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Abstract

Background: Large-scale chromosomal deletions or other non-specific perturbations of the transcriptome can alter
the expression of hundreds or thousands of genes, and it is of biological interest to understand which genes are most
profoundly affected. We present a method for predicting a gene’s expression as a function of other genes thereby
accounting for the effect of transcriptional regulation that confounds the identification of genes differentially
expressed relative to a regulatory network. The challenge in constructing such models is that the number of possible
regulator transcripts within a global network is on the order of thousands, and the number of biological samples is
typically on the order of 10. Nevertheless, there are large gene expression databases that can be used to construct
networks that could be helpful in modeling transcriptional regulation in smaller experiments.

Results: We demonstrate a type of penalized regression model that can be estimated from large gene expression
databases, and then applied to smaller experiments. The ridge parameter is selected by minimizing the
cross-validation error of the predictions in the independent out-sample. This tends to increase the model stability and
leads to a much greater degree of parameter shrinkage, but the resulting biased estimation is mitigated by a second
round of regression. Nevertheless, the proposed computationally efficient “over-shrinkage” method outperforms
previously used LASSO-based techniques. In two independent datasets, we find that the median proportion of
explained variability in expression is approximately 25%, and this results in a substantial increase in the signal-to-noise
ratio allowing more powerful inferences on differential gene expression leading to biologically intuitive findings. We
also show that a large proportion of gene dependencies are conditional on the biological state, which would be
impossible with standard differential expression methods.

Conclusions: By adjusting for the effects of the global network on individual genes, both the sensitivity and reliability
of differential expression measures are greatly improved.

Background
A goal of systems biology is to understand how a per-
turbation affects a network of interrelationships between
genes. There are many models for gene networks, but few
have shown accurate predictions across many datasets [1].
There is a growing collection of gene perturbation exper-
iments in which a subset of transcipts’ expression have
been modulated, either through carcinogenesis, chemi-
cal treatments, or through siRNA [2]. These experiments
comprise an information-rich dataset that allows us to
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construct global network models and test their predictive
accuracy on the level of the full transcriptome.
Network models can be helpful for distinguishing

between all differentially expressed genes and the genes
that are immediately affected by a perturbation such as a
gene deletion. There are clinically relevant reasons for this
line of investigation. For instance, chromosomal abnor-
malities are themost common cause of mental retardation
in the US, and the deletion of a chromosomal segment is a
common subtype [3]. The deleted segments contain many
genes, so that this is a type of sporadic, multiple gene
knockout. The deletions are often hemizygous; that is, only
one of the two (maternal or paternal) homologous chro-
mosomes with the segment remains intact. Hence, the
genes within the deleted segments are present with half of
the normal copy number.Most genes exhibit some form of
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dosage-sensitive decrease in expression (e.g., DNA dele-
tion tends to decrease mRNA expression), but there is a
possibility that the gene’s regulatory network can compen-
sate for the loss by selectively increasing the expression
of the intact copy. The ability or inability of the regula-
tory networks to compensate with the intact copies on
the homologous chromosome could explain which genes
are responsible for common abnormal phenotypes. In this
paper, we examined subjects with nearly identical somatic
deleted segments of the q-arm of chromosome 18, and
we performed comparative gene expression microarrays
of these subjects with a parental control sample. Our
goal is to: 1) identify the global gene expression differ-
ences, 2) to identify which genes are the most affected by
the global expression differences relative to their regula-
tory networks, and 3) to identify genes that have different
regulatory networks in case and control groups.
Various methods have been developed both for pre-

dicting gene expression and adjusting for the correlations
between genes in differential expression analyses. Dahl
et al [4] improved the detection of differential expres-
sion by grouping genes into co-expression clusters with a
Dirichlet process mixture model. Leek at al [5] proposed
a general framework for significance testing when a large-
scale number of components have mutual dependency.
This method may be applied to the differential expression
problem and allows independent testing of hypotheses by
conditioning on an orthogonal dependence kernel. These
methods have shortcomings because they do not explicitly
utilize the vast amount of data from prior experiments.
Some network methods do use extensive prior data

such as Ruan et al [6] who used the cluster average of
a set of co-expressed genes as a prediction for another
gene within the cluster. This relatively simple method had
similar or superior accuracy to models that used sub-
stantial auxiliary data including regulatory pathways and
DNA-binding patterns of transcription factors such as
the approach taken by Gustafsson et al [7] that used an
“elastic-net" penalty [8] and information from multiple
genomic modalities (microarray, ChIP-seq, etc.). Along
the lines of Ruan et al [6], we present a simple and compu-
tationally efficient method for predicting gene expression.
Our method extends the work of Congrove et al [9] who
modeled a gene’s expression as linearly dependent on
other genes, but we have added features that improve
computational efficiency and robustness to variations in
transcriptional networks.

Methods
Suppose we have a series of microarrays represented by
a matrix Y that is G × N where G is the number of the
genes on the N arrays, and the expression measurements
for each gene g will be the row vector yg , g ∈ [ 1 . . .G]. We
define the perturbation vector X as an N × 1 vector with

elements xi = I(itharray is perturbed) where I(·) is the
indicator function. Our goal is to estimate the effect of the
perturbation conditional on the gene expression network
P(yg |X,Y−g) where Y−g = {yg′ : g′ �= g, g′ ∈ [ 1 . . .G] }.
That is, we want to predict the effects of the perturbation
on a gene given that it is within a regulatory network con-
sisting of all other genes. Typically, the sample size (N)
of the experimental data Y is small ≤ 10, but we assume
that a database of experiments YD (G × ND) is also avail-
able with a substantially larger sample size ND ≥ 100.
Our method will use this database YD as an independent
training set to estimate the regulatory network within Y.
We make the simplifying assumption that the log-

transformed gene expression yg follows an approximately
Gaussian distribution with mean βgY . A predictive model
for each gene within Y and YD can be constructed by using
Sparse Simultaneous Equations Model (SSEM) [9,10].
Under this model, the gene expression of a transcript yg
can be estimated by a weighted sum of the remaining tran-
scripts. The key parameters are within βg (1 × G) where
the βgg′ elements are the influence that gene g′ has on gene
g and represent the overall transcription network with
βgg = 0 so that genes do not influence themselves. These
βg parameters can be estimated from a database of related
array experiments. Thus, we have the model

yg = βgY + εg (1)

where εg is an 1 × N vector of Gaussian errors. This may
be expressed in matrix form as

Y = BY + E (2)

where B is G × G and composed of the βgg′ parameters
such that B has diagonal elements consisting of zeros, and
E is theG×N matrix of Gaussian errors with rows εg . The
intrinsic gene network can be described by B. Cosgrove
et al [9] model the effect of the perturbation of this
network by introducing φg

yg = βgY + φg + εg , (3)

and in matrix form

Y = BY + � + E. (4)

The � parameter is the G × N matrix composed of
φg and is the direct effect of the perturbation X on gene
expression that is not accounted for by the gene network.
Their goal is to estimate these direct actions � upon gene
expression to elucidate, for example, the direct drug tar-
gets. They estimated the Bmatrix by using compendia or a
large (N > 100) database of experiments YD, and estimate
� using the residuals

r = ypert − Bypert = φ pert + ε pert . (5)

Cosgrove et al [9] used φpert as the estimator of the direct
action of the perturbation. Further, they did not take into
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account that the network Bmay not be the same in differ-
ent cell types or biological conditions, which we consider
in our approach below.
Although it was originally applied to large genomic

databases, this model can be extended to apply to situa-
tions where the current experiment has insufficient data
in order to accurately estimate the B parameter. Further-
more, estimating B with a large database YD and applying
it to a new dataset will avoid the problem of using the
data twice. For instance, if we have a large database of
expression measures YD, we may estimate BD such that
YD = BDYD+E, under the assumption that BD ≈ B. Given
our estimate of BD with rows βDg , we may then construct
a linear predictor of each gene g in the new dataset Y by
YNg = βDgY .
With a covariate matrix X that applies to the individual

samples, we propose the model

yg = βDgYνg + X′δg + ε = YNgνg + X′δg + ε. (6)

This equation differs from Equation 3 as βDgYνg = YNgνg
is substituted for βgY and X′δg is substituted for φg . The
additional νg scalar parameter represents a very impor-
tant increase in model flexibility compared to Cosgrove
et al [9] where νg is constrained to be 1.0. In the new
approach, νg is estimated for each gene so that if the his-
torical network is inconsistent with the current network
and is not a good predictor for gene expression in the cur-
rent experiment, then its effect on inference approaches
zero as νg does. The effect of the biological condition
on gene g is described by the scalar δg , and this is dis-
tinct from the usual formulation of differential expression
that tests the effect of X (N × 1) alone on yg [11,12].
The δg parameter corresponds to an element of the �

parameter, but unlike φg in Equation 3, δg is jointly esti-
mated with νg and undergoes formal statistical testing
in our approach rather than acting merely as a basis for
ranking candidates. Hence, the hypothesis H0 : δg = 0
is the test of differential expression, conditional on the
value of the historical gene network. The p-value can be
derived through standard linear model theory, and the
status of differential expression can be determined by set-
ting a cutoff for p-values or false-discovery rates. The
use of the database YD to construct YNg (1 × N) is key
because it allows the network effect within Y to be esti-
mated with only one additional unknown parameter νg ,
which is essential for datasets with relatively few biological
replicates. It is noteworthy that the differential expression
hypothesis using Equation 6 is an increase (or decrease)
in a gene’s expression conditional on the gene-network,
which is a somewhat different hypothesis than standard
differential expression. Additionally, we further extend the
previous model of [9] by considering interactions between

the network prediction and the covariate matrix by defin-
ing the 1×N element-wise multiplicative interaction term
(YNg × X) within

yg = YNgνg + X′δg + (YNg × X)γg + ε. (7)

The tests of the scalar γg = 0 correspond to the test of dis-
ruption of the gene network associated with the covariate
X. By modeling the disruption of the network, we may test
biologically interesting hypotheses and further improve
the accuracy of predicting gene expression.
Even with large gene expression databases, regulariza-

tion is required for accurate parameter estimation due to
the condition N � G because of the large number of
parameters in the model for each gene. The prior model
[9] used the Lasso [13] that has an L1 penalty and produces
a parsimonious model with many regression coefficients
close to 0. We observed that the Lasso produced unsta-
ble regression coefficients with split sample training and
validation sets, but prediction accuracy was nevertheless
maintained. In a parsimonious model, some transcripts
from a set of correlated transcript predictors would have
non-zero coefficients whereas the other transcripts in the
set would have coefficients close to zero. In this manner,
the predictive weight would be unevenly shared by the
correlated transcripts. However, Ruan et al [6] obtained
good success in predicting gene expression by using a
k-nearest-neighbor (KNN) method. The KNN method
used the average of co-expressed genes as a predictor,
which gives equal predictive weight to a set of correlated
transcripts. We suggest a balance between unequal, par-
simonious (Lasso) and equal, robust (KNN) weight among
correlated transcript predictors. One such compromise
is the elastic net that combines penalties on the L1 and
L2 norms. The elastic net, however, carries a substantial
burden in computational cost and risk of overfitting by
optimizing over two parameters.
We offer a more efficient compromise and call our

proposed approach Over-Shrinkage Ridge Regression
(OSRR). The OSRR model is fit using standard ridge
regression (RR) and ordinary least squares (OLS) imple-
mentations. The gene expression values from the database
YD and the new data of interest Y are all centered at
0, which is numerically convenient. The gene expression
variances are not scaled to all have equal variance because
the scale of variability is biologically relevant. We are
applying the network estimates from one array platform
to another, which are on the log-scale, and we assume
that fold-changes (i.e., a doubling of gene-expression) will
be meaningful across platforms. After centering, the first
step of the model fit is the estimation βDg with penalty
λ based upon the database YD. In this approach, the
regularization penalty takes the same form as standard
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ridge regression, and the first objective function to be
minimized for each gene is

‖yDg − βDgYD‖2 + λ‖βDg‖2 (8)

where ‖·‖2 is the Euclidean norm. The βDg are the ridge
regression coefficients with yDg as the outcome and Y ′

D,−g
(YD,−g = YDwithout row g) as the covariate matrix. The
identifiability of βDg when λ > 0 follows from the the-
ory of ridge regression [14]. As λ → ∞, the regression
parameter estimates βDg will tend towards 0 as the penalty
becomes the dominant term. Hence, the larger the λ, the
more the βDgYD is biased towards the null compared to
the observed database values yDg . However, we introduce
a second step and add another parameter νg to counter-
act the bias towards the null in predicting the data from
a small experiment Y with rows yg . The second step is
the estimation of νg conditional on the βDg that mini-
mizes ‖yg − βDgYνg‖2 using ordinary least squares. If we
let YNg = βDgY , then the estimation of νg can be seen
as the univariate OLS coefficient of Y regressed onto YNg .
That is, the second objective function operates on the new
data Y, and the estimate of row yg is βDgYνg where νg
minimizes

‖yg − YNgνg‖2 (9)

using ordinary least squares. The introduction of νg within
a second stage of the regression has two effects. First,
βOSRR
g = βDgνg is no longer biased towards the null as

λ → ∞. The larger λ might make βDgY smaller than
yg by an order of magnitude, which is the motivation
for the term “Over-Shrinkage". Second, larger values of
λ will act to equalize the elements of βg corresponding
to correlated transcripts. This equalization property pro-
duces a similar effect as KNN’s equal weighting, but OSRR
still allows data-driven deviation from equality and allows
genes that are not the nearest neighbors to influence pre-
diction. Hence, we call this a global network adjustment.
An important difference between OSRR and approaches
such as ridge regression, LASSO, and the elastic net is
that these methods penalize the magnitude of the param-
eter β norms with some function P(β) whereas the OSRR
approach considers a link function between the linear pre-
dictor Xβ and the outcome Y. The link function g(Xβ)

is the second regression so that the model becomes Y =
g(Xβ), which may serve to minimize the effect of poor
prediction.
The robustness of the OSRR method to variable gene

regulatory networks and applicability to smaller sample
sizes are its attractive features. If the gene expression net-
work estimate BD from YD results in a prediction YNg that
is uncorrelated with the smaller independent dataset Y,
then the regression parameter νg converges to 0 under

standard linear model theory. This property is quite dis-
tinct from the use of the LASSO model by [9] that does
not consider larger training sets for estimating B or vari-
able gene-gene dependencies due to the perturbation or
biological state. The selection of λ is based upon the max-
imum correlation across all genes between the database
prediction βDgY and the current experiment Y. Overfit-
ting may result because the OSRR is applied to the same
data it is tuned with (i.e., λ is selected based upon Y ).
OSRR largely avoids overfitting and gains simplicity by
using a single tuning parameter λ for all transcripts. The
method was implemented in the R statistical software
[15], and we fitted the model in equation 6 with the lme4
R package [16]. A random intercept was used to account
for the correlation within case-control pairs. The pro-
grams, example simulated data, and a demonstration of
the penalty selection are available for download from the
supplemental website as Additional file 1.

Simulation studies
We performed a simulation study to illustrate the proper-
ties of OSRR in the context of correlated covariates with
similar effects on a continuous outcome. Here, we con-
sider a single outcome y (n × 1) with two independent
sets of correlated predictors X1 and X2 both with dimen-
sion (N × G). The N = 201 rows of X1 and X2 are drawn
from a compound-symmetric, multivariate Gaussian dis-
tribution with dimension G = 100, mean 0 and variance
1.0 with correlation ρ = 0.9. Both X1 and X2 represent
two correlated sets of genes that have an influence on
the expression of the gene y. Within these sets, the influ-
ence of the genes is the same, which might reflect the
activity of two pathways that are either associated with
an increase or an inhibition of the expression of y. That
is, y = X1B1 + X2B2 + ε where B1 = [β1 . . . β1]′ and
B2 = [β2 . . . β2]′ areG×1 with identical elements β1 = 1.0
and β2 = −1.0, respectively. The errors ε have a Gaus-
sian distribution with variance 1.0. The data were fit using
3 models: ordinary least squares (OLS), Elastic Net, and
the OSRR with λ = 10, 000. The elastic net penalty was
selected using K=5 fold cross-validation. The results are
shown in Figure 1, which is a network representation of
the coefficient estimates. All models perform similarly in
terms of prediction. The estimates of B1 and B2 are highly
variable for OLS. The elastic net predicts as well as other
models, but the estimated coefficients are highly vari-
able with some coefficients clustered around 0. To offset
the Lasso parameter estimates close to 0, the remaining
coefficients are estimated to be larger in magnitude than
the true values. The OSRR exhibits a strong smoothing
property that equalizes the influence that each of the cor-
related predictors has, whereas the elastic net and the
Lasso tend to reduce the number of influential predic-
tors. This is an advantage in that it provides robustness,



Gelfond et al. BMC Bioinformatics 2013, 14:258 Page 5 of 11
http://www.biomedcentral.com/1471-2105/14/258

Figure 1 Network depiction of regression estimation. The regression coefficients are shown as rays from the origin. The absolute value of the
coefficient is the distance from the origin and the sign is indicated by blue (+) or red (-). There are 200 rays indicating 200 estimated coefficients, and
the true values of the coefficients (+1,-1) appear as rings. The Ordinary Least Squares (OLS) estimates are highly variable because of the small sample
size and the correlation between the positive and negative predictor groups. The elastic net has less variable estimates than OLS, but the OSRR
coefficients demonstrate the the strong smoothing property of that equalizes the influence of predictors.

but when there are sparse predictors or there is sufficient
sample size to estimate the coefficients more precisely,
then we anticipate that the OLS, elastic net or Lasso are
advantageous.
As a proof of principle, we performed another simu-

lation study to demonstrate the advantage of the OSRR
methodology applied to differential expression compared
to a naive approach that does not account for prior
knowledge about correlations between transcripts. We
simulated a database YD with G = 200 and N = 100.
The transcripts were given a block diagonal correlation
structure with 2 blocks of size 100 transcripts each with
compound symmetry having variance 1 and correlation
ρ = 0.8. Although this is a relatively simple multivariate
Gaussian model compared to actual gene networks, it still
represents a large dependency between genes. The OSRR
model was fitted as described to estimate BD with λ =
1000 selected out of the set {102, 103, 104, 105, 106} based
upon the out-sample prediction from training and valida-
tion sets. We then simulated a smaller (N = 20) dataset

Y with the same correlation structure. Ten of the arrays
were under the control condition (xi = 0), and 10 were
under a treatment condition (xi = 1). Differential expres-
sion was simulated by randomly selecting genes with
probability 0.2 and then adding or subtracting δg = 1.0
to those genes. We compared the performance of the
model in equation 6 to a model without correction for
the network relationships YNg . This naive model reduces
to the t-test. The results are shown in Figure 2. The his-
tograms for p-values corresponding to the null hypothesis
(δg = 0) are given for both models, and the OSRR model
clearly has smaller p-values for the differentially expressed
(DE) genes compared to the naive model. Also, the naive
model p-values do not have a uniform distribution for the
not differentially expressed genes as the OSRR does. The
lack of uniform distribution of the null p-values is due
to the dependence structure and could inflate the Type I
error. This is consistent with higher sensitivity and speci-
ficity of OSRR relative to naive methods that do not utilize
prior information on gene networks.
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Figure 2 Proof-of-concept simulated differential expression experiment. Histograms of p-values are shown for both differentially expressed
genes (DE) and not DE genes that follow the null hypothesis. The raw (naive) model has p-values for not DE genes that do not have the expected
uniform distribution, though the p-values corresponding to the differentially expressed (DE) genes tend to be low. The OSRR model applied to the
same dataset more clearly separates the DE from the not DE genes, and the distribution of the not DE genes is more uniform.

Empiricial studies
Chromosomal deletion study
In our chromosome deletion study, we investigated the
effects of 18q chromosomal deletions (deleted segments
were the 60, 021, 550 − 76, 117, 153 bps of chromosome
18) on cell lines derived from blood samples called lym-
phoblastoid cell lines (LCLs). There were 10 case-control
(c-c) pairs with the case subject having a deletion on
chromosome 18 (18q-), and the control was a normal
genotype, same-sex parent giving a total of N = 20 =
2 × 10 subjects. We assayed each c-c pair with 4 Agi-
lent 44K expression arrays. We used a dye-swap design
such that for 2 arrays the case was labeled with Cy3 (con-
trol labeled with Cy5) and 2 with case labeled with Cy5
(control labeled with Cy3). Each case had associated clin-
ical phenotypes including height, weight, age, and various
laboratory measures of growth hormone responsiveness.
The log-expression data for a given subject and gene are
denoted as ygrs where the indices g, r, and s represent gene,
replicate, and spot respectively. The Cy3 and Cy5 channels
were treated separately, and we did not use the log-ratio.
For each subject, we averaged the replicates and the spots
corresponding to the same gene yielding the N × 1 vector
yg . We did not model the dye factor because it was bal-
anced and not predictive. There is a corresponding N × 1
covariate matrix X where xi = I(ithsubject is a case). We
also examined the p-values of the δg parameter from the
model compared to a standard analysis with the LIMMA
software [12].
For YD, we used a much larger dataset from [17] who

studied similar LCL cells that were treated with a variety
of chemotherapies. There were a total of 374 Affymetrix
chip assays in this dataset. We included all genes that were
within the deleted region, but otherwise restricted our
analysis to genes that had gene symbols in common to
both the Affymetrix and the Agilent platforms and were
expressed in the Affymetrix data. This leaves a total of

5, 035 genes to estimate BD. The expression values of the
database genes were centered, but not scaled. A key issue
is how to select the penalty parameter λ, and the selec-
tion process can be extremely computationally intensive
as [9] used 200 CPU days for their cross-validation Lasso
approach. To greatly simplify the selection of the penalty
and minimize the tuning and hypothesis testing on the
same dataset, we chose one penalty parameter for all genes
and took a split sample approach so that the database
was divided into two sets of 187 arrays. Further, we took
into account three aspects of goodness-of-fit in assessing
cross-validation. First, we considered prediction among
the split samples and second, we considered the stability
of the regression parameters BD between the split sam-
ples. Third, we examined the prediction ofBD with respect
to our independent experiment. The computation time
for selecting λ took approximately 151,445 CPU seconds
(8GB RAM, 2 Ghz) or about a 100 fold decrease in com-
puting time relative to the Lasso approach for a similar
sized dataset and computing environment [9]. The Based
upon these three criteria, we selected λ = 104 out of
the set {102, 103, 104, 105, 106}, and we applied the corre-
sponding B̂D to construct predictors YNg = β̂DgY for yg
from our expression experiment. Lastly, to further assess
the robustness and Type I error, we performed a per-
mutation analysis comparing OSRR and a conventional
method. We permuted the case-control labels 100 times,
and compared the histograms of the p-values from both
methods.

Results
We observed that the network predictions YNg based
upon B̂D estimated from the database YD were strongly
correlated with new data yg . In Figure 3, the median
correlation of YNg with yg is 0.54 so that 25% ≈ √

0.54
of the variance of transcription regulation is explained.
Note that the correlation of the observed expression with
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Figure 3 Histogram of correlations of the predictor YNg based upon regulatory network from database YD with gene expression in an
independent experiment Y. The positivity of the center of the distribution implies a dependency of gene expression that is consistent with the
OSRR model prediction.

the network predictor is expected to be > 0, and the
mean correlation is significantly greater than 0 (p <

0.0001). The degree of prediction is remarkable because
Cosgrove et al [9] originally studied bacteria, whereas
these data indicate that more complex human transcrip-
tional patterns even on different microarray platforms are
largely predictable. Nevertheless, for some genes, there
is a negative correlation consistent with random noise.
This underscores the importance of the estimation of νg
in equation 6. That is, if the network model does not fit
the smaller dataset, then νg is estimated to be close to 0 so
that its effects are mitigated.
Figure 4, shows the distribution of p-values for dif-

ferential expression of transcripts under both the stan-
dard LIMMA analysis and OSRR models. Under the null
hypothesis p-values are uniformly distributed between 0
and 1. The p-values of the LIMMA model do not appear
to be for from uniformly distributed, but the OSRR model
not only has more significant (p < 0.05) values, it also
has a clear “spike" of small p-values towards 0. It is possi-
ble to model these types of distributions with a beta and
uniform mixture (BUM) as suggested by Pounds et al [18]

where the beta component models the spike of p-values
that corresponds to differentially expressed transcripts
and the uniform component corresponds to the tran-
scripts that follow the null hypotheses. The BUM fit is
shown in Figure 4, and the ratio of the the uniform
(blue) component over the mixture density (green) is the
empirical Bayes probability estimate of the false posi-
tive rate. The comparison of numbers of genes that at
given p-values cutoffs is shown in Table 1. Clearly, the
OSRR model identifies more than double (851 vs. 337)
the number of significant transcripts, and those tran-
scripts selected by the LIMMA approach are also selected
by OSRR at a rate of 95% (319/337). The correlation
between the − log(p-values) from LIMMA and OSRR is
0.88, which indicates fairly good agreement in ranking the
genes by probability of differential expression. The mean
value for the false discovery rate (FDR) of the 21 genes
in the deleted region in the chromosome according to
LIMMA was 0.51 compared to the mean FDR of the q-
value adjusted OSRR p-values of 0.17, indicating that the
OSRRmodel is more likely to identify the deleted genes as
differentially expressed.
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Figure 4 Histogram of p-values generated by conventional LIMMA and OSRRmethods applied to the chromosomal deletion study. Note
that LIMMA produces p-values that differ only slightly from a uniform distribution, but the OSRR method gives more significant p-values. The
beta-uniform mixture model is shown in green and the uniform component is blue. The ratio of blue/green is the empirical Bayes probability of the
false positive rate at a given p-value. This ratio approaches 0.5 for conventional analysis and it approaches 0.25 for the OSRR method.
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Table 1 Number of significant transcripts in standard
LIMMA and OSRRmodels at different p-value cutoffs

Up/Down P-Value LIMMA OSRR Both

Down 0.0500 94 209 92

0.0100 25 79 25

0.0010 9 19 9

0.0001 5 8 5

Up 0.0500 241 642 227

0.0100 46 251 42

0.0010 6 52 5

0.0001 2 15 2

Up/Down corresponds to higher/lower expression in the cases relative to
controls.

Not only was the OSRR method shown to identify twice
the number of differentially expressed genes, but the log
fold-change estimates are more stable, and therefore less
likely to be false positives based upon the split-sample
analysis. We randomly split the data set 20 times into two
sub-datasets of 5 families each, and compared the results
of OSRR and the t-test from the two sub-datasets of the
partition in estimating the log-fold change between cases
and controls. Note that LIMMA is equivalent to the t-test
in estimating log-fold change. Table 2 lists the correla-
tions between the in-sample and out-sample comparisons
of the differential expression estimates of the conven-
tional model δStdg and the OSRR model δg . The OSRR
estimate was much more reproducible than the conven-
tional estimate in independent samples with correlations
of 0.321 (OSRR) vs. 0.201 (Standard) (95% CI for dif-
ference [ 0.054, 0.183], p < 0.001). Furthermore, the
out-sample results clearly show that OSRR is more con-
sistent with both OSRR and conventional estimates in
independent split datasets.
We compared the performance of the elastic net

predictions with OSRR using a subset of 500 genes
because of the computational time of the elastic net in
this context. We selected a gene-specific penalty as did
Cosgrove et al [9] who used the Lasso. We compared the
average correlation of the predictions with the expression

Table 2 Reliability assessed by a repeated split-sample
analysis

In/Out Sample Type Mean correlation Std Dev

In-Sample δg vs δStdg 0.917 0.034

Out-Sample δStdg vs δStdg 0.203 0.115

Out-Sample δg vs δg 0.321 0.073

Out-Sample δg vs δStdg 0.313 0.089

The parameters δg and δStdg denote the differential expression estimates for
OSRR and standard methods.

of the 500 genes in our smaller dataset, and we found
that the mean correlation was 0.01 95% CI [−0.01, 0.03]
(paired t-test: p = 0.43) higher for the OSRR model. This
is consistent with OSRR allowing equal prediction at a
fraction of the computational cost of the elastic net.
The permutation study results are shown in Figure 5.

The resulting estimates of the null distributions are
different for the conventional and the OSRR model. The
LIMMA model has a conservative Type I error rates indi-
cated by nonuniform p-value distributions with a dip near
0, and the OSRR model has a slightly inflated Type I
error withmore smaller p-values than uniform. TheOSRR
model p-values are quite different from the non-permuted
data in Figure 4. In contrast, the conventional analysis
null distribution is more similar to the non-permuted
distribution of p-values, which suggests a low signal-to-
noise ratio. This is consistent with the OSRR model hav-
ing a reasonably controlled Type I error rate, but much
greater power to detect differences between the cases and
controls.
We also applied the interaction model in Equation 7.

A substantial proportion (10%, 484/5035) of genes had
interactions (H0 : γg = 0 with p < 0.01) between the
dependence on the gene network and case-control status.
This implies that the regulatory relationships are different
for particular genes between cases and controls. The gene
with the most significant interaction effect was the GARS
gene, which has been linked to severe neurological con-
ditions [19]. Interestingly, 93% of the 100 most significant
interactions were negative (γ̂g < 0), which implies that
the expression predictions are substantially less positively
correlated with the observed expression in the abnormal
cases than controls. See Additional file 2. This is consis-
tent with overall disruption of the regulatory networks in
the cases. Such observations would be impossible using
standard differential expression models that only examine
mean differences.
For the purpose of comparison, we applied the method

of Cosgrove et al [9] to this dataset without the use of
the larger training dataset using the elastic net estima-
tors. Their method was not intended to be applied to
datasets of this size (2 conditions (case/control) and 10
paired samples), but we wanted to investigate the neces-
sity of using the database in a real example. Despite 5-fold
cross-validation for the selection of the tuning parame-
ters, there was overfitting of the gene network so that the
estimates BY from the fit had a median correlation with
Y of > 0.95 and the analysis of the residuals suggested
in Equation 5 yielded p-values that did not differ from a
uniform distribution (Data not shown). No differentially
expressed gene could be identified due to the confounding
of the gene expression network BY and the case-control
status. However, we emphasize that their method was not
intended for small datasets.
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Figure 5 Histogram of the p-values of the from the permuted chromosome deletion study. The conventional analysis method has a slightly
conservative, non-uniform null distribution. Whereas, the OSRR method has slightly anti-conservative, non-uniform null distribution.

Circadian rhythm study
As a proof of principle, we considered another dataset to
see if the OSRR model had similar advantages in a mouse
model. This dataset [20] consisted of a time-series of brain
tissue collected in mice with two different genotypes (wild
type and a mutation of the circadian rhythm “clock" gene).
The brain tissue samples were measured on Affymetrix
tissue arrays in duplicate every two hours for 44 and 24
hours for a total of 24 and 14 arrays, respectively, for
wild type and mutant mice. We estimated the B matrix
using a database YD from an experiment with the same
Affymetrix platform with 122 samples of mixed tissue
types [21]. We assessed the 3,000 genes with the high-
est variance in the circadian dataset. We fit a sinusiodal
model with and without network adjustment term YNgνg
to identify genes associated with the circadian rhythm

yg = YNgνg + ag cos(T + bg) + d + ε (10)

where T (1 × N) is the time covariate in radians, d is
an intercept, and the time dependencies are tested with
scalars ag and bg (H0 : ag = bg = 0) using a log-likelihood
test assuming that ε is Gaussian noise. We did not use

the information about the genotype of the mice within the
models. Rather, we tested whether or not the OSRRmodel
could account for the biological variation due to different
genetic backgrounds and still identify time dependent
genes. The results are shown in Figures 6 and 7. Figure 6
shows the unpermuted data analysis in both models with
the OSRR model having a higher proportion of signifi-
cant genes. Figure 7 shows the null distributions under
permutations, and the null distributions of the two mod-
els are very similar. This indicates that the OSRR model
has more power to detect time-dependent genes with a
similar Type I error rate as the conventional model. We
also compared the performance of the elastic net and the
OSRR gene expression predictions by the average corre-
lations of the network predictors YNg with the outsample
gene expression yg for a random subset of 200 genes. We
found that the OSRR method had a 0.1 higher average
correlation (95% CI [0.05, 0.15] with a paired t-test: p =
0.0003). That is, the OSRR had better prediction that the
elastic net model for less computational costs; however,
this advantage in prediction may be due to the smaller
sample size of the training set (N = 122) relative to the
chromosomal deletion training set (N = 374) for which
the prediction of the two methods was approximately
equivalent.
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Figure 6 Histogram of p-values generated by conventional raw and OSRRmethod of the circadian rhythm study. The beta-uniform mixture
model is shown in green and the uniform component is blue. The OSRR model identifies approximately double the number of significant genes.
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Figure 7 Histogram of the p-values of the from the permuted circadian rhythm study. Both the conventional analysis and the OSRR method
have slightly non-uniform null distributions.

Discussion
We have utilized the estimates of gene-networks from
large databases in the analysis of small, independent
datasets assayed on a different microarray type to suc-
cessfully predict about 25% of the variation in transcript
expression. The prediction is shown to markedly increase
the sensitivity and the reliability of detecting differentially
expressed transcripts in two different datasets. These
inferences are different from the standard differential
expression analyses because they reflect an adjustment
based upon a regulatory model for each gene, and by test-
ing an interaction term, one may make a statistical assess-
ment of whether the regulatory network has changed
between biological states. This method is approximately
100 times computationally faster than the previously
reported method [9]. The majority of the computational
time is spent fitting predictive models for each gene inde-
pendently, and this time is multiplied by the density of
the grid of the tuning parameter(s). OSRR has the advan-
tages that the tuning parameter grid can be sparse and
that the algorithms for fitting linear models are relatively
well-optimized. The computation can be accelerated by
parallelizing the fit, but parallel analyses are nontrivial
because of large memory requirements of the operations
(i.e., solving linear equations with 5,000 variables). Atten-
tion should also be paid to improving the computational
efficiency of more complex models such as the elastic net.
Unlike the previous model, the use of the network

predictor as a covariate in the differential expression
regression model also provides robustness against poor
prediction of particular transcripts. Given OSRR’s ease
of implementation and its robustness, there is a broad
set of potential applications to small sample size expres-
sion experiments that leverage the growing large-scale
gene expression databases such as the Gene Expression
Omnibus (GEO) [22]. We recommend that researchers
select relevant datasets to construct network models
by considering the species, type of tissue or cells, the
microarray platform, and other sources of variation. We

have seen that if the database YD used to estimate BD has a
different tissue type than the independent dataset Y, then
the method tends to be less effective in accounting for
variation.

Conclusion
We have developed a novel adaptation of ridge-regression
called OSRR that robustly estimates models of transcrip-
tional co-expression networks based upon large microar-
ray experiments. There are many possibilities for future
research. Because of the robustness across microarray
platforms, the OSRR approach can applied to RNA
sequencing (RNA-Seq) data as well. In preliminary stud-
ies, we have found that the predictions of OSRR derived
from microarray data perform similarly when applied to
RNA-seq data. As we suggested with Equation 7, we
can consider tissue specific modulations of regulatory
networks as an extension of the OSRR model. Different
tissue types or experimental conditions may induce differ-
ent correlations between genes, and this fact is utilized in
the COXEN model in [23] for disease classification pur-
poses. These authors found that genes have different cor-
relations in different cell types, and that genes that have
shared correlation structures between two subtypes can
predict how those subtypes will respond to chemotherapy.
Also, the steps in the two-step fit are suggestive of levels
within a hierarchical model. We can use this framework
to extend the prediction model by including extra terms.
For example, some genes may be better predicted using
another network model with prediction YN2 g . To account
for this, we propose

yg = YNgνNg + YN2 gνN2 g + Xδg + ε. (11)

If the other network model is a superior predictor, then
this will be reflected by the νN2 g parameter. However, the
more terms within the model, the more biological repli-
cates are required for model stability. We may include
information a known network of specific genes in a sim-
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ilar manner. We could further address another aspect of
the SSEM problem. That is, the structure among the rows
of B was not modeled. For example, if a gene had a rela-
tively large influence on many other genes, then one could
use this pattern for better estimation ofB. Thismay poten-
tially be achieved using a similar approach of Friedman
et al [24] in the construction of the graphical Lasso.
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