. For example, the
cardiotoxicity of benfluorex was only recently highlighted
[2] even though benfluorex was approved in the 1970’s.
Thus, early recognition of side effects is an important
issue for drug development and safety.
To support side effect exploration, two main resources

reporting their association with drugs have been devel-
oped. The FDA Adverse Event Reporting System (FAERS)
stores the observed side effects reported directly by health
care professionals and consumers. The SIDER database
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stores side-effect information mentioned on drug package
inserts [3].
Two groups of studies have been conducted on side

effects. On the one hand, side-effect information has
been exploited for drug repositioning. For example,
Campillos et al. [4] used a corpus-based side-effect simi-
larity approach to show that pairs of drugs sharing similar
side effects can have common targets. Thus, they use side-
effect similarity to predict new targets for a drug. In a
similar spirit, Takarabe et al. [5] used FAERS to define
pharmacological drug-drug similarity and to predict
unknown drug-target interactions from the integration
of the pharmacological similarity and genomic sequence
similarity of target proteins. At the disease level, Yang and
Agarwal [6] proposed an approach based on the hypoth-
esis that drugs sharing side effects could be indicated for
the same disease. Drug side-effect associations and drug-
disease relationships were used to develop a systematic
drug repositioningmethod and to suggest, for instance, an
antidiabetic effect for drugs causing porphyria.
On the other hand, other studies focus on understand-

ing how side effects occur. As described above, relation-
ships may exist between side effects and drug targets.
Moreover, the link between chemical structure and side
effects was shown by Scheiber et al. [7]. From a more
mechanistic point of view, Lee et al. [8] showed that side
effects can be correlated with the biological processes in
which the drug targets are involved. For instance, they
showed that nausea is correlated to an up-regulation of the
deaminase activity. A very recent paper aims at predicting
the side-effect profiles of molecules based on their chemi-
cal structures (defining the chemical space) and the infor-
mation of their target proteins (defining the biological
space) [9]. The so-called side-effect profile of a molecule
is simply defined as its binary fingerprint with respect to
the side-effect terms. However, such earlier studies have
several limitations. For example, (i) they consider only
individual side effects, and ignore the fact that often more
than one side effect is associated with a drug, (ii) the
biological space is over-simplified, and (iii) the resulting
prediction models are “black boxes” which do not provide
any explicit and reusable knowledge.
Here, we study in a systematic way drug side-effect asso-

ciations, and we propose a method for identifying and
characterizing side-effect profiles (SEPs) shared by several
drugs.
Our approach is composed of five main steps, as illus-

trated in Figure 1. The first step (Figure 1A) consists
of grouping the terms used for side effects in SIDER
using a semantic similarity measure in order to build
Term Clusters (TC) corresponding to groups of seman-
tically related SEs [10]. In parallel, drugs from SIDER
are mapped to DrugBank in order to retrieve informa-
tion about drugs themselves and their targets (Figure 1B).

Figure 1 Overview of our approach for characterizing drug-SEP
associations. Terms used for describing side effects in SIDER DB are
grouped using a semantic similarity measure in order to build Term
Clusters or TCs (A). Drugs are mapped to DrugBank in order to
retrieve information about drugs themselves and their targets (B).
TCs are associated to drugs to represent each drug by a side-effect
fingerprint (C). SEPs are extracted as maximal frequent itemsets from
side effect fingerprints (D). Two machine-learning methods are used
to characterize each SEP in terms of drug and target properties (E).

Then, TCs and drugs are associated in order to repre-
sent each drug by a side-effect fingerprint (Figure 1C).
SEPs are extracted asmaximal frequent itemsets from side
effect fingerprints (Figure 1D). The aim is then to char-
acterize each SEP in terms of drug and target properties.
This can be addressed as a supervised classification task.
Two machine-learning methods are chosen for this task:
Decision Trees (DTs) and Inductive Logic Programming
(ILP) (Figure 1E). These two methods provide easily read-
able results which can then be exploited for understanding
SEPs. Decision trees use a single table as input in which
each row corresponds to a drug and each column to a drug
descriptor. Inductive Logic Programming uses relational
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descriptors to learn a first-order-logic concept definition
from observations. Relational descriptors encoding char-
acteristics of both drugs and their targets are retrieved
from our “NetworkDB” integrated database, which is built
from several data sources including DrugBank, UniProt,
KEGG, and GO. The models obtained for a set of selected
SEPs with these two machine-learning methods are then
evaluated by cross-validation and tested directly with new
drugs. Finally, some elements are provided for model
interpretation.

Methods
The NetworkDB resource
NetworkDB is a relational database which integrates data
about molecules and their targets. These data are col-
lected from various public data sources mentioned in the
following sections. Figure 2 shows the conceptual model
of the database.

Chemical space: drugs and their properties
The SIDER database contains drug side-effect relation-
ships [3]. DrugBank is used to collect data such as cat-
egories and targets [11]. The join between SIDER and
DrugBank is based on the PubChemCompound identifier
given by SIDER and DrugBank. A total of 554 drugs from
SIDER are referenced in DrugBank v3.0.
Each drug is described by its category and a set of

clusters it belongs to. In fact, various structural repre-
sentations and associated similarity measures were used
to cluster drugs. The first similarity measure is based
on SMILES representation. The SMILES codes are con-
verted thanks to Open Babel program into fingerprints
which allows linear and ring substructures to be identified
[12]. Then, the structural similarity between two molecu-
lar fingerprints is calculated using the Tanimoto measure.
In addition, we calculated three other similarity scores
using spherical harmonics representation of molecules.

This parametric representation of macromolecular sur-
face was originally proposed and applied by Ritchie and
Kemp [13] and Cai et al. [14]. The proprietary program
HPCC (Harmonic Pharma) supports three variants of the
spherical harmonic representation. HPCCgeo uses spher-
ical harmonic coefficients (shape information) to calcu-
late similarity between drugs, HPCCchem is based on
chemical properties mapped on the spherical harmonic
representation, and HPCCcombo combines shape and
chemical information. Ward’s method is used to perform
four hierarchical clusterings of drugs [15]. The optimal
numbers of clusters is determined by themethod of Kelley
and al. [16]. Thus, 60 clusters are obtained with Tani-
moto, 53 with HPCCgeo, 21 with HPCCchem and 34 with
HPCCcombo measures.
Drug categories are retrieved from DrugBank. These

categories are mapped on the descendants of three
MeSH concepts, namely “Molecular Mechanisms of
Pharmacological Action” (D27.505.519), “Physiological
Effects of Drugs” (D27.505.696) and “Therapeutic Uses”
(D27.505.954).

Biological space: proteins and their properties
Drug targets are extracted from both DrugBank and
PDB [17]. The outer join between PDB and DrugBank
(retaining all DrugBank targets) is based on SMILES code
identity. Drug targets are associated with their UniProt
accession numbers. Thus, 768 targets are collected,
representing an average of four targets per drug. Then,
target annotations are retrieved from different databases.
Protein-protein interactions are retrieved from the IntAct
database [18] and 5959 interactions were collected which
correspond to 2827 new proteins. For all the proteins
(drug targets and their interactants), 1403 pathway names
are extracted from the KEGG database and the Path-
way Interaction Database which integrates data from
NCI-Nature, BioCarta and Reactome [19,20]. For

Figure 2 NetworkDB conceptual model. In this entity-relationship schema, entities are in boxes and relationships in ellipses.
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the same proteins, GO terms are also collected from
QuickGO database [21]. Thus, 6494 GO terms anno-
tating the 3595 proteins are stored in NetworkDB.
Moreover, the “is_a” and “part_of” relationships
between GO terms are stored in NetworkDB. Finally,
4650 protein domains associated with the targets
and their interactants are retrieved from InterPro
[22].

Grouping side-effect terms into term clusters
Side effects are extracted from SIDER. As shown
previously [23], the use of all terms describing side
effects in SIDER (about 1500) impairs the execution
of data mining programs and produces numerous and
redundant patterns which are inappropriate for expert
interpretation. As SIDER side effects terms belong to
the Medical Dictionary for Regulatory Activities [24], a
semantic similarity between these terms can be calcu-
lated based on the structure of MedDRA [10]. Next,
a hierarchical clustering method is applied to obtain
112 Term Clusters (TCs) which are then validated by
experts [23]. For instance, TC named 65_Dermatitis

is the 65th TC and has Dermatitis as representative
term.

Datasets
Association of drugswith side effects
The association between drugs and TCs is an important
step for the characterization of drugs sharing side effects.
As the TC size varies from 2 to 59 terms, it seems con-
sistent to use a heuristic procedure depending on the TC
size. Let ki be the number of terms in TCi and ni be
the minimal number of side effects required for assign-
ing TCi to a drug. Considering ni = 1 for any TCi results
in a very loose association yielding a very dense binary
table hampering further computation, whereas consid-
ering ni = ki for any TCi results in a very stringent
association which might skip over important drug side
effects. In fact a trade-off between these two extreme
solutions is required. Grouping the ki values into 5-range
intervals with the last interval from 21 to 59 allows to set
up a simple association procedure ranging ni from 1 to 5.
The resulting association between drugs and TCs is shown
in Figure 3 where each row represents the side-effect

Figure 3 Drug side-effect binary table. This table is presented as a heatmap (produced with R) where rows and columns are grouped by
distribution similarity. Each row represents the side-effect fingerprint of a drug and each column is a side-effect term cluster.
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binary fingerprint associated with a drug. This binary
table (drug×TC) is then used to discover interesting side-
effect profiles defined here as the longest combinations of
TCs shared by significant sets of drugs.

Single-table datasets
Single table datasets designed for DT learning represent
each drug by an attribute-value vector. Four types of
descriptors retrieved from NetworkDB are used to gener-
ate these attributes: the first is the class information, i.e.
the studied SEP, the second one includes drug categories,
the third one lists all drug targets with for each target,
three attributes referring to the type of action of the drug
(activation, inhibition and other) and the fourth concerns
clusters of similar drugs according to the four similarity
measures described above. Because of target and cate-
gory multiplicity, the total dimension of this dataset varies
between 741 and 924 depending on the SEP.

Relational datasets
Relational datasets designed for Inductive Logic Pro-
gramming (ILP) consist in a set of tables extracted from
NetworkDB describing drugs properties and background
knowledge. Drugs properties are the same as in the
single-table dataset, i.e. categories, targets and clusters.
Background knowledge includes GO annotations, domain
composition, interactants and pathways of each drug
target. Relationships between GO terms constitute an
additional table.

Data mining
Maximal frequent itemsets
In a binary table (object×attribute), a frequent itemset
is a group of attributes shared by a number of objects
greater than a threshold support. A frequent itemset is
considered as a maximal frequent itemset (MFI) if all its
proper supersets are not frequent [25]. It follows that two
maximal frequent itemsets (MFIs) cannot be shared by a
number of objects greater than the threshold support. In
our case, MFIs are the largest combinations of TCs shared
by a number of drugs greater than 100. This thresholdwas
chosen as a trade-off between high values yielding short
MFIs limited to one or two TCs and low values yielding
numerous MFIs covering only a few molecules. MFIs are
extracted from the binary table (Figure 2) using the Coron
program [26] after excluding TCs which cover more than
50% of the molecules.

Decision trees
Decision tree (DT) construction is a machine-learning
method which uses (object×attribute) table to classify
objects. Results given by this method are easily readable.
Decision trees are built here with the J48 implementa-
tion of C4.5 tree learner in the Weka toolbox using single

table datasets converted into the ARFF format [27]. We
use the default parameters except for two of them: we use
minNumObj = 5 and binarySplits = true.

Inductive Logic Programming (ILP)
ILP is a machine-learning method which uses relational
data as input and has been successfully applied to vari-
ous areas including bioinformatics [28-30]. It allows us to
learn a concept definition from observations, i.e, a set of
positive examples (E+) and a set of negative examples (E-),
and background knowledge (B) [31]. The ILP experiments
produce theories as sets of first-order logic rules. They
where conducted here with the Aleph Program [32].Many
parameters can be tuned for theory construction. The
three main parameters are the min-pos, the noise and the
induce-type. Themin-pos parameter is the minimal num-
ber of positive examples that a rule must cover. The noise
corresponds to the maximal number of negative exam-
ples that an acceptable rule may cover (in our case, one is
never sure that a drug does not have a given side effect).
The third parameter is induce-type which directs theory
construction. When this parameter is set to induce-cover,
overlapping rules are produced (i.e., a drug can be covered
by several rules). Based on previous experience [33], we
used the following settings: min-pos = 5, noise = 1 and
induce-type = induce-cover.

Model evaluation
Cross-validation
Both ILP theories and decision trees are evaluated with
10 runs of a 10-fold stratified cross-validation. DT cross-
validation is performed with the Weka experimenter
interface. For ILP, we took advantage of our recent
integration of Aleph into the KNIME platform [34].
KNIME cross-validation meta-node is adapted for theory
evaluation. An example is predicted as positive if it is cov-
ered by at least one rule. Each cross-validation assay yields
a confusion matrix counting true and false positives, as
well as true and false negatives. Each assay is then eval-
uated by the calculation of accuracy (ratio of correctly
classified instances), specificity (true negative rate) and
sensitivity (true positive rate).

Direct test
Theories and decision trees are also evaluated by direct
test. Drugs used for testing are those present in SIDER 2
and DrugBank (v3.0) but not present in SIDER. For these
drugs all descriptors are retrieved and stored in the Net-
workDB. Furthermore, the reports of FAERS from 2004 to
2011 were imported as a database and used as an exter-
nal information source for checking the false positives
predicted by our models. We consider that a molecule is
associated with a SEP in FAERS if for each TC of the SEP
there is at least one report that states that the molecule is
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the primary suspect of an observed side effect belonging
to the TC. Our checking procedure is just an anticipa-
tion as it relies on the fact that updating the package
insert of a drug (stored in SIDER) requires that sufficient
amount of adverse effect incidents occur (especially for
new drugs).

Results and discussion
Overall distribution of side effects
A drug is associated with a TC (group of semantically
related side effects) if it is annotated by a minimum num-
ber of side effects of this TC (see Methods). The resulting
binary table is shown in Figure 3, where each row repre-
sents the side effect fingerprint of one of the 554 drugs
considered here, and each column represents one of the
112 TC. In this representation, drugs and TCs have been
grouped by distribution similarity. On the right part of the

figure, we can see TCs associated with a limited number of
drugs, whereas highly represented TCs are on the left. In
the same way, drug fingerprints involving few TCs are on
the top of Figure 3 and drugs with high number of TCs are
on the lower part. Zooming on adjacent columns reveals
that some TCs seem to be frequently associated with
the same drugs as for example the pair TC 39_Stevens-
Johnson_syndrome and TC 100_Erythema_multiforme.
However, apart from providing a general idea about the

complexity of TC association with drugs, this visualiza-
tion cannot be exploited easily. More precise information
can be retrieved by querying NetworkDB. For example,
the maximal number of TCs associated with a drug is 89
for the ropinirole (an anti-Parkinson agent). Conversely,
18 drugs are associated with only one TC. For instance,
bretilium (an anti-hypertensive agent) is only associated
with TC 110_Shock. From the TC point of view, the num-
ber of drugs associated with a TC ranges from 1 to 410.

Table 1 Maximal frequent itemsets covering 20%of drugs (support) extracted from the drug×TC table

SEP Profile composition Support Avg overlap

SEP_1 41_Leukopenia, 90_Feeling_abnormal, 99_Headache 123 69

SEP_2 90_Feeling_abnormal, 99_Headache, 110_Shock 123 73

SEP_3 58_Gout 120 60

SEP_4 70_Pneumonia, 99_Headache 117 71

SEP_5 110_Shock, 111_Infection 117 68

SEP_6 76_Asthma, 90_Feeling_abnormal, 99_Headache 117 68

SEP_7 65_Dermatitis 116 53

SEP_8 2_Haemorrhage, 76_Asthma 115 65

SEP_9 41_Leukopenia, 76_Asthma 115 62

SEP_10 48_Rhinitis, 99_Headache, 111_Infection 115 69

SEP_11 41_Leukopenia, 110_Shock 114 66

SEP_12 39_Stevens-Johnson_syndrome, 41_Leukopenia, 100_Erythema_multiforme 114 52

SEP_13 41_Leukopenia, 48_Rhinitis 113 67

SEP_14 99_Headache, 100_Erythema_multiforme 113 56

SEP_15 31_Lymphadenopathy 112 59

SEP_16 70_Pneumonia, 90_Feeling_abnormal 112 71

SEP_17 41_Leukopenia, 70_Pneumonia 112 64

SEP_18 76_Asthma, 111_Infection 112 64

SEP_19 80_Jaundice, 100_Erythema_multiforme 112 45

SEP_20 41_Leukopenia, 111_Infection 111 63

SEP_21 8_Haematuria, 90_Feeling_abnormal, 99_Headache 111 68

SEP_22 13_Pyrexia, 33_Musculoskeletal_discomfort, 48_Rhinitis, 99_Headache 111 69

SEP_23 13_Pyrexia, 70_Pneumonia 110 69

SEP_24 48_Rhinitis, 90_Feeling_abnormal, 110_Shock 110 70

SEP_25 13_Pyrexia, 90_Feeling_abnormal, 110_Shock 110 70

SEP_26 48_Rhinitis, 90_Feeling_abnormal, 111_Infection 110 69

Avg overlap: average of overlap size between the SEP and other SEPs.
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The 13 TCs covering more than 50% of the molecules are
excluded in the rest of the study.

Side-effect profiles
The overall intuition provided by Figure 3 is that groups
of TCs shared by drugs exist and should be extracted. In
fact, extracting patterns from such binary table is the pur-
pose of itemset search algorithms [35]. We thus perform
MFI extraction and we define side-effect profiles (SEPs) as
maximal groups of TCs covering at least 20% of the drug
set (110 drugs). The resulting 26 SEPs are listed in Table 1.
Regarding length, 3 SEPs have only one TC, 13 combine
2 TCs, 9 combine 3 TCs, and only one combines 4 TCs.
These 26 SEPs concern 372 molecules (67% of the drug
set) and involve 18 distinct TCs of which the most fre-
quent are 99_Headache and 90_Feeling_abnormal which
appear 8 times each, whereas 7 TCs appear in only one
SEP. These 26 most frequent SEPs are considered in the
rest of the study. By construction, although two SEPs can
have common TCs, they cannot cover more than 100
molecules in common.

Characterization of frequent SEPs
Our hypothesis is that a SEP shared by a large number
of drugs can be explained in terms of drug properties
and background knowledge. Thus, two machine-learning
methods, decision trees and ILP, are applied on the drugs
associated with each SEP. For both methods, the positive
examples are taken to be all the drugs associated with a
SEP, and those drugs that are not associated with any of
the TCs composing the SEP are taken as negative exam-
ples. Negative examples represent 60% of the learning
set.
For each profile, classification efficiency is evaluated

using a 10×10 cross-validation by accuracy (Acc), speci-
ficity (Spec) and sensitivity (Sens). The results presented
in Table 2 show that for both methods, generated models
are good classifiers with an average accuracy of 67% for
DTs and 65% for ILP. For 23/26 SEPs, accuracy is better for
DTs than with ILP mostly reflecting the higher specificity
values obtained with DTs. On the contrary, sensitivity val-
ues are always higher with ILP than with DTs with only
one exception for SEP_17 where ILP sensitivity value is 0.1
lower than DTs sensitivity. Thus, ILP provides more sen-
sitive theories whereas DTs provide more specific mod-
els. In fact, sensitivity is probably more important than
specificity for drug development as it is for medical diag-
nostic. Indeed, low sensitivity means that some SEPs can
be skipped over, although they are truly associated with
the tested drug. Thus, ILP theories display attractive qual-
ities for SEP prediction. Five SEPs (1, 3, 12, 15, and 19)
are particularly well characterized with ILP since sensitiv-
ity values are greater than 60%. The amount and quality

Table 2 Evaluationof learning results by 10× 10 stratified
cross-validationof DT and ILP programs

SEP DT ILP

Acc Spec Sens Acc Spec Sens

SEP_1 0.65 0.86 0.39 0.61 0.63 0.6

SEP_2 0.69 0.88 0.4 0.63 0.69 0.54

SEP_3 0.71 0.88 0.47 0.71 0.77 0.63

SEP_4 0.66 0.89 0.32 0.62 0.7 0.51

SEP_5 0.68 0.88 0.38 0.64 0.7 0.54

SEP_6 0.68 0.87 0.39 0.61 0.69 0.49

SEP_7 0.65 0.86 0.32 0.6 0.67 0.49

SEP_8 0.7 0.87 0.44 0.67 0.73 0.57

SEP_9 0.69 0.84 0.46 0.69 0.75 0.59

SEP_10 0.7 0.89 0.4 0.65 0.76 0.47

SEP_11 0.7 0.88 0.44 0.7 0.82 0.45

SEP_12 0.71 0.88 0.45 0.7 0.76 0.61

SEP_13 0.67 0.88 0.35 0.66 0.74 0.54

SEP_14 0.69 0.89 0.39 0.63 0.71 0.51

SEP_15 0.71 0.9 0.43 0.69 0.76 0.6

SEP_16 0.69 0.89 0.39 0.66 0.72 0.57

SEP_17 0.74 0.89 0.52 0.65 0.74 0.51

SEP_18 0.65 0.87 0.34 0.61 0.69 0.5

SEP_19 0.74 0.91 0.47 0.72 0.77 0.64 0

SEP_20 0.71 0.89 0.44 0.64 0.73 0.51

SEP_21 0.72 0.9 0.46 0.64 0.72 0.54

SEP_22 0.65 0.88 0.32 0.61 0.69 0.48

SEP_23 0.71 0.89 0.43 0.63 0.7 0.51

SEP_24 0.68 0.87 0.4 0.62 0.71 0.5

SEP_25 0.71 0.9 0.43 0.65 0.72 0.56

SEP_26 0.69 0.88 0.4 0.62 0.69 0.52

Average 0.67 0.83 0.43 0.65 0.72 0.54

Acc: accuracy, Spec: specificity, Sens: sensitivity.

of available data may explain the observed differences of
results between SEPs. It should be noted that compari-
son with other reported methods is uneasy due to the fact
that we aim to characterize and predict SEPs rather than
isolated side effects. In fact the closest study is the one of
Yamanishi et al. [9] whose objective is to predict isolated
side effects using multi-class statistical methods. There-
fore these authors do not produce comparable accuracy
values.
Table 3 shows the results obtained with the set of test

molecules. Among the novel drugs present in SIDER 2,
only 20 are associated with at least one of the 26 studied
SEPs. These drugs have been tested with decision trees
and ILP theories obtained for each SEP. The total number
of drugs in the test set that are associated which each SEP
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Table 3 Direct testing results with 20 newmolecules

SEP Positives DT ILP

TP FP FAERS TP FP FAERS

SEP_1 4 0 5 1 2 3 1

SEP_2 11 1 2 1 0 1 1

SEP_3 2 0 3 1 0 5 1

SEP_4 3 0 3 1 1 2 1

SEP_5 5 0 2 1 1 2 1

SEP_6 5 1 5 3 2 3 1

SEP_7 15 2 2 1 2 1 1

SEP_8 4 1 1 1 1 3 1

SEP_9 3 0 3 2 0 3 1

SEP_10 5 0 1 0 0 3 1

SEP_11 4 1 3 2 1 3 1

SEP_12 0 0 5 1 0 4 1

SEP_13 4 0 6 2 1 4 1

SEP_14 4 1 0 0 1 5 2

SEP_15 1 0 2 1 0 5 2

SEP_16 3 0 6 2 2 7 3

SEP_17 1 0 5 3 0 2 1

SEP_18 2 0 3 1 0 2 1

SEP_19 1 0 4 2 0 5 2

SEP_20 3 0 3 1 1 4 1

SEP_21 8 1 2 1 1 2 1

SEP_22 5 0 3 1 1 5 1

SEP_23 3 0 3 1 1 4 1

SEP_24 5 1 4 2 2 5 2

SEP_25 8 0 3 2 2 5 2

SEP_26 4 0 6 3 0 3 1

Positives: number of positive examples in the test set according to SIDER, TP/FP:
number of predicted true/false positives, FAERS: number of fished out molecules
based on FAERS data.

is indicated (column Positives) and compared to the true
positive values (TP columns) obtained with test set using
either DTmodel or ILP theory relative to this SEP. Clearly
the prediction results are better with ILP theories than
withDTs. Indeed 22 true positives (covering 16 SEPs)were
detected with ILP theories whereas only 9 true positives
(covering 8 SEPs) were detected with DTs. The number
of false positives are also reported for each SEP and each
model (FP columns). The checking procedure was applied
on false positives and the number of confirmed molecules
according to FAERS is reported (FAERS columns). Thus,
33 molecules were extracted for ILP theories versus 37
for DTs raising the total number of probable true posi-
tives to 55 for ILP and 46 for DTs. Nevertheless, as the
variability in cross-validation results suggest, many posi-
tive molecules still escape prediction especially for three

SEPs: SEP_2, SEP_7, and SEP_21 with both DTs and ILP
theories.

Interpretation of decision trees and theories
Quantitative characteristics of DT models and ILP
theories for the 26 selected SEPs are presented in
Table 4 (the decision trees and ILP theories are available
at http://plateforme-mbi.loria.fr/side-effect-profiles).The
first observation concerns model coverage. We can see
that in average 83% of the drugs are covered by at least
one rule in an ILP theory whereas DT models cover in
average only 58% of the drugs composing the learning set.
The second observation is the use of almost all descriptor
types in each DT model or ILP theory. The most rep-
resented descriptors are drug categories and clusters for
DTs, respectively drug targets and GO terms for ILP the-
ories. This illustrates the importance of using background
knowledge about drug targets and GO semantic relation-
ships for the characterization of SEPs.
It is worth noting that some rules contained in theo-

ries were confirmed using peer-reviewed literature. For
example, considering the SEP_7 (65_Dermatitis) theory,
rule 11 says that a drug is associated with this SEP if its tar-
get interacts with a protein belonging to the KEGG path-
way “Focal adhesion” and to the PID pathway “Signaling
events mediated by focal adhesion kinase” (Table 5). By
searching the list of genes implied in dermatitis [36] and
confronting them to the 2 pathways, we extract 7 genes
(THBS1, COL1A2, COL3A1, COL4A1, COL5A, ITGB4
and LAMA5) dysregulated in dermatitis which belong to

Table 4 Quantitative characteristics of DTmodels and ILP
theories

DT (# nodes per model) ILP (# rules per theory)

Avg (min-max) % total Avg (min-max) % total

Model coverage (%) 58 (32–67) - 83 (77–88) -

Model size 11 (6–15) - 33 (16–40) -

Drug descriptors

Categories 4 (1–7) 34 6 (2–13) 19

Targets 3 (0–5) 26 30 (23–39) 90

Clusters 4 (1–9) 40 9 (4–14) 27

Target descriptors

GO terms NA NA 24 (16–31) 73

Domains NA NA 1 (0–2) 1

Interactions NA NA 8 (2–16) 24

Pathways NA NA 4 (1–8) 12

GO relationships NA NA 6 (3–9) 19

Model coverage is the percentage of positive examples covered, averaged over
the 26 DTmodels and 26 ILP theories. Avg: average. Model size corresponds to
the average number of nodes in a DT model or of rules in a ILP theory.
Occurrence of each type of descriptor is estimated by counting the number of
nodes (rules respectively) involving them (NA: not applicable).

http://plateforme-mbi.loria.fr/side-effect-profiles
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Table 5 Theory obtained for 65_Dermatitis SEP (SEP_7)

Rule # Condition part of the rule P N

3 drug_has_target(A,B,inhibitor), goterm(B,’cellular response to insulin stimulus’) 15 1

18 drug_has_target(A,B,inhibitor), goterm(B,C), go_relation(C,part_of,go:21543) 13 1

1 drug_has_target(A,B,activator), interact(B,C), goterm(C,’central nervous system development’) 12 1

30 drug_has_target(A,B,inhibitor), interact(B,C), pathway(C,’BCR signaling pathway’,pid), drug_cluster(A,’17_quinine’,hpcc) 12 0

24 drug_has_target(A,B,inhibitor), interact(B,C), goterm(C,’translation’), interact(C,D) 10 1

20 drug_has_target(A,B,inhibitor), interact(B,C), pathway(C,’BCR signaling pathway’,pid), pathway(C,’EPO signaling pathway’,pid) 9 1

25 drug_has_target(A,B,activator), goterm(B,’lipid binding’), goterm(B,’ligand-dependent nuclear receptor activity’) 9 1

35 drug_has_target(A,B,activator), interact(B,C), goterm(C,’identical protein binding’), goterm(C,’DNA binding’) 9 1

6 drug_has_target(A,B,inhibitor), goterm(B,’protein homodimerization activity’), drug_cluster(A,’16_gliclazide’,hpcc) 8 0

8 drug_has_target(A,B,activator), interact(B,C), interact(C,’Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B
beta isoform’)

8 1

15 drug_has_target(A,B,inhibitor), goterm(B,’response to ethanol’), goterm(B,’signal transduction’) 8 1

19 drug_has_target(A,B,inhibitor), goterm(B,C), go_relation(C,is_a,go:8227), drug_cluster(A,’16_Flavoxate’,hpcombo) 8 0

31 drug_has_target(A,B,inhibitor), interact(B,C), interact(C,’Dedicator of cytokinesis protein 1’) 8 0

5 drug_has_target(A,B,activator), goterm(B,’receptor activity’), interact(B,C), goterm(C,’mitosis’) 7 1

10 drug_has_target(A,B,inhibitor), goterm(B,C), go_relation(C,is_a,’cation channel activity’), goterm(B,’serotonin receptor activity’) 7 1

14 drug_has_target(A,B,activator), pathway(B,’Neuroactive ligand-receptor interaction’,kegg),
goterm(B,’transcription, DNA-dependent’), goterm(B,’signal transduction’)

7 0

16 drug_has_target(A,B,inhibitor), pathway(B,’Endocytosis’,kegg) 7 0

21 drug_has_target(A,B,activator), interact(B,C), interact(C,’RNA polymerase-associated protein CTR9 homolog’) 7 1

22 drug_has_target(A,B,inhibitor), pathway(B,’Role of Calcineurin-dependent NFAT signaling in lymphocytes’,pid),
goterm(B,’signal transduction’)

7 1

23 drug_has_target(A,B,inhibitor), interact(B,C), domain(C,’ Protein synthesis factor, GTP-binding’) 7 1

28 drug_cluster(A,’7_marinol’,hpcombo) 7 1

7 category(A,’Topoisomerase Inhibitors’), drug_has_target(A,B,inhibitor), goterm(B,’transferase activity’) 6 1

12 drug_cluster(A,’29_norfloxacin’,hpcf) 6 1

17 category(A,’Cyclooxygenase 2 Inhibitors’), drug_cluster(A,’2_estazolam’,hpcc) 6 0

32 drug_has_target(A,B,activator), goterm(B,’inflammatory response’), goterm(B,’protein binding’) 6 0

2 category(A,’Serotonin Uptake Inhibitors’) 5 0

4 drug_has_target(A,B,inhibitor), goterm(B,’synapse assembly’), drug_cluster(A,’14_fentanyl’,hpcombo) 5 1

9 drug_has_target(A,B,activator), goterm(B,’protein heterodimerization activity’), goterm(B,’cell-cell signaling’) 5 1

11 drug_has_target(A,B,other), interact(B,C), pathway(C,’Focal adhesion’,kegg), pathway(C,’Signaling eventsmedi-
ated by focal adhesion kinase’,pid)

5 0

13 category(A,’HIV Protease Inhibitors’), drug_has_target(A,B,inhibitor), goterm(B,C), go_relation(C,is_a,D),
go_relation(D,is_a,’catalytic activity’)

5 1

26 drug_has_target(A,B,inhibitor), goterm(B,’heart development’) 5 1

27 drug_has_target(A,B,inhibitor), goterm(B,C), go_relation(C,is_a,go:65008), drug_cluster(A,’55_thiothixene’,tanimoto) 5 0

29 category(A,’HIV Protease Inhibitors’), drug_has_target(A,B,inhibitor), goterm(B,’oxidation reduction’) 5 0

33 drug_has_target(A,B,other), goterm(B,C), go_relation(C,is_a,go:51240) 5 1

34 drug_has_target(A,B,inhibitor), goterm(B,C), go_relation(C,is_a,’binding’), drug_cluster(A,’27_quinine’,hpcombo) 5 1

The condition parts of the 35 rules contained in SEP_7 theory are given with the number of positive (P) and negative (N) covered examples. The 3 rules confirmed
using peer-reviewed literature are in bld. Rules are ordered by number of positive covered examples. The 8 predicates are defined as follows: Drug_has_target(A, B,
inhibitor/activator) : drug A activates/inhibits protein B; goterm(B, G): protein B is annotated by GO term G; go_relation (G1, R, G2): the relationship between GO terms
G1 and G2 is R; interact(B,C): protein B interacts with protein; pathway(B, P): protein B is involved in pathway P; drug_cluster(A,K,M): drug A is member of cluster K
obtained using method M; category(A,T): drug A belongs to category T; domain(B,D): protein B is composed of domain D.
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the KEGG pathway “Focal adhesion”. In the same way,
two genes (BDKRB2 and PTGFR) are known to be dys-
regulated in dermatitis and belong to the “Neuroactive
ligand-receptor interaction” KEGG pathwaymentioned in
rule 14. Finally, if we consider rule 16 we could verify that
the gene ERBB3 belonging to the “Endocytosis” KEGG
pathway is indeed down regulated in dermatitis.
Finally, from a more global point of view the drugs can

be represented according to the rules they satisfy result-
ing in a drug×rule binary table. This table constitutes a
kind of abstraction of the initial drug×TC binary table
(Figure 3) based on extracted knowledge. Interestingly this
new representation leads to improved clustering results
for the drug set (not shown) and could be further exploited
for prediction studies of particular SEPs.

Conclusions
Our study proposes an integrative machine-learning
approach for predicting side-effect profiles (SEPs) and
understanding their mechanisms.We integrate drug char-
acteristics and background knowledge such as functional
annotation, interactions and pathways in a relational
database. An extensive learning set is built by associat-
ing drugs with clusters of side effects (TCs) according
to SIDER information. Our first contribution consists of
extracting SEPs from this complex table of fingerprints
as the longest groups of TC shared by more than one
hundred drugs. We also set up two machine-learning
methods, namely decision trees and inductive logic pro-
gramming in order to learn which combination of proper-
ties of drugs and their targets leads to a given SEP. After
evaluating the learning models, our general observation is
that ILP models have a higher sensitivity than DTmodels.
Because higher sensitivity means predicting fewer false
negatives, this means that ILP predicts SEPs more often
than decision trees. This was confirmed on a small test
set including a checking procedure using FAERS as exter-
nal and complementary information source. Indeed, more
sophisticated prediction procedures can be designed inte-
grating FAERS and based on selected rules. This should
improve the prediction accuracy at least for specific
SEPs displaying good quality data. The results obtained
with ILP also show that background knowledge is well
exploited during rule induction. Thus, in addition to tar-
gets, chemical structure and biological process annotation
already studied by other groups [4,7,8], we show that
information about pathways, protein-protein interaction
and to a lower extent protein domains also plays an impor-
tant role in side effect characterization. Further experi-
ments may include other types of background knowledge
such as clinical data and/or polymorphisms.
In our approach we characterize SEPs instead of indi-

vidual TCs. Indeed as drugs are frequently associated with
more than one TC, studying separately each TC implicitly

assumes that side effects occur independently one from
the other. This likely corresponds to a simplified view of
side-effect occurrence and the existence of SEPs shared
by more than 20% of the drug set strongly suggests that
side effects are correlated. Moreover our approach can be
applied to any user-defined SEP or TC of interest.
We believe that our approach represents a valuable

methodology for understanding and predicting side-effect
profiles. Our results suggest that the first-order logic theo-
ries can already be used during the drug discovery process
in order to early anticipate side-effect apparition and thus
decrease the attrition rate.

Availability of supporting data
All decision trees and ILP theories are available at http://
plateforme-mbi.loria.fr/side-effect-profiles.
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