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Abstract

Background: Fueled by rapid progress in high-throughput sequencing, the size of public sequence databases
doubles every two years. Searching the ever larger and more redundant databases is getting increasingly inefficient.
Clustering can help to organize sequences into homologous and functionally similar groups and can improve the
speed, sensitivity, and readability of homology searches. However, because the clustering time is quadratic in the
number of sequences, standard sequence search methods are becoming impracticable.

Results: Here we present a method to cluster large protein sequence databases such as UniProt within days down to
20%–30% maximum pairwise sequence identity. kClust owes its speed and sensitivity to an alignment-free prefilter
that calculates the cumulative score of all similar 6-mers between pairs of sequences, and to a dynamic programming
algorithm that operates on pairs of similar 4-mers. To increase sensitivity further, kClust can run in profile-sequence
comparison mode, with profiles computed from the clusters of a previous kClust iteration. kClust is two to three
orders of magnitude faster than clustering based on NCBI BLAST, and on multidomain sequences of 20%–30%
maximum pairwise sequence identity it achieves comparable sensitivity and a lower false discovery rate. It also
compares favorably to CD-HIT and UCLUST in terms of false discovery rate, sensitivity, and speed.

Conclusions: kClust fills the need for a fast, sensitive, and accurate tool to cluster large protein sequence databases to
below 30% sequence identity. kClust is freely available under GPL at ftp://toolkit.lmb.uni-muenchen.de/pub/kClust/.

Background
In recent years, the amount of sequence data has been
growing at an accelerating pace. While one would expect
the denser sampling of sequence space to lead to better
performance of sequence searches, the opposite seems to
be true: The increase has led to stagnating or even nega-
tive returns, as measured by the ability to detect homol-
ogous sequences for structure or function predictions
[1]. Removing redundant sequences through clustering
can partly alleviate this problem: [2] and [3] showed that
sequence searches through clustered databases, which
contain one representative sequence per cluster, could
improve the sensitivity of homology search methods. Fur-
thermore, clustering reduces search times and can greatly
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improve the readability of search results [4]. Cluster-
ing is also often used in the analysis of metagenomics
experiments, where potentially orthologous sequences are
clustered together in order to define the inventory of bio-
chemical reactions that are likely to be present in the
metagenomic community [5-7].
An important motivation to develop kClust was our

need for a database of profile hidden Markov models
(HMMs) that contains all UniProt sequences, clustered
down to 20%–30% sequence identity (uniprot20). Such
a database is required by HHblits, the most sensitive
protein sequence search method to date [8]. HHblits cal-
culates a profile HMM from the query sequence and
compares this query HMM with the uniprot20 database
of HMMs. In subsequent iterations, sequences belong-
ing to significantly similar database HMMs are added to
the query multiple sequence alignment (MSA). Thanks to
the additional information from homologous sequences
in the MSAs, HMM-HMM comparison is more sensitive
and accurate than profile-sequence comparison: Com-
pared to PSI-BLAST [9], HHblits is faster, up to twice
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as sensitive, and produces alignments with several per-
cent higher accuracy [8]. For HHblits it is critical that
only a very low number of clusters are corrupted by
non-homologous sequences, since these can cause high-
scoring false-positive matches. The clustering sensitivity
is also important because MSAs with higher sequence
diversity and higher information content are better at
finding remotely related sequences. Also, the lower num-
ber of clusters results in shorter search times.
Sequence clustering methods first need to compare the

sequences in the input set with each other. Most meth-
ods use FASTA or BLAST [10,11] for this purpose. Some
of these methods use the pairwise sequence similarities
for hierarchical clustering [12-15]. Others use them to
cluster sequences into orthologous or functionally simi-
lar groups [16-22]. FASTA and BLAST are two to three
orders of magnitude faster than Smith-Waterman search
[23] due to their fast, k-mer-based heuristic filters, yet
they would require around 80 years of CPU time to cluster
the UniProt database version with∼35.5 million sequence
from scratch. SIMAP [24] employs a 9-TeraFLOP dis-
tributed network of computers to regularly update their
database of precomputed FASTA similarity scores for
a large set of protein sequences. This database can be
tapped to avoid the time-consuming sequence alignments
[22], but it cannot be used for sequences not yet con-
tained in SIMAP or when the clustering should depend on
information other than sequence similarity scores.
CD-HIT [25-27] and UCLUST [28] are sequence clus-

tering methods that, like kClust, do not rely on an external
sequence search tool. All three methods aim at cluster-
ing large sequence databases much faster than what is
possible using BLAST or FASTA. They start with zero
clusters and pick one sequence after the other from the
database. If the query is sufficiently similar to the rep-
resentative sequence of a cluster, the query is added to
that cluster. Otherwise it becomes the founding member
and representative sequence for a new cluster. For the fast
comparison of the query to the representative sequences
of the clusters, these methods first prefilter the repre-
sentative sequences using an alignment-free, k-mer-based
sequence comparison. Sequences that pass the prefilter
are aligned to the query using Smith-Waterman align-
ment. The clustering finishes when all sequences have
been picked and assigned to a cluster.
For prefiltering, CD-HIT andUCLUST simply count the

number of identical k-mers between sequences. Because
this number drops quickly as the similarity of the com-
pared sequences decreases, CD-HIT uses shorter k-mers
for achieving higher sensitivity: (e. g. 5-mers for cluster-
ing thresholds down to 70% sequence identity, and 2-mers
below 50%). The choice of k follows from the require-
ment for near-perfect sensitivity, between 95% and 99%.
Reducing k comes at a considerable loss of speed, however,

since decrementing k by one results in approximately 20
times more chance k-mers matches and a 20-fold longer
run time. CD-HIT can therefore cluster large databases
such as UniProt only to down to ∼ 50% sequence identity.
UCLUST uses 5-mers at all clustering thresholds. This
allows it to maintain a high speed even at low thresholds,
at the cost of a loss of sensitivity. It ranks the represen-
tative sequences by the number of 5-mers they have in
common with the query sequence and aligns them in this
order until one of them is similar to the query sequence or
until the highest-ranked eight clusters have been rejected.
An apparent disadvantage of UCLUST is that, in order
to increase sensitivity despite its word length of 5, it uses
rather loose acceptance criteria. At clustering thresholds
below 50%, this leads to a high fraction of corrupted
clusters containing non-homologous sequences.
Both CD-HIT and UCLUST use banded dynamic pro-

gramming to speed up the Smith-Waterman search. In
addition, UCLUST extends the alignment around identi-
cal 5-mer matches in a way similar to BLAST [11].
kClust achieves high sensitivity by allowing matches

between similar k-mers and ranking sequence pairs by the
sum of similarity scores over all similar k-mer pairs.
We benchmark the performance of kClust and other

tools to cluster large sequence databases well below 50%
sequence identity. Our results show that kClust achieves
false discovery rates similar to BLAST at much higher
speeds, whereas at these low clustering thresholds CD-
HIT and UCLUST manifest severe limitations in sensitiv-
ity, false discovery rate, and speed.

Implementation
Overview of kClust algorithm
kClust, like CD-HIT and UCLUST [26,28], uses the incre-
mental, greedy clustering strategy of [29] (Additional
file 1: Figure S1). First, all sequences are sorted by length.
Starting with the longest one, the next sequence is picked
from the database as query and is compared with the
representative sequences representing the already created
clusters. If the query fulfills kClust’s similarity criteria with
one of the representative sequences, the query is added to
that cluster, otherwise a new cluster is created for which
the query becomes the representative sequence.
A fast, alignment-free prefilter reduces the number of

costly computations of sequence alignments. Whereas
CD-HIT and UCLUST count exact k-mermatches, kClust
calculates the sum of similarity scores over all similar
6-mers. To increase speed, alignments are constructed
with a novel algorithm, k-mer dynamic programming
(kDP), which finds the local optimal alignment passing
through pairs of similar 4-mers (C.E.M. and J.S., to be pub-
lished). Furthermore, kClust employs spaced 6-mers and
4-mers that reduce the noise caused by the correlation
between scores of neighboring k-mer matches [30].
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Three similarity criteria are used to decide if a
query is added to a cluster: (1) The sequence similar-
ity score from the 4-mer-based dynamic programming
algorithm is larger than a minimum BLOSUM62 score
per column (default 1.12 half bits, which corresponds
to a sequence identity of ∼ 30%, see Additional file 1:
Figure S2), (2) the alignment achieves an E-value less
than a defined threshold (default value 1E-3), and (3)
the alignment covers at least 80% of the residues of
the representative sequence. This criterion ensures that
clusters contain sequences with nearly identical domain
composition.
In a second iteration, profile-based kClust can also

merge homologous clusters. It computes sequence pro-
files of the clusters generated in the previous step and uses
these for scoring during the prefilter and alignment stages.
This further improves the sensitivity without loss of speed.

Prefiltering
kClust’s prefilter sums up the substitutionmatrix scores of
all 6-mers above a certain score threshold Smin. (Default
is 4.3 half-bits per column, or 12.9 bits, for a clustering
threshold corresponding to roughly 30%, resulting in sim-
ilar k-mer lists of an average length 100 per sequence
position). As explained in detail in the supplementary dis-
cussion (Additional file 1), scoring similar k-mers confers
a great advantage over counting identical k-mers. Briefly,
by allowing non-identical matches a sufficient number
of matches will occur even at low sequence similari-
ties and for a word length as large as 6. On the other
hand, the number of chance k-mer matches expected
for unrelated sequences strongly decreases with increas-
ing k, which in turn improves both the discrimination
between true and false positives and the speed of the
prefilter. This is illustrated in Figure 1, which shows
the distribution of identical 3-mer matches and similar
6-mer matches for two proteins with a sequence identity
of 45%.
The algorithm to calculate the sum of k-mer similarity

scores is described in Figure 2. Sequences whose score is
above a certain threshold are aligned to the query in the
next step (kDP). The default prefilter score threshold is
set to 0.55 half bits per query position, which results in a
98% sensitivity level (see Additional file 1: Figure S3). The
array index in the index table at which the pointer for each
k-mer (x1, . . . , xk) is stored is calculated as

∑k
j=1 xj|�|k−j,

where |�| = 21 is the size of the amino acid alphabet.

Generating lists of similar k-mers
A branch-and-bound algorithm generates the list of all
k-mers that have a BLOSUM62 score above a specified
threshold Smin. First, we calculate for each position j in
the k-mer the minimum score Smin,j that is necessary to
reach a total score above the threshold Smin. This score

is simply Smin minus the maximum score achievable for
k-mer positions j + 1, . . . , k − 1:

Smin,j = Smin −
k∑

i=j+1
SBLOSUM62(xi, xi) , (1)

where SBLOSUM62(x, y) denote the BLOSUM62 substitu-
tion matrix scores. The list of similar k-mers is then
generated iteratively position by position, by append-
ing each of the 20 amino acids to the current j-mer
and ending the branch if the score of the current j-
mer is lower than the minimum required, Smin,j. Using
lists of amino acid dimers speeds up the process fur-
ther by generating two amino acids instead of one at
each step. Each dimer list is pre-sorted according to
the score to the query dimer, so the branch can be
skipped after the score of the j-mer falls below Smin,j.
Precomputed intermediate thresholds at each position
and presorted dimer lists ensure that only k-mers with
the overall score above the similarity threshold are gener-
ated. Since no k-mers except those with a score above the
threshold are generated, this step has a time complexity
of O(r).

Time complexity
The run time of the prefilter is the sum of two terms,
the time to generate the lists of similar k-mers plus
a term that is proportional to the number of k-mer
matches between the compared sequences. The algo-
rithm for generating the lists of similar k-mers has time
complexity O(r), where r is the average length of the
lists of similar k-mers. The second term stems from
registering the k-mer matches with the representative
sequences for each k-mer in the list. There are on average
NcluL/206 representative sequences containing a match
to one query k-mer, where Nclu is the number of clus-
ters (i.e. of representative sequences) produced in the
clustering and L is their average length. The run time is
therefore dominated by the second term, which has a time
complexity

O(NdbNcluL2pmatch) , (2)

where Ndb is the number of sequences in the database
and pmatch is the probability of a chance match above the
similarity threshold between two k-mers. Note that before
a new query sequence can be processed, the score array
S[·] (see Figure 2) holding the prefiltering scores for the
database sequences for this query has to be reset to 0.
The naive resetting would result in a time complexity of
O(N2

db) which would be too time-consuming. For each
query, we therefore start with an empty list to which we
add all sequence indices whose score has been increased
above zero, and we reset only the scores in that list.



Hauser et al. BMC Bioinformatics 2013, 14:248 Page 4 of 12
http://www.biomedcentral.com/1471-2105/14/248

Figure 1 k-mer matches comparison. Comparison of exact 3-mer matches (A) versus similar 6-mer matches with r = 100 (B) between two
proteins with 45% sequence identity.

k-mer dynamic programming (kDP)
For the sequences that pass the prefiltering step, pair-
wise alignments are calculated using a fast heuristic,
k-mer dynamic programming [31]. kDP records the sim-
ilar 4-mer matches in the two sequences and deter-
mines the optimal alignment passing through thematched
4-mers. The optimal alignment is the one maximizing the
sum of k-mer similarity scores minus gap penalties. In a
second step, the full, residue-wise alignment with optimal

BLOSUM62 score that passes through the 4-mers on the
optimal kDP alignment is determined. Since kDP oper-
ates only on the similar 4-mer matches, the run time is
proportional to number of matches, pmatchL2, where L is
the length of the sequences. Hence, the run time can be
reduced in principle by a factor of pmatch. In kClust, we
chose the similarity threshold such that the lists of simi-
lar 4-mers have an average length of r = 200. Therefore,
pmatch ≈ r/204 ≈ 0.002 (see Additional file 1).
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Figure 2 Prefiltering step in kClust. Prefiltering algorithm: For each k-mer in the query (k=6), a list of similar k-mers and their BLOSUM62 similarity
scores is generated (blue frame). For each such k-mer (red), a pointer to a list of representative sequences containing this k-mer is looked up in an
array (index table). The score S of each sequence in that list is increased by the similarity score. After all k-mers in the query have been processed,
array S contains for each representative sequence the sum of k-mer similarity scores.

Memory swapping
The index table needs 216 × 8B ≈ 650MB of main mem-
ory on a 64 bit system. The lists of indices of sequences
containing the same k-mers take up a space of NcluL ×
4B, or, assuming Nclu = 3E6 and L = 350, approxi-
mately 4GB. To allow kClust to run on computers with
less memory, we have implemented a memory swap-
ping procedure (s. Figure 3). The input sequences are
divided into blocks (green). The first block is clustered
with the usual clustering procedure, and a list of represen-
tatives is written to the hard disk (blue). Each following
block is first compared to the representatives of the pre-
vious blocks (squares). In the last step, the remaining
sequences are clustered producing a new list of represen-
tatives (triangles). With this procedure, kClust has only a
part of the database in the main memory at each point
of time.

Iterative, profile-based clustering
Iterative kClust is the extension of the basic kClust algo-
rithm that allows to further merge clusters from the first
clustering run (Figure 4). Iterative kClust compares clus-
ters from the previous kClust run to each other instead
of single sequences and merges clusters that are similar
enough.
Multiple sequence alignments (MSAs) are generated

for each cluster stemming from the previous iteration
of kClust, and for each MSA a profile HMM and a
consensus sequence are calculated with the hhmake

and hhconsensus binaries of the open-source HH-suite
software package [8]. The kClust algorithm proceeds in a
similar way to the standard case, but instead of picking
query sequences from the database, sequence profiles
representing clusters are picked from the previously

Figure 3 Swapping.Memory swapping procedure of kClust.
Explanation see text.
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Figure 4 Iterative kClust. Overview over the iterative kClust method. First, kClust clusters the initial sequence database. Then, multiple sequence
alignments are generated and profile and consensus sequences are computed for each cluster. Finally, profile-based kClust merges the clusters.

clustered database and compared to the clusters that
have already been created in the present clustering iter-
ation. As representative sequences of the clusters, the
consensus sequences are used, which improves the sen-
sitivity further [32]. The BLOSUM62 scores are simply
replaced by the position-specific profile scores read from
the profile HMM files. In the prefiltering, for instance,
the lists and scores of the similar k-mers depend on
the local 6-column window of the query profile. If no
representative sequences similar to the query profile
are found, the query is added as a new cluster to the
database.

Spaced seeds
We use spaced instead of consecutive k-mers in the pre-
filtering and kDP steps. The generation of similar spaced
k-mers for a sequence is illustrated in Figure 5. Spaced
k-mers reduce the correlation of neighboring k-mer
scores [30]. Therefore, k-mer matches are more evenly
distributed and the probability of high scoring clusters of
chance matches is reduced.

Alignment generation and annotation of the clusters
The binary kClust_mkAln generates MSAs for each
sequence cluster, using a user-specified multiple sequence
alignment program. In addition, a cluster header with
merged and redundancy-filtered names and annotations
from the headers of the contained sequences is gen-
erated. The merging of UniProt and NCBI headers is
supported.

Results and discussion
Benchmarkedmethods and parameters used
We compared kClust to three methods that are able to
cluster large protein databases: CD-HIT, UCLUST, and
BLAST-based clustering.

CD-HIT
We clustered the datasets with the newest, parallelized
version of CD-HIT [27] on 16 cores down to a sequence
identity of 40%, the lowest possible value. We used
the -n 2 setting (k-mer word length) recommended for
a clustering threshold of 40%. We set the minimum

Figure 5 Generation of spaced k-mers. Spaced k-mers: The figure
illustrates the generation of a list of spaced k-mers in the fast kClust
prefilter algorithm (cf. Figure 2).
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alignment coverage of the longer sequence to 80% with
the -aL 0.8 option and the maximum available memory
to 6000 MB with the -M 6000 option. We used parallel
calculation on 16 cores of the computer by setting -T 0

(i. e. all available cores).

UCLUST
We ran UCLUST with the -id 0.3 and 0.4 options
(“UCLUST 30” and “UCLUST 40”). Additionally, we used
the -targetfract 0.8 setting for the minimum align-
ment coverage 0.8 of the longer sequence. We tried the
-usersort option that should sort the input database
by length, but this led to occasional segmentation faults.
We therefore gave UCLUST a length-sorted database as
input. As a side note, when not crashing, UCLUST pro-
duced worse results with the -usersort option than with
a presorted database.

BLAST-based clustering
BLAST-based clustering was calculated using
pdbfilter.pl from HH-suite (ftp://toolkit.lmb.uni-
muenchen.de/HH-suite/), adapted to our input data.
This simple procedure uses the same incremental greedy
clustering strategy as CD-HIT, UCLUST, and kClust,
but instead of comparing sequences using a prefilter and
dynamic programming, parallel BLAST (option -a 8)
was employed. The acceptance condition to add a query
sequence to an existing cluster was an E-value below 1E-3
and an alignment that covers more than 80% of the repre-
sentative sequence. No condition on the sequence identity
is used, which corresponds to the “max sens” version of
kClust.

kClust
Four parameter settings were tested that differed in
the acceptance criteria for adding sequences to exist-
ing clusters. In all four cases, the maximum E-value
was 1E-3 and the minimum alignment coverage was

80%, which are the default values. For “kClust 30” and
“kClust 20”, kClust was run with a clustering threshold
of 30% and 20%, respectively. “kClust sens” was run with
maximum sensitivity, i.e., with a clustering threshold at
0%. For “kClust iter”, one profile-based kClust iteration
was run after a single iteration with “kClust max sens”
settings.

Clustering Pfam
Pfam-A-seeds version 24.0 are the 500 361 sequences that
define the manually curated 11 912 domain families of the
Pfam data base [33]. Of these, 4011 Pfam families are fur-
ther grouped into 458 clans – a collection of families that
are thought to be evolutionarily related. There are there-
fore 8359 groups of homologous sequences in the Pfam-A
seeds set.
A pair of sequences is considered to be incorrectly

grouped together in one cluster if the sequences belong to
different Pfam families and to different clans. We call such
a cluster corrupted.
All benchmarked methods produce an order of mag-

nitude more clusters than the possible 8359 groups
(s. Table 1). The reason is that many homologous relation-
ships are hard to detect because of the low sequence sim-
ilarities within many Pfam seed alignments. All methods
generate only few corrupted clusters, with the exception
of CD-HIT. This is not surprising, since this dataset con-
tains only single-domain proteins, yet the most false pos-
itive cluster assignments originate from mistaking local
similarities as global.
Two iterations kClust achieve the highest sensitivity,

i.e., the lowest number of clusters. The second itera-
tion of kClust reduces the number of clusters in the
first iteration almost by 30% without increasing the num-
ber of corrupted clusters. BLAST produces slightly more
clusters with a comparable error rate. However, there
is a striking difference in the run times – two itera-
tions kClust take 28 min while BLAST clustering takes

Table 1 Pfam clustering results

#Clusters #Corrupted clusters %Corrupted clusters #Wrong seqs per Time
corrupted cluster

BLAST 118 920 5 4.2e-3 2.4 66 h 2 m∗

kClust iter 111 251 4 5.2e-3 4.0 28 m/1 h 47 m†

kClust sens 153 721 8 5.2e-3 1.6 17 m

kClust 20 153 883 8 5.1e-3 1.6 16 m

kClust 30 169 533 5 2.9e-3 1.6 16 m

UCLUST 30 234 039 10 4.3e-3 1.0 2 m

UCLUST 40 244 568 8 3.2e-3 1.0 2 m

CD-HIT 170 750 4 086 2.39 1.39 5 h 26 m

Clustering results on PfamA-seed single-domain sequences. ∗The time is the sum of the run times of all 8 parallel threads. †Includes the time for the calculation of
multiple sequence alignments.

ftp://toolkit.lmb.uni-muenchen.de/HH-suite/
ftp://toolkit.lmb.uni-muenchen.de/HH-suite/
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66 hours. UCLUST is the fastest method, but it clus-
ters less effectively 1.5 times more clusters than kClust
and twice more than BLAST. CD-HIT produces less clus-
ters than UCLUST, but with the highest error rate and is
slow.

Clustering artificial two-domain sequences
Most eukaryotic sequences consist of two or more struc-
tural domains. Multi-domain sequence pose greater chal-
lenges to clustering algorithms because they tend to
cluster sequences together if they are sufficiently similar
within one domain, even though their other domains may
be unrelated.
Currently, most protein sequences are only partly or not

annotated with contained domains. To test the ability of
the tools to correctly cluster multi-domain sequences, we
need a dataset of multi-domain sequences where all the
sequences are annotated over their entire length. It should
contain a sufficient number of sequences with the same
domain composition in order to form enough clusters and
also enough sequences with only local similarities, so it
would be not trivial. Currently, there is no real dataset that
would meet these criteria.
To test the ability of the tools to correctly clus-

ter multi-domain sequences, we generated an artificial
dataset of 100 000 two-domain proteins. We used the
SCOP25 database [34] (SCOP database filtered to
maximum 25% pairwise similarity), downloaded from
the ASTRAL server (http://astral.berkeley.edu/). For each
seed sequence from SCOP, we searched for homologous
sequence segments using two iterations of PSI-BLAST [9]
in the non-redundant database from NCBI (nr) and fil-
tered the results to 30%minimum sequence identity to the
seed sequence from SCOP and to 70%maximum pairwise
sequence identity, using the hhfilter binary from the
HH-suite package [8], in order to achieve not too low and
not too high sequence similarity within the homologous

group. Additionally, the homologous sequences must
cover at least 90% of the seed sequence.
Sequences that remained after filtering were merged

into groups, in accordance to the SCOP family mem-
bership of the seed sequences, one group correspond-
ing to one SCOP family. 1000 groups containing more
than 100 sequences were drawn randomly, and from the
list of these groups 1000 combinations of two different
SCOP families were drawn (two-domain architectures).
For each such two-domain architecture, 100 two-domain
sequences were generated by concatenating two randomly
drawn sequences from the corresponding family groups.
Additionally, we rejected a sequence if the longer domain
in the artificial sequence covered more than 80% of the
overall sequence length.
Two sequences were considered to be grouped correctly

in one cluster if they have the same domain architec-
ture. Thus, the dataset could, in principle, be clustered
into 1000 clusters of homologous sequences with the same
domain architecture.
The results of the clustering are shown in Table 2.

Almost a quarter of the clusters CD-HIT and UCLUST
generate are corrupted, although usually only by few
sequences. BLAST produces 2.6% corrupted clusters. The
reason for these false positives is the tendency of BLAST
to extend into the unrelated region the alignment of
sequences having only one domain in common. A slightly
positive score over a nonhomologous segment is sufficient
to extend the alignment to such length that it satisfies
the alignment coverage criterion of 80%. kClust produces
very reliable clusters, with 0.1% or fewer corrupted. This
is likely due to the conservative alignments produced
by kDP, which rarely extend beyond the homologous
regions.
BLAST is clearly the most sensitive method, generat-

ing only 6977 clusters. kClust produces 17 070 in the first
iteration with the maximum sensitivity setting, and one

Table 2 Multidomain proteins clustering results

#Clusters #Corrupted clusters %Corrupted clusters #Wrong seq per Time
corrupted cluster

BLAST 6 977 186 2.66 1.5 3 h 21 m∗

kClust iter 8 537 10 0.1 1.1 13 m/39 m†

kClust sens 17 070 10 0.06 1.1 9 m

kClust 20 17 127 10 0.06 1.1 9 m

kClust 30 22 047 6 0.03 1.2 9 m

UCLUST 30 39 284 10132 25.79 1.7 30s

UCLUST 40 50 104 10512 20.98 1.4 40s

CD-HIT 29 163 6 234 21.37 1.89 43m

Clustering results on a set of 100 000 two-domain sequences constructed from 1000 domain architectures with 100 sequences each. ∗The time is the sum of the run
times of all 8 parallel threads. †Includes the time for the calculation of multiple sequence alignments.

http://astral.berkeley.edu/
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additional iteration reduces this number to 8537 without
increasing the number of false positives. kClust clustered
the dataset in the first iteration in about 9 min, the sec-
ond iteration takes additional 4 minutes (without the time
needed to generate multiple alignments of the clusters
and profiles that are necessary for the second iteration).
BLAST-based clustering took about 3.5 hours. UCLUST
is very fast, needing less than one minute, but is much less
sensitive, producing clusters with only 2.5 sequences on
average, compared to kClust 20 with 5.8 on average.
It is noteworthy that even BLAST produces signif-

icantly more than the 1000 clusters that are theore-
tically possible. The reason is that many alignments
between sequences within one architecture group do
not fulfill the coverage criterion, because the longest
sequence is often significantly longer than many of
the other members of the group, and because BLAST,
like all other local alignment methods, often generates
alignments that do not cover the entire homologous
region.

Clustering the UniProt database
At the time of the benchmark calculation (June 2013),
UniProt [35] contained 36 042 779 amino acid sequences

Table 3 Clustering of the UniProt database

#Clusters Time

BLAST (estimated) ? 80 y

kClust 30 5 663 658 13 d 12 h

UCLUST 30 6 636 076 3 d 5 h

Results for the clustering of the UniProt database, containing 36 042 779
sequences. BLAST running time is estimated.

with 11 786 916 970 residues and average sequence length
of about 330 residues.
The results for the clustering of the UniProt database

are shown in Table 3. Since clustering run time increases
quadratically with the database size, only kClust and
UCLUST are able to cluster UniProt down to 30%
sequence identity within a few days. All-against-all
single-threaded BLAST would need about 80 years for
the clustering. kClust clusters UniProt in 13 days 12
hours and produces 5 663 658 clusters. UCLUST needs
only 3 days 5 hours to cluster UniProt and pro-
duces 6 636 076 clusters. Both tools were run with 30%
sequence identity threshold and otherwise default set-
tings. kClust needs about 12 GB of main memory for the

Figure 6 Performance of HHblits on the clustered UniProtKB. Fraction of queries with ROC5 value above the threshold on the x-axis, for one,
two, and three HHblits iterations on the test set (5287 sequences from the SCOP 1.73 database). All but the last search iteration are performed against
the UniProt. The last search iteration is done through a combined database containing the UniProt and the SCOP sequences. TPs are defined as pairs
from the same SCOP folds, FPs as pairs from different folds, with the exception of Rossman folds and β propellers. The ROC5 value is the area under
the ROC curve up to the 5th FP, normalized to yield a theoretical maximum of 1. The ROC5 plot is more robust to overfitting than the ROC curves.
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Figure 7 kClust running time vs. clustering threshold. kClust running times dependency on sequence identity threshold, calculated on SwissProt.

clustering, the memory consumption of UCLUST is about
26 GB.
We compared the quality of the clustering by check-

ing the performance of HHblits on UniProt clustered
with kClust or UCLUST, respectively (Figure 6). The
performance is plotted after 1, 2 and 3 HHblits itera-
tions. HHblits performs significantly better on UniProt
clustered with kClust. 2 iterations of HHblits reach the
same sensitivity on as 3 iterations on UniProtKB clustered
with UCLUST.

kClust running times on SwissProt
Running time of kClust depends heavily on the desired
sequence identity threshold for the clustering. For lower
thresholds, in addition to lowering the sequence iden-
tity threshold, kClust generates longer similar k-mer lists
during the prefiltering and the alignment in order to
increase sensitivity. As a consequence, the generation of
the lists and index table matching takes longer.
We performed a benchmark on SwissProt, a protein

sequence database containing 540 261 sequences at the

Figure 8Memory consumption of kClust and UCLUST for different database sizes.
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time of the benchmark calculation, and plotted kClust
running times against the sequence identity threshold.
The results are shown in Figure 7.

Memory consumption of kClust and UCLUST
We performed a comparison of memory consumption
of kClust and UCLUST for different database sizes. The
results are shown in Figure 8. The different datasets are
randomly chosen from the UniProt, the largest dataset is
the whole UniProt.

Conclusions
With the rapidly growing numbers of protein sequences
from genome sequencing and metagenomics projects,
methods that can cluster huge sequence sets in a reason-
able time are in great need. Tools that are sensitive enough
to cluster sequences together down to ∼ 30 % sequence
identity will be particularly useful, since at that similar-
ity protein domains usually still have the same or very
similar molecular functions, in particular if their domain
architecture is conserved [21,36]. Most existing sequence
clustering methods rely on BLAST or FASTA for calculat-
ing the similarities between the sequences to be clustered,
which makes them too slow for many clustering tasks
ahead.
CD-HIT is fast and works well at high sequence iden-

tity clustering threshold, but it gets impracticably slow
and inaccurate below 50% sequence identity. UCLUST is a
very fast alternative which has, however, limited sensitiv-
ity as demonstrated in our study. kClust is to our knowl-
edge the only method at present that fills the need for
the fast clustering of large sequence databases or metage-
nomics sequence with a sensitivity not far from BLAST.
kClust achieves this sensitivity with its prefilter that sums
up the scores of similar 6-mers, its fast 4-mer-based
alignment algorithm kDP, and its iterative, profile-based
clustering strategy.
This is to our knowledge a novel approach to solv-

ing the problem of inexact, alignment-free comparison
of sequences. A somewhat related approach that is pop-
ular in next-Generation sequencing data analysis is the
“spaced seed” approach. In that approach, exemplified by
PatternHunter [30] or SEED [37], one looks for exact
matches between the compared sequences at noncon-
secutive positions. Such a pattern of non-consecutive
positions is called a spaced seed. Searches with several
different such spaced seed patterns are then combined.
For a given maximum number of mismatches, spaced
seed sets can be constructed that guarantee an exact
match for at least one spaced seed. This approach is
very efficient as long as the number of allowed mis-
matches is low, say 4 out of 100. Our approach is
applicable also in a range of 70 mismatches out of
100, far below what the spaced seed approach could

handle due to the exploding number of spaced seeds
required.
We are currently working on a faster and more flexi-

ble successor software which will be parallelized to run
efficiently on multi-core architectures, which offers a
more powerful clustering algorithm than the incremental,
greedy clustering used in kClust, CD-HIT and UCLUST,
and which will also allow to perform very fast parallelized
sequence searches of a set of sequences against another
set of sequences or sequence profiles. Importantly, it will
allow updating of clustered databases with new sequences,
thus obviating the need to recluster the entire sequence
set from scratch.
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