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Abstract

Background: The development of new therapies for orphan genetic diseases represents an extremely important
medical and social challenge. Drug repositioning, i.e. finding new indications for approved drugs, could be one of
the most cost- and time-effective strategies to cope with this problem, at least in a subset of cases. Therefore, many
computational approaches based on the analysis of high throughput gene expression data have so far been
proposed to reposition available drugs. However, most of these methods require gene expression profiles directly
relevant to the pathologic conditions under study, such as those obtained from patient cells and/or from suitable
experimental models. In this work we have developed a new approach for drug repositioning, based on identifying
known drug targets showing conserved anti-correlated expression profiles with human disease genes, which is
completely independent from the availability of ‘ad hoc’ gene expression data-sets.

Results: By analyzing available data, we provide evidence that the genes displaying conserved anti-correlation with
drug targets are antagonistically modulated in their expression by treatment with the relevant drugs. We then
identified clusters of genes associated to similar phenotypes and showing conserved anticorrelation with drug
targets. On this basis, we generated a list of potential candidate drug-disease associations. Importantly, we show
that some of the proposed associations are already supported by independent experimental evidence.

Conclusions: Our results support the hypothesis that the identification of gene clusters showing conserved
anticorrelation with drug targets can be an effective method for drug repositioning and provide a wide list of new
potential drug-disease associations for experimental validation.

Background

Orphan diseases (OD) are commonly defined as rare dis-
orders with prevalence of less than 200000 cases in the
US or of less than 1:2000 in Europe. Despite the low
frequency of the single disorders, OD represent an ex-
tremely important medical and social challenge, because
the ~ 6000 known rare diseases affect about 10% of the
population in developed countries and because only in
less than 5% of OD a treatment is available [1]. The
search of possible targets and strategies for OD therapy
is very actively pursued by basic science. However, trans-
lating the resulting knowledge into new drugs is compli-
cated by the high costs of pre-clinical and clinical
research, in comparison with the small potential for

* Correspondence: paolo.provero@unito.it; Ferdinando.dicunto@unito.it
Molecular Biotechnology Centre, Department of Molecular Biotechnology
and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy

( BiolMed Central

revenue to pharmaceutical industry, because of the small
market size [1]. Drug repositioning, i.e. finding new indi-
cations for approved drugs, represents to date one of the
most cost- and time-effective strategies to identify a
therapy for at least a subset of OD [2]. The rational basis
for drug repositioning is given by the complex relation-
ships between disease phenotypes, their underlying mo-
lecular mechanisms and the drugs that target them [3,4].
Indeed, it is increasingly recognized that the instances in
which a clinical syndrome can be associated to a single
molecular mechanism, which can be targeted by a very
specific drug, is the exception rather than the rule in
clinical practice. In particular, on one hand rare diseases
and common disorders very often share some of their
clinical features and underlying pathogenetic mecha-
nisms [3,4]. On the other hand, the pathogenetic mecha-
nisms of rare and common disorders often impinge on
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the function of entire molecular networks or functional
modules, rather than on the function of single genes
[3,4]. Finally, most of the chemical compounds approved
for therapy are capable to bind and modify multiple
molecular entities, producing a complex mixture of on-
target and off-target effects [5]. On the basis of this
complexity, it is not surprising that in many cases a
pharmacological compound originally approved for a
common disorder has turned out to be useful to treat
phenotypically related, or even apparently unrelated rare
diseases, and vice versa [2,6,7]. So far, these discoveries
have mostly been achieved serendipitously through the
clinical monitoring of drug effects. However, in recent
years, the availability of huge information on the genetic
basis of human disorders, on gene regulation, on protein
structure and on drug-target interactions has generated
unprecedented opportunities to pursue drug reposi-
tioning on a more rational ground [8]. Accordingly, sev-
eral computational approaches have been developed to
discover unrecognized or non-explicit connections be-
tween drugs, targets and diseases. Many of these strat-
egies have used structural similarity between ligands and
target proteins, together with literature mining and
protein-protein interaction maps, to produce wide drug-
target networks, allowing to infer new potential drug-
target associations [8-10]. Genome wide association
studies have been used with the same purpose [11].
Gene expression data represent a very rich alternative
resource for inferring non-obvious relationships between
drugs and drug target genes, which can potentially be
used for drug repositioning [12-14]. This approach is
based on the commonly accepted principle that genes
implicated in the same functional modules tend to dis-
play very similar expression patterns under physiological
conditions and after internal or external perturbations.
The strongest initiative in this sense is the Connectivity
Map (CMap), a collection of genome-wide transcrip-
tional expression data from cultured human cells treated
with bioactive small molecules that allows the discovery
of functional connections between drugs, genes and dis-
eases through the analysis of common gene-expression
changes [15,16]. A network-based analysis of this
resource has allowed to predict similarities in drug effect
and mechanism of action, and to “reposition” a Rho-
kinase inhibitor as an enhancer of cellular autophagy
[13,14]. Another interesting example was the identifica-
tion of ARA-C as a possible drug for Ewing sarcoma,
based on the finding that the administration of this mol-
ecule to tumor cells negatively modulates a EWS/FLI
oncoprotein-dependent gene signature [17]. Neverthe-
less, the potential of gene coexpression for proposing
new associations between diseases, drug targets and
drugs is still largely unexplored. The main limitation of
the current approaches is that they mostly require gene
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expression profiles directly relevant to the condition
under study, such as those obtained from patient cells
and/or from suitable experimental models [13,16,17].
Unfortunately, these resources are not available in the
majority of rare diseases. In this work we have developed
a new computational strategy that may in part overcome
this limitation. Our approach is based uniquely on the
search for conserved anti-correlation between known
drug targets and human disease genes, performed on
public microarray databases. On this basis, we propose
new potential candidate drug targets and drugs for rare
human diseases for which no specific gene expression
data are available.

Results and discussion

Generation and characterization of Conserved
Anticorrelated Gene Clusters (CAGC)

Dissection of the molecular basis of many diseases has
revealed that abnormal phenotypes are caused in most
cases by the derangement of entire functional modules,
due to single gene defects, to a combination of genetic
abnormalities or to the interaction between gene vari-
ants and environmental factors [18,19]. The correct
organization of these modules depends on a delicate
equilibrium between positive and negative regulatory in-
teractions. Positive functional interactions within a func-
tional module are very often reflected by a highly similar
expression profile (coexpression) of the genes that com-
pose it. Indeed, it has been widely shown, through the
systematic analysis of gene coexpression, that genes
displaying very similar expression profiles tend to be
functionally correlated [20] and that mutations affecting
coexpressed genes tend to produce similar clinical syn-
dromes [21-23]. Importantly, it has also been shown that
these correlations are much stronger for genes that are
consistently coexpressed across different species (con-
served coexpression) [21,23-25]. Negative correlations
have been much less investigated under this perspective.
However, it has been suggested that if two genes display
strongly anti-correlated expression profiles they may act
in opposing functional modules or they may play oppos-
ing roles within the same functional module [26-28].
Potentially, this scenario is of great pharmacological
relevance, because it would imply that the overall output
of some disease-relevant functional modules could be
positively or negatively modified by modulating the
function of anti-correlated genes (Figure 1). Therefore,
we decided to systematically analyze whether groups of
mammalian genes displaying consistent anti-correlation
with a specific gene are functionally characterized and
are associated to similar disease phenotypes. To this
aim, we studied a large, manually annotated microarray
dataset downloaded from the Gene Expression Omnibus
[29], covering many tissues, cell types and experimental
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Figure 1 Schematic representation of how the antagonism between a drug target and a functional module containing functionally
correlated genes, which may be implicated (D) or may be not implicated (G) in similar disease phenotypes, could be exploited to
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conditions in both human (5188 experiments) and
mouse (2310 experiments) [30]. We built generic and
tissue-specific CAGC using a ranking-based procedure,
very similar to the one that we previously used to iden-
tify conserved coexpression clusters ([21,30], see mate-
rials and methods for the details). In synthesis, the
CACG for any particular gene of interest (g), referred to
as the centre, is composed of the genes that fall in the
bottom 1% correlation rank of g in both human and
mouse (a cluster does not includes the centre itself). We
then compared the Gene Ontology (GO) functional
annotation [31] of the obtained clusters with the

annotation of random clusters of same size. Genes com-
posing CAGCs were strongly enriched for genes anno-
tated to the same GO keywords (Figure 2A). This was
an expected result [20,25,30], since genes composing a
CAGC display strongly correlated expression profiles
(data not shown). Interestingly, for clusters that showed
at least one GO keyword enriched with a Bonferroni
corrected p-value of 0.05 or less, 44% of the centre genes
were annotated to at least one of the significant
keywords. In addition, and most importantly, we found
that the CAGCs are significantly enriched for genes as-
sociated to genetic diseases characterized by similar
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Figure 2 Cumulative distribution of functional index for GO categories and OMIM phenotypes. Cumulative log-log distribution of

functional index (see methods) for A) GO categories, B) OMIM phenotypes (PH). Continuous curves represent the real data, while dashed curves
result from 100 random permutation of real data (rand). Grey band in B corresponds to the standard deviation of the 100 randomly permuted
datasets. The same band is not reported for panel A, since its thickness is comparable to the line thickness. In both cases the difference of real
and permuted data is highly significant (P-value < 10e-256 Kolmogorov-Smirnov test).
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phenotypes (Figure 2B), as defined by MimMiner [32].
However, when in these cases the centre genes were also
associated to mendelian disorders, we found that the
MimMiner scores calculated between the disease associ-
ated to the centre gene and those associated to the other
genes of CAGC never reached the 0.4 similarity thresh-
old. Altogether, these results indicate that, although the
genes that compose a CAGC and the centre of the same
clusters frequently work in the same functional modules,
the phenotypic consequences of a mutation of the centre
gene are different from the consequences of a mutation
of the genes composing the corresponding CAGC. This
scenario is compatible with the idea that the genes of a
CAGC and its centre gene may play functionally antag-
onistic roles.

GAGCs centered on drug targets are significantly
modulated by treatment with the relevant drug

We then asked whether pharmacological modulation of
CAGCs centres may actually lead to a modulation of
the anticorrelated genes. To this aim, we analyzed the
gene expression data contained in CMap, which were
obtained from cultured human cells treated with bio-
active small molecules [15,16]. Moreover, we obtained
the definition of genes as targets of specific drugs from
analysis of the DrugBank database [33]. For every CAGC
centered on a drug target associated to a molecule used
in CMap (682 associations), we tested whether the
genes in the CAGC are significantly upregulated or
downregulated upon drug treatment (Mann-Whitney U
test). We performed 8435 tests, 3510 of which were
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significant with a False Discovery Rate (FDR) < 0.05. Im-
portantly in 3428 cases the median ranks are consistent
with an upregulation of the CAGC genes, while only in
82 cases it is consistent with a downregulation. The me-
dian rank distribution for all the CMap instances and
the exemplar case of the genes composing the CAGC of
ROCK]1 (a target of Fasudil) in the CMap instance n.
436 (le-05 M of Fasudil for 6 h in PC3 cells) are
reported in Figure 3. Considering that the majority
(76%) of the drugs used in CMap and associated to a
cluster significantly up- or down-regulated are classified
as inhibitors in DrugBank, these results strongly validate
the general idea that the genes anticorrelated with a
drug target are upregulated when the function of the
target gene is inhibited.

Association of available drug targets to orphan genetic
disorders through CAGCs

On the basis of the above results, we thought to use
CAGCs to associate know drug targets to mendelian
genetic disorders. To this aim, we selected CAGCs char-
acterized by two features: the centre of the CAGC is a
drug target and the other genes that compose the
cluster are significantly enriched for genes associated to
related morbid map phenotypes [32] (Figure 4). Indeed,
we would expect that the pharmacological down-
modulation of some of these centres may compensate
for the loss of at least some of the specific disease genes
that are among them. Under this assumption, the drugs
that are capable of inhibiting the CAGC centre
would become potential candidates for all the related
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Figure 3 Cmap rank in CAGC genes. Panel A shows the gene rank distribution for all genes and all cmap instances (green curve) and the
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distribution of the median gene rank of each CAGC whose center is a known drug target (red curve). Note that the gene rank is defined as the
highest rank among the probesets associated to the gene, which explains the non-uniform distribution of all genes. As an exemplar case, in
panel B we show a box-plot comparing, for the cmap instance n. 436 (1e-05 M of Fasudil for 6 h in PC3 cells), the genes in the CAGC of ROCK1
(a known target of Fasudil) with all the other genes. The rank of the CAGC genes is significantly higher (Pvalue < 3.4e-05 Mann-Whitney U test),
implying that the inhibition of the CAGC center by the drug leads to a general overexpression of the genes that compose its CAGC.
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Figure 4 Schematic representation of the CAGC-based
drug-repositioning pipeline.

mendelian disorders associated to the cluster. In other
words, we propose a drug as possible treatment for a
genetic disease when the responsible gene (DG) belongs
to an anticorrelation cluster that has the drug target as
the centre and that is significantly enriched for other
genes implicated in disorders similar to the disorder
resulting from DG mutation. Using this strategy, we
obtained the list of drug targets/disease associations
reported in the Additional file 1. The list could contain
both completely novel associations or associations which
are already supported by previous evidence. Although
we would expect most of the associations to be novel,
finding a significant number of associations supported
by literature could represent an important validation
of our method. In consideration of the difficulty of
automatically assessing this point, we decided to system-
atically inspect the list by expert analysis. The most
prominent results are reported below.

— Calmodulins and malformative genetic syndromes
Calmodulins 1 and 3 (CALM1 and CALM3) are,
potentially, the most prominent targets underscored
by our approach. Indeed, they are represented in
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426 of the associations reported in the Additional
file 1, on a total of 2973. Since the two genes are
strongly coexpressed (data not shown), the
corresponding CAGCs were largely overlapping.
Interestingly, these CACGs were strongly enriched
for genes implicated in very complex and
heterogeneous genetic syndromes. However,
although many of these disorders are characterized
by abnormalities of skeletal development,
considering the high number of involved genes, the
crucial role of calcium/calmodulin in many different
cellular processes and the high number of drugs
associated in DrugBank to Calmodulins, we consider
this as a likely non-specific result of our analysis,
which underscores the potential pitfalls of our
method.

Drug targets for epileptic syndromes

Epileptic seizures represent a frequent neurological
condition, affecting approximately 3% of the
population and represent one of the most common
symptoms of genetic disorders affecting the Central
Nervous System (CNS). Accordingly, many diseases
represented in our list are characterized by epileptic
seizures (Additional file 1). Interestingly, most of
these disorders have been linked by our pipeline to
at least two strongly validated drug targets: histone
deacetylase 1 (HDAC1) and translocator protein
(18kDa) (TSPO). HDACT is one of the targets of
valproic acid, one of the most prominent
anticonvulsant agents currently used in chronic
epilepsy management [34]. TSPO, a conserved
mitochondrial protein implicated in cholesterol
transport and biosynthesis, is one of the targets of
some benzodiazepines, which represent another
prominent pharmacological class in the management
of seizures [35,36]. In particular, although the most
prominent targets of benzodiazepines are GABA
receptors, it has been proposed that TSPO-binding
compounds may contribute to anticonvulsant effects
by regulating the synthesis of neurosteroids [35].
Another interesting gene highlighted by our analysis
for the same syndromes was the prolyl-4-isomerase
beta (P4HB). Indeed, although this case is by far less
validated, if compared to the previous two proteins,
P4HB has recently been proposed as a target for
new antiepileptogenic drug design [37].

Drug targets for autism spectrum disorders

Besides to epileptic syndromes, HDAC1 was
identified as possible target also for the autism-
related disorder AUTS10 (MIM: 611016). We
consider this result at least partially validated by the
recent finding that HDACI inhibitors ameliorate
social cognition and cell adhesion molecule plasticity
deficits in a rodent model of autism spectrum
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disorder [38]. Similarly, we consider the association
between prostaglandin-endoperoxide synthase 1
(PTGS1) and AUTSX2 partially validated by the
finding that significantly elevated levels of
prostaglandin E2 (PGE2) have been found in
autistic patients [39].

— Drug targets for heart failure syndromes and for
neuromuscular disorders
The Ser/Thr kinase ROCK1, a downstream effector
of the cytoskeletal modulator RhoA small GTPase
[40], was associated by our pipeline to 57 different
genetic disorders, characterized by a high prevalence
of muscular, cardiac and neurodegenerative
phenotypes (Table 1).
Interestingly enough, specific inhibitors of this
protein, such as the FDA approved Fasudil, have
displayed beneficial effects in experimental animal
models of some diseases included in the list. Indeed,
ROCK]1 has been shown to play an important role in
the transition from cardiac hypertrophy to failure in
mice [41] and the administration of ROCK1
inhibitors has repeatedly been associated to
beneficial effects in non genetic models of heart
failure [42-45]. Even more strikingly, it has been
recently shown that Fasudil improves survival and
promotes skeletal muscle development in a mouse
genetic model of spinal muscular atrophy [46], one
of the prominent diseases included in our list.
Moreover, it is interesting to notice that ROCK1
expression has been correlated to disease
progression in an animal model of ALS [47],
although in these case a beneficial use of ROCK
inhibitors has not been so far reported. A beneficial
activity of ROCK inhibitors has also been
documented in experimental models of myopathies.
In particular, in muscle of dystrophin/utrophin
double-knockout, which represent an intensely
studied model of Duchenne muscular dystrophy, the
RhoA/ROCKI1 pathway is hyperactive, leading to a
reduction of the myogenic potential of muscle stem
cells [48]. Accordingly, treatment with a ROCK1
inhibitor improves the myogenic potential of stem
cells and increases muscle regeneration in vivo [48].
A second interesting target for muscular disorders is
given by the IKBKB (IKK-f) protein, a Ser/Thr
kinase that phosphorylates and inactivates inhibitors
of the NF-kB pathway [49] and which we found as
potential target for four different myopathies.
Indeed, not only it is well known that the NF-kB
signalling is abnormally activated in myopathies
such as Duchenne muscular dystrophy [50] and in
limb-girdle muscular dystrophy [51], but it has been
proved that NF-kB activation may functionally
contribute to muscle degeneration [52]. Accordingly,
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it has been recently shown that NF-kB inhibition
may improve muscle pathology and regeneration in
the Mdx mouse model [53,54].

Conclusions

We have provided proof of principle that the analysis
of anti-correlated gene expression profiles could be
systematically used as an innovative approach to explore
the complex space of the interactions between genes,
drugs and disease phenotypes. Moreover, we have
implemented a predictive strategy capable to propose
new associations of available drug targets and drugs to
orphan genetic disorders. We have applied this approach
to produce a list of such associations, which we provide
as an open source of experimentally testable predictions,
to be validated in cellular or animal disease models. On
the basis of the validated or partially validated examples,
it would seem to us reasonable to anticipate that, at least
in some of the proposed cases, the new associations will
turn out to be relevant not only to explore the possible
use of the proposed drug targets in such disorders, but
also to address new possible molecular mechanisms
leading from gene inactivation to disease phenotypes. As
a final remark, although we have only shown how this
principle can be applied to the problem of drug reposi-
tioning, we can envisage that similar approaches could
be used to help addressing other outstanding problems
of drug development, such as predicting the possible
side effects of inhibiting or stimulating new drug targets.

Methods

Definition and evaluation of CAGC

We studied a large, manually annotated, microarray
dataset downloaded from the Gene Expression Omnibus
(GEO), based on Affymetrix Plus 2 platform, covering
many tissues, cell types and experimental conditions in
both human (5188 experiments) and mouse (2310 exper-
iments) [30]. Following procedures and considerations
similar to those previously described in [21] we built
tissue-specific conserved anti-coexpression networks.
We first generated single species anti-coexpression gene
networks (SAN) and then integrated them on the basis
of human-mouse orthology. SANs were generated by
first calculating the Pearson correlation coefficients of
every microarray probeset with all the other probesets.
A directed edge was established from probeset pl to
probeset p2 if pl fell within the top 1% probesets in
terms of anti-correlation with p2. These directed net-
works were then converted into undirected SANs by re-
quiring a reciprocal <1% ranking. We mapped each
probeset to corresponding Entrez Gene identifiers using
the Affymetrix na26 annotation, then an undirected edge
was established between two Entrez gene G1 and G2 if
there was at least one edge from a probeset assigned to
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Table 1 List of the genetic disorders associated to the ROCK1 target

OMIM ID Disease name P-value
611126 Deficiency of a Acyl-coa dehydrogenase family, member 9. 1.5e-05
201450 Deficiency of acyl-coa dehydrogenase, medium-chain. 44e-05
201470 Deficiency of acyl-coa dehydrogenase, short-chain. 2.2e-05
201475 Deficiency of acyl-coa dehydrogenase, very long-chain. 4.2e-08
608810 Alpha-b crystallinopathy. 1.5e-05
205200 Amyotrophic lateral sclerosis, juvenile, with dementia. 5.1e-05
600996 Arrhythmogenic right ventricular dysplasia, familial, 2; arvd2. 7.9e-05
609160 Arrhythmogenic right ventricular dysplasia, familial, 7. 1.3e-05
604377 Aardioencephalomyopathy, fatal infantile, due to cytochrome c oxidase. 4.7e-09
602067 Cardiomyopathy, dilated, 1f; cmd1f. 5.9e-05
192600 Cardiomyopathy, familial hypertrophic 1; cmh?1. 74e-05
115210 Cardiomyopathy, familial restrictive, 1; rcm1. 7.1e-05
212350 Cataract and cardiomyopathy. 4.6e-07
601253 Caveolin 3; cav3. 7.8e-05
609060 Combined oxidative phosphorylation deficiency 1; coxpd1. 6.3e-05
610505 Combined oxidative phosphorylation deficiency 3; coxpd3. 4.4e-08
611719 Combined oxidative phosphorylation deficiency 5; coxpd5. 9.9e-07
300257 Danon disease. 6.1e-06
602668 Dystrophia myotonica 2; dm2. 3.6e-05
158900 Facioscapulohumeral muscular dystrophy 1a; fshmd1a. 24e-05
229300 Friedreich ataxia 1; frda. 5.5e-05
253800 Fukuyama congenital muscular dystrophy; fcmd. 8.8e-05
232300 Glycogen storage disease ii. 4.9e-06
232400 Glycogen storage disease iii. 5.3e-06
261740 Glycogen storage disease of heart, lethal congenital. 5.7e-06
261670 Glycogen storage disease x; gsd10. 44e-06
600737 Inclusion body myopathy 2, autosomal recessive; ibm?2. 8.8e-05
167320 Inclusion body myopathy with early-onset paget disease and frontotemporal. 5.3e-05
147421 Inclusion body miositis. 24e-05
606183 Laryngeal abductor paralysis with cerebellar ataxia and motor neuropathy. 1.9e-05
2201 Leigh syndrome, French-Canadian type; Isfc. 7.8e-05
300322 Lesch-nyhan syndrome; Ins. 8.9e-05
109150 Machado-joseph disease; mjd. 8.1e-05
248800 Marinesco-sjogren syndrome; mss. 7.9e-05
252011 Mitochondrial complex ii deficiency. 6.7e-06
609560 Mitochondrial DNA depletion syndrome, myopathic form. 34e-08
600462 Mitochondrial myopathy and sideroblastic anemia; mlasa. 7.2e-05
500002 Mitochondrial myopathy with diabetes. 3.1e-06
251950 Mitochondrial myopathy with lactic acidosis. 2.5e-05
610773 Mitochondrial phosphate carrier deficiency. 5.5e-08
310200 Muscular dystrophy, duchenne type; dmd. 9.5e-05
605809 Myasthenia, familial infantile, 1. 2.3e-07
610542 Myasthenia, limb-girdle, with tubular aggregates. 4.9e-06
254210 Myasthenic syndrome, congenital, associated with episodic apnea. 5.2e-07
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Table 1 List of the genetic disorders associated to the ROCK1 target (Continued)

255125 Myopathy with lactic acidosis, hereditary; hml 3.9e-07
609500 Myopathy, autophagic vacuolar, infantile-onset. 3.6e-05
609200 Myotilinopathy. 2.6e-05
258450 Progressive external ophthalmoplegia with mitochondrial dna deletions. 1.2e-05
609286 Progressive external ophthalmoplegia with mitochondrial dna deletions. 2.1e-06
212138 Solute carrier family 25 (carnitine/acylcarnitine translocase), member. 4.3e-06
103220 Solute carrier family 25 (mitochondrial carrier, adenine nucleotide. 3.9e-06
604360 Spastic paraplegia 11, autosomal recessive; spg11. 94e-05
610250 Spastic paraplegia 31, autosomal dominant; spg31. 84e-05
183020 Spinal muscular atrophy, segmental. 7.7e-05
253300 Spinal muscular atrophy, type i; smal. 6.2e-05
609015 Trifunctional protein deficiency. 2.9e-06
222300 Wolfram syndrome 1; wfs1. 7.5e-05

P-value refers to the enrichment for phenotypically correlated genes detected in the corresponding CAGC.

G1 to a probeset assigned to G2 and vice versa (recipro-
cal 1% ranking). We then constructed conserved anti-
coexpression gene networks (CAGN) starting from
SANs by mapping every Entrez Gene identifier to the
corresponding Homologene cluster (build 63). Two hu-
man genes G1lh and G2h were connected in the CAGN
if 1) they were connected in the human SAN, 2) booth
of them were associated one-to-one to mouse genes by
Homologene and 3) the corresponding genes Glm and
G2m were connected in the murine SAN.

We constructed 18 CAGNSs: 15 are specific of a single
tissue (Adipose tissue, Brain, Breast, Central Nervous
System, Sensory ganglia, Gastrointestinal tract, Heart,
Kidney, Liver, Lung, Lymphatic tissues, Ovary, Prostate,
Skeletal muscle, Stratified Epithelium), meaning that
both the human and the murine SAN contributing to
the tissue specific CAGN are based on samples derived
from the same tissue. The three remaining CAGNs are
not tissue-specific, because one is based on all the
samples contained in the database, the second is based
on the samples deriving from all the normal human and
mouse tissue while the third derives from tumor cells
data. We have previously shown [30] that coexpression
information deriving from various tissue-specific
datasets and from heterogeneous non-tissue-specific
datasets contains highly complementary information.
We thus chose to merge all the 18 CAGNSs into a single
one that we used for subsequent analyses (the merged
network contained 15954 genes). Finally, for each gene
G present in the merged CAGN, we define a conserved
anti-coexpression gene cluster (CAGC), composed by
the nearest-neighbours G' of the gene G in the merged
CAGN. The gene G, the centre of the cluster, is not
considered as a member of the cluster. CAGC are
available as Additional file 2 on the journal web site
and at the URL http://www.cbu.mbcunito.it/ts-coexp.

Pheno-Clusters

Genetic disease phenotypes described in OMIM were cor-
related on the basis of MimMiner [32]. MimMiner assigns
a similarity score to all pairs of OMIM phenotype records,
based on the text mining analysis of their phenotype de-
scriptions. The pheno-cluster of the phenotype P is the set
of genes directly associated by OMIM to P or to a pheno-
type P' whose similarity with P is at least 0.4. The reason
for choosing this cutoff is that biologically meaningful rela-
tionships were mostly detected in phenotype pairs with a
similarity score equal to or greater than this value [32].

Drug-phenotype association

We statistically associated drug targets to phenotypes by
evaluating the overlap between the CAGC and Pheno-
Clusters, through a Fisher exact test. We considered as
significant the overlaps with P value < le-4, correspond-
ing to 2.5% Benjamini—-Hochberg FDR.

We used as reference for known drugs and targets
DrugBank version 3 [33]. If a drug targeted a CAGC centre
and there was a statistically significant association between
the CAGC and one or more phenotypes, we putatively in-
ferred an effect of the drug for these phenotypes. The idea
under this inference criterion is that, if a drug D inhibits its
targets, D should increase the expression of the CAGC cen-
tered in G with an effect on the associated phenotypes. If
this inference criterion is valid, then we can predict that a
drug will increase the expression of CAGCs centered in
its targets. To validate this observation we used gene-
expression profiles derived from the treatment of cultured
human cells with a large number of perturbagens produced
by the CMap project (build 2) [16]. For the purpose of the
current validation CMap can be viewed as a matrix having
genes on the rows and experiments on columns. Each ex-
periment consists of a perturbation of a cell-line with a
given concentration of a drug.
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The matrix values are properly rank-transformed ratios
between normalized expression values of the gene in
the treated cell-line and a control; the greater the value the
greater the fold-change in expression of the gene in the
case versus the control. CMap reports the data in terms of
Affymetrix probesets, which we mapped to Entrez Gene
using the standard Affymetrix annotation (version na32).
Since many probesets can be associated to the same gene,
in each CMap instance we define the gene rank as the rank
associated to the probeset with the highest rank. This ex-
plains why the gene rank distribution tends to be growing
(see Figure 3) while the distribution of probeset rank is uni-
form by construction. Moreover some ranks are lost since
some probesets can't be associated to any gene. Since
DrugBank and CMap use different drug identifiers, we were
able to associate CMap data to only 682 DrugBank com-
pound. We used Chembl (version 12) [55] as a third source
of drug information to map drug identifiers. Given a CAGC
associated to a drug D, we expect that its genes are
over-expressed in cell lines treated with the drug
targeting the CAGC centre. We tested this hypothesis
independently for each CMap experiment that uses the
D (there are possibly many experiment using the same drug
with different concentration or different cell-lines) with
a two sided Mann-Whitney U test. For each drug we
performed N x M tests, where N is the number of CAGCs
whose centre G is targeted by D, and M is the number of
experiments in CMap that involve D.

Functional enrichment statistical validation

To verify that CAGC tend to contain genes sharing the
same biological function we defined two functional
indices, 1) for GO categories, 2) for pheno-clusters.

Given a CAGC we used the Fisher exact test to compute
the p-value of the enrichment of genes in each GO category
(pheno-cluster). The GO (pheno-cluster) functional index
of a CAGC is then the p-value of the most significant GO
category (pheno-clusters).

We computed the functional indices for each CAGC in
the real network and in 100 random networks obtained by
permuting node (gene) labels, and finally we compared the
cumulative distribution of functional indices derived from
real versus randomized networks using a Kolmogorov-
Smirnov test (see Figure 2). GO data [31] were obtained
from the NCBI Entrez Gene site. All the associations were
considered, including those inferred from electronic anno-
tation (IEA).

Additional files

Additional file 1: Table S1. List the associations between available
drug targets and orphan genetic disorders obtained through CAGCs.

Additional file 2: Compressed zip version of tab-delimited text file,
Full list of the Conserved Anti-coexpressed Gene Clusters.
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