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Abstract

Background: Boolean networks capture switching behavior of many naturally occurring regulatory networks. For
semi-quantitative modeling, interpolation between ON and OFF states is necessary. The high degree polynomial
interpolation of Boolean genetic regulatory networks (GRNs) in cellular processes such as apoptosis or proliferation
allows for the modeling of a wider range of node interactions than continuous activator-inhibitor models, but
suffers from scaling problems for networks which contain nodes with more than ~10 inputs. Many GRNs from
literature or new gene expression experiments exceed those limitations and a new approach was developed.

Results: (i) As a part of our new GRN simulation framework Jimena we introduce and setup Boolean-tree-based
data structures; (ii) corresponding algorithms greatly expedite the calculation of the polynomial interpolation in
almost all cases, thereby expanding the range of networks which can be simulated by this model in reasonable
time. (iii) Stable states for discrete models are efficiently counted and identified using binary decision diagrams. As
application example, we show how system states can now be sampled efficiently in small up to large scale
hormone disease networks (Arabidopsis thaliana development and immunity, pathogen Pseudomonas syringae and
modulation by cytokinins and plant hormones).

Conclusions: Jimena simulates currently available GRNs about 10-100 times faster than the previous
implementation of the polynomial interpolation model and even greater gains are achieved for large scale-free
networks. This speed-up also facilitates a much more thorough sampling of continuous state spaces which may
lead to the identification of new stable states. Mutants of large networks can be constructed and analyzed very
quickly enabling new insights into network robustness and behavior.

Keywords: Boolean function, Genetic regulatory network, Interpolation, Stable state, Binary decision diagram,
Boolean tree
Background
For the simulation of genetic regulatory networks
(GRNs) two important paradigms have been used:
Discrete models, where each node has a value of either 0
or 1 and Boolean expressions are used to update the
values of the nodes in each simulation step using an up-
dating scheme like CRBN (classical random Boolean
networks) or ARBN (asynchronous random Boolean net-
works) [1], and continuous models where nodes have
values in the interval [0,1] and real-valued ODEs (ordin-
ary differential equations) determine the behavior of the
network.
* Correspondence: dandekar@biozentrum.uni-wuerzburg.de
Department of Bioinformatics, University of Würzburg, Am Hubland,
Würzburg, Germany

© 2013 Karl and Dandekar; licensee BioMed C
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
Two commonly used continuous modeling paradigms
for GRNs are activator-inhibitor-models such as the
exponential standardized qualitative dynamical systems
model [2], which is implemented in the SQUAD [3]
simulation package, and real-valued interpolations of
Boolean functions which allow for more complex node
interactions.
These interpolations extend the domain and the co-

domain of Boolean functions {0, 1}n→ {0, 1} by defining
functions [0, 1]n→ [0, 1]n which mimic the behavior of the
original function for intermediate input values in the inter-
val (0,1). For example, an adequate interpolation of the
function B ' (a, b) = a OR b for which B ' (0, 0) = 0 and B '
(0, 1) = 1 would be expected to return a value 0 < ξ <1 for
the input (0,0.5).
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Wittmann et al. [4] reviewed in detail several common
interpolation strategies such as min-max fuzzy logic,
product-sum fuzzy logic and piecewise linear functions
(implemented for example in the BooleanNet simulation
package [5]). We illustrate different interpolation func-
tions in Figure 1. Wittmann et al. [4] found that the
resulting interpolations in Figure 1A-C are either not
smooth or do not adequately reproduce the Boolean
functions they should interpolate. In response, they in-
troduced the minimal degree polynomial BooleCube
interpolation which is smooth and reproduces the Boolean
function for all input vectors in {0,1}n.
For a Boolean function B : {0, 1}n→ {0, 1}, the BooleCube

interpolation C[B(x1,…,xn)] is given by

C B x1;…; xnð Þ½ � ¼
X1
�x1¼0

X1
�x2¼0

…
X1
�xn¼0

� B �x1;…; �xnð Þ
Yn
i¼1

xi�xi þ 1−xið Þ 1−�xið Þð Þ
" #

As an example consider the Boolean function B ' (a, b) =
a OR b. The BooleCube interpolation is C[B '] = a + b − ab
which satisfies C[B ' (a, b)] = B ' (a, b) for all (a,b) ε {0,1}2

and is smooth (Figure 1D).
Wittmann et al. [4] also extended this formalism to

include a switch-like behavior of network nodes by
Figure 1 Interpolations of the Boolean function x OR y. Different pane
min-max fuzzy logic D) Boole-Cubes E) Hill-cubes.
modifying the inputs to the BooleCube interpolation
by a sigmoid-shaped Hill function f(x) = xn / (xn + kn)
leading to HillCubes and, with a normalized sigmoid
function f(x) = (xn/(xn + kn))/(1/(1 + kn)), to normalized
HillCubes (Figure 1E).
These high degree polynomial interpolations of Bool-

ean functions are implemented in the Matlab package
Odefy [6]. While the SQUAD model can be simulated
efficiently even for complex network topologies, Odefy’s
implementation of the polynomial interpolation exhibits
a time complexity in Ω(2n) (where n is the number of
inputs to the node with the most inputs) for the creation
of the model as well as for its simulation.
In extension of such approaches we show how a tree

data structure to store the functions of the network leads
to a straightforward and efficient way to calculate the
polynomial interpolation for almost any example of prac-
tical importance, thereby greatly expanding the range of
networks that can be simulated and analyzed in reasonable
time using this model. Since semi-quantitative models
allow for a range of new analysis techniques such as sensi-
tively quantifying the basins of attraction of the stable
states or the influence of noise on network behavior, this
paves the way for additional insights into network dyna-
mics. We demonstrate this new algorithm as a part of
Jimena, a new Java GRN simulation framework which
focuses on computational efficiency and a modularized
ls show A) piecewise linear functions B) product-sum fuzzy logic C)



Karl and Dandekar BMC Bioinformatics 2013, 14:306 Page 3 of 10
http://www.biomedcentral.com/1471-2105/14/306
architecture to facilitate the development and testing of
new algorithms and models surrounding GRNs.

Implementation
A recursive algorithm to calculate the BooleCube
polynomial
To tackle the space and time complexity issues of the poly-
nomial interpolation present in previous implementations,
we use simple Boolean trees to represent the Boolean
functions of the network. In a Boolean tree (Figure 2), the
leaves (i.e. nodes without ingoing connections such as x1
in Figure 2) are inputs to the function, and the non-leaf
nodes are unary or binary Boolean gates (such as AND in
Figure 2). Each Boolean gate combines the values from its
ingoing connections to an outgoing line in accordance
with the Boolean function (e.g. AND, OR or NOT) the
gate represents. The value of the root node, i.e. the
unique node without outgoing connections to other nodes,
determines the value of the function.
Boolean trees can be straightforwardly created in

linear time by parsing the Boolean expression which
defines a Boolean function, and the function repre-
sented by the tree can be interpolated very quickly
using a recursive algorithm which we will describe in
detail below.
While Odefy, which uses exhaustive value tables

stored as multidimensional arrays to represent the
functions, needs a space and time in Θ(2N) to store a
function where N is its arity, a Boolean tree guarantees
a space requirement in O (E) where E is the length
(in characters) of the Boolean expression used to input
the desired Boolean function. Jimena’s time complexity
Figure 2 A Boolean tree for the function B1(x1, x2, x3) =
(NOT x1) OR (x2 AND x3). Input variables xi are connected by
Boolean operators. The OR node is the root of the tree, i.e. its value
determines the value of the function represented by the tree.
can therefore be minimized by minimizing the descrip-
tion length of the Boolean functions or by minimizing
the Boolean trees, respectively. This difference in time
complexity between Odefy and Jimena is of high prac-
tical importance, since Boolean functions that appear in
today’s GRNs can almost exclusively be described by
Boolean expressions of moderate length. For most GRN
design patterns (e.g. activator-inhibitor-patterns) we
even get functions for which their expression length E
is in O(N). A plethora of published networks are cons-
tructed using these patterns. These may feature nodes
with more than ten inputs per node, for example the
floral organ development network presented in [7], the
automatically generated regulatory network for arthritis
therapy responders from [8] or the plant immunity network
from [9] which we will analyze below.
In addition to the speed up of the creation of the

GRN, the tree structure also expedites the calculation of
BooleCube (and therefore HillCube) interpolations since
we can essentially apply the interpolation separately to
all logic gates of the function and recursively evaluate
the tree from the root node to the leaves. For a more
precise description of the algorithm consider a regula-
tory network with nodes {x1,…,xn}. May the Boolean
function Bk(…) of a node xk be given by a Boolean tree
consisting of nodes {n1,…,nm}. Note, that as shown in
Figure 2, these ni represent binary or unary Boolean
gates or inputs to the function Bk(…). For each function
in the network we get a separate tree and therefore a
separate set {n1,…,nm} .
To illustrate the relationship between {x1,…,xn} and

{n1,…,nm} consider the network {x1,x2} where B1(x1,x2) =
x1 AND x2 and B2(x1,x2) = x1 OR x2. A possible Boolean
tree for the function B1 could then be given by the nodes
n1,n2,n3, where the root node n1 is an AND node with
the leaves n2 and n3, n2 is an input node representing x1
and n3 is an input node representing x2.
We call the function given by the subtree whose root

is ni fi, where fi(xj) = xj for some xj for all input nodes. If
a node ni is not an input node to the network we call its
binary or unary logic gate⊗ i. In our example Boolean
tree from above we would get f2(x1) = x1, f3(x2) = x2, f1
(x1) = x2 = x1 AND x2 and⊗ 1 = AND.
For an arbitrary Boolean function f : {0, 1}τ→ {0, 1}, C

[f] denotes its BooleCube interpolation. We can then
construct a recursive term for the interpolation C[fi] of a
node ni ’s function fi using the following rules:
If ni represents an input node of the tree for which fi

(xj) = xj we set C[fi] ≡ xj
If ni is a unary negating node whose input is a node nj,

we set

C f i½ � ¼ C ⊗i f j
� �h i

≡C ⊗i½ � f j
� �

¼ C½ � f j
� �

¼ 1−C f j
h i

¬
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If ni is a binary node with two inputs nj1 and nj2 whose
functions are fj1 and fj2 we set
Figure 3 A binary decision diagram for the function (a OR b) AND
(b OR c) AND (a OR c). Evaluation starts at the node “a”, which does
not feature any ingoing connections from other nodes. If the value of
the node is 1, the solid line is followed, if it is 0, the dashed line is
followed. For the input values a = c = 1 and b = 0 one would go down
from the “a” node to the right “b” node, on to the “c” node and finally
along the solid line to the “true” node. This corresponds to (1 OR 0) AND
(0 OR 1) AND (1 OR 1) = 1 AND 1 AND 1= 1 (true).
C f i½ � ¼ C f j1⊗f j2

h i
≡C ⊗½ � C f j1

h i
;C f j2

h i� �
¼

X1
�a1¼0

X1
�a2¼0

�a1⊗�a2ð Þ⋅
Y2
φ¼1

ξ C f jφ

h i
; �aφ

� �

where ξ(α,β) is an abbreviation for αβ + (1-α)(1-β). Notice
that this term collapses to fj1 fj2 if⊗ i = ∧ (i.e. the logic gate
is an AND) and f j1 þ f j2−f j1 ⋅f j2 if⊗ i = ∧ (i.e. the logic gate

is an OR), both of which can be calculated very efficiently.
The C[…] parts of the terms above are then evaluated using
the same rules until all branches of the recursion have
reached an input node.
If we apply this algorithm to the root node of the net-

work we get the interpolation C[Bk] of the function Bk.
An overview of the algorithm written in pseudo code as
well as a proof that the result of this algorithm is identi-
cal to the high degree polynomial defined in [6] can be
found in Additional file 1.
For our example network we get C[f1(x1, x2)] =C[AND]

(f2(x1), f3(x2)) = f2(x1) ⋅ f3(x2) = x1 ⋅ x2. As a second example
consider the function B1 (Figure 2). Traversing the tree
starting from the root node nOR we get C[B1] =C[fOR] =C
[fNOT] +C[fAND] −C[fNOT]C[fAND] = (1 − x1) + x2x3 − (1 − x1)
x2x3.

Obtaining the stable steady states for discrete models
from the Boolean tree
As a side effect, Boolean tree data structures instead of
value tables also expedite and simplify the creation of
binary decision diagrams (BDDs) equivalent to the Boolean
functions of the network (see [10] for a comprehensive
review of BDDs and their algorithms).
BDDs, whose algorithmic potential was first investi-

gated by Bryant et al. [11], represent Boolean functions
in a rooted, directed and acyclic graph. The structure
and the evaluation of BDDs is explained in Figure 3.
Common problems surrounding Boolean functions such
as finding all solutions satisfying a given expression can
efficiently solved once a BDD representation has been
created using a set of standard algorithms [11], which is
not possible with Boolean trees.
A possible application of BDDs is the search for all

stable steady states (SSS) in discrete models, i.e. network
states which reproduce themselves in each following
step of a discrete simulations. In contrast, a temporary
state will be left if the system is simulated. The calcu-
lated steady states can be enumerated and applied in
systems biology (e.g. [9], reviewed in [12]). Furthermore,
BDDs based search algorithms and random sampling al-
gorithms to approximate the stable states in continuous
networks have been explored ([3,2]).
If Bi are the Boolean functions defining a network
consisting of the nodes xi, a network state xi,…,xn is a
stable steady state [3] by definition if and only if Λi

Bi xi;1;…; xi;ni
� � ¼ xi

� � ¼ true where xi,j∈{xi,…,xn} is the
j-th input to the function Bi . In other words, all Boolean
functions must evaluate to the value which their target
node already holds. In common BDD frameworks, such
as the JavaBDD framework [13] which is used by Jimena,
BDDs can be constructed by combining elementary
BDDs (e.g. BDDs equivalent to the Boolean function
consisting of the value of a single input variable) using
logical operators such as AND or NOT. For example, to
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construct a BDD for the function B ' (a, b) = a OR b one
would create the BDDs BDD(a) and BDD(b) for the in-
puts a and b, and use the framework to contruct BDDOR

(BDD(a),BDD(b)) where BDDOR constructs the logical
OR of two BDDs.
Recursively traversing the Boolean tree of the func-

tions Bi, the BDDs of these functions can be straightfor-
wardly constructed in the framework by the synthesis
method described above, and then combined to a BDD
for the expression Λi Bi xi;1;…; xi;ni

� � ¼ xi
� � ¼ true . All

satisfying assignments for this equation, which are iden-
tical to the stable steady states of the network, can then
be found by standard algorithms in the BDD framework.
In essence, Boolean trees are necessary to speed up

the simulation of continuous networks, while BDDs are
essentials for the efficient calculation of SSS.

Results and discussion
A jar-library version of Jimena, its sources code, a ready-
to-use Eclipse workspace including a commented usage
example, further documentation and example networks
are available [14].

Speed up of the BooleCube calculation
While it takes a time in Θ(N∙2N) to compute previous
implementations of the polynomial interpolation, the tree
algorithm runs in a time in O(E) (where E is the descrip-
tion length of the Boolean function) since the (at most
second degree) polynomials of each node can be evaluated
in O(1) and the number of nodes is in O(E). This also im-
plies that a GRN given by a set of Boolean expressions can
be interpolated, and therefore simulated, in a time propor-
tional to the description length of the network.
Figure 4 Simulation time for a continuous model. x-axis: number of inv
network with the given number of nodes. Note that in all figures the num
opposed to the number of nodes in the Boolean tree. To highlight the tim
scaled to coincide for a network with 4 nodes. Actual simulation times for
0.046 s. The Additional file 1 explains the definition of the network for a gi
To benchmark the time needed to simulate a network
with a given node degree we used a scalable artificial
network topology which features 2.5n-5 interactions and
a maximum degree of n for n nodes (see Additional file
1 for a detailed definition of the network). The simula-
tion was run for 10 simulation-time seconds and the
normalized HillCube mode [6] was used in Jimena and
Odefy.
Directly comparing the simulation speed of Odefy and

Jimena is not trivial since the time needed by Odefy to
simulate a network for a given time t does not depend
on this parameter, since the simulation accuracy de-
creases with higher time t simulated.
Jimena, on the other hand, uses a standard fixed-

step forth-order Runge–Kutta method to simulate the
networks, hence its performance greatly depends on the
step size of this solving method. For Figure 4 we therefore
scaled the time needed by Jimena such that the data series
coincide for networks with 4 nodes. Without the scaling
Jimena takes about 20 ms for the simulation with a step
size of 1 ms. The experimental data confirm the exponen-
tial increase in calculation time for Odefy and a linear one
for Jimena. A separate benchmark for the model creation
time yielded similar results.
Since we chose test networks for which analogous

activator-inhibitor-networks could be constructed, we
were also able to benchmark the simulation of the
equivalent networks using the octave code obtained
from the SQUAD Export-to-Octave function. As one
would expect from the design of the differential equa-
tions, the integration of the ODEs from the SQUAD
model exhibits a linear time complexity with respect
to the maximum degree of the network nodes.
olved nodes. y-axis: Time (in seconds) to simulate a standardized
ber of nodes refers to the number of actual network nodes xi as
e complexity of the different calculation methods, the data series are
4 nodes: Jimena (red) = 0.019 s, Odefy (blue) = 0.040 s, Squad (green) =
ven number of nodes.
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While this example shows Jimenas performance for high
node degrees, it does not cover networks with large num-
bers of nodes. We therefore compared the runtime behav-
ior of BooleCube interpolations in Odefy and Jimena in
small to large size networks created by the random
Erdős–Rényi paradigm, where a connection between
nodes are set with equal probability, and by the random
scale-free paradigm, where the node degree distributions
follows a power law, i.e. the number of network nodes
with k connections to other nodes is proportional to k-λ

where λ is a constant usually between 2 and 3. It has been
established that a large majority of naturally occurring net-
works are scale-free (see [15] for a review).
The run times (creation and simulation) are plotted

in Figure 5. Note how Odefy performs especially un-
favorably for scale-free networks, which by definition
tend to contain nodes with very high degrees, while
Jimena’s run time reacts benignly to increases in node
degree, number of connections and number of nodes.
The simulation of scale-free networks with 70 nodes
or more did not terminate in Odefy even after
runtimes of several hours. Additional benchmarking
of large HillCube and normalized HillCube networks
yielded almost identical results.
Since SQUAD, BooleanNet and other simulation

frameworks cannot simulate BooleCube networks, they
are not included in this comparison. With the limitation
to networks consisting only of simple activating or
inhibiting influences, SQUADs runtime behavior is simi-
lar to that of Jimena (cf. Figure 4).
Figure 5 BooleCube network performance of Jimena and Odefy. Rand
nodes n and 3·n interactions (arrows) were simulated for 10 seconds with a
using a preferential attachment mechanism. All simulations were aborted a
Speed of the SSS calculation
Since the number of SSS in discrete models can be in
Θ(2E) this is also the minimum time complexity of a
search algorithm. To benchmark our implementation we
used the same scalable test topology as before which fea-
tures 2(n-2)/2 SSS for n nodes. In Figure 6 one can see
that the time needed to determine the SSS stays very
slow even for high node degrees. It only begins to in-
crease for high numbers of solutions (40 nodes: 524,288
solutions) where it grows linearly with the number of so-
lutions. Note that the exponential increase of the num-
ber of SSS with the size of the network is a artificial
worst case scenario and that for evolutionary reasons,
many GRN only feature a limited number of stable
steady states.
For medium sized random scale-free networks (100

nodes, 200 interactions, 100 unique networks) we obtained
a mean run time of 3890 ms (median 1401 ms). Further
experimentation showed that the calculation of the stable
steady states using JavaBDD as a BDD framework is usually
possible for random networks until about 150-200 network
nodes and 500 interactions on standard hardware, with the
limit being the main memory available in the computa-
tional environment.
Since larger networks for which Jimena takes a meas-

urable time to calculate the SSS cannot be loaded in
Odefy, we could not directly compare the two frame-
works in this respect.
This time complexity makes the search feasible even

for larger and highly interconnected networks which
om Erdős–Rényi and scale-free networks with a given number of
step size of 0.05 s in Jimena. The scale-free networks were grown
fter a maximum of 1 minute calculation time.



Figure 6 Stable state calculation time for a discrete model. x-axis: number of involved nodes. y-axis: Time (in milliseconds) needed to
determine the stable states of a standardized network with the given number of nodes. The Additional file 1 explains the definition of the
network for a given number of nodes.
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could not even be loaded using a multidimensional array
implementation.

Multithreading
To determine as many stable steady states of a network
as possible for continuous models such as the Odefy and
SQUAD models, it is necessary to exhaustively sample a
large state space. This task can be greatly expedited by
distributing the sampling to multiple CPU cores as done
automatically by the search algorithms implemented in
Jimena.
Since Jimena’s tree-based networks are very lightweight

compared to multidimensional array implementations,
they can be copied quickly and many of them can be held
in memory at the same time. This not only allows for an
excellent scaling behavior on commonly used multi-core
systems, resulting for example in an almost 8 times higher
sampling rate on an 8 core system, but also facilitates the
efficient comparison of variants of a given network to
analyze its stability with regard to certain manipulations
such as null mutations [7]. The usage of the stable state
searching algorithm is explained the aforementioned
commented usage example. As applied examples we stud-
ied network behavior in plants and bacteria.

Applied example: Arabidopsis thaliana development
The first example takes the plant Arabidopsis thaliana
flower organ specification network from [7]. It concerns
A. thaliania development and makes use of Boolean
functions instead of mere activating and inhibiting influ-
ences and features nodes with a larger number of inputs.
Floral homeotic protein APETALA 1 is a central
transcription factor in this network. It promotes early
floral meristem identity in synergy with LEAFY and reg-
ulates positively the B class homeotic proteins
APETALA3 and PISTILLATA with the cooperation of
LEAFY and its co-regulator UFO (unusual floral organs).
The network we investigate here [7] is a discrete model
on the ABC homeotic floral genes, summarizing also
non-ABC gene interactions to a dynamical floral organ
cell fate model.
We simulated the network for 10 simulation-time sec-

onds using the normalized HillCube (NHC) model on a
standard 2.67 GHz CPU. For the step size of Jimena’s
ODE solver we tested 0.01 s and 0.1 s. Even with a step
size of 0.1 s, the absolute error of the simulation is in
the order of 10-5 when simulating 10 seconds and much
lower when searching for a stable state, which should
already be more than enough for practical applications.
To benchmark the original SQUAD ODEs we used the
simplified activator-inhibitor version of the network
shown in Figure 1 from [7], although we are aware that
in the same article the authors propose a slightly modi-
fied version of the standardized qualitative dynamical
systems methodology implemented in SQUAD. 10 suc-
cessive simulations of the network for Jimena, SQUAD
and Odefy showed that Odefy needs 467(±2) ms to cre-
ate the network and additional 583(±4) ms to simulate
it, while the SQUAD ODEs are solved in 467(±0.3) ms.
With step sizes of 0.1 s and 0.01 s Jimena needs for these
two tasks only 3.1(±0.4) ms and 28.2(±0.7) ms respect-
ively (Table 1). We used this computational improve-
ment to determine the basins of attraction of the stable
states of the network assuming a NHC model based on



Table 2 Basins of attraction of the A. thaliana
development network

Attractor NHC model
(%)

Discrete model
(%)

Continuous model
(%)

INF1 0.005 1.66 4.74

INF2 0.016 1.66 4.77

INF3 0.010 0.88 4.01

INF4 0.032 0.88 4.06

SEP 0.144 9.91 11.01

PET1 0.477 10.05 12.74

PET2 0.024 0.14 1.89

STM1 74.556 37.4 28.46

STM2 7.920 1.15 6.54

CAR 16.816 36.25 21.79

An NHC model based on the Boolean functions of the corrigendum to [7] was
simulated from 106 random initial vectors. The parameters of the Hill function
were n = 2 and k = 0.5 and the decay parameter was τ = 1 for all nodes. The
values for the corresponding discrete and continuous model from the original
article are cited from there [7].

Table 1 Loading and simulation time in different
simulation frameworks

Package Calculation Time (ms)

Odefy Network loading 467(±2)

Odefy Network simulation 583(±4)

SQUAD Network simulation 467(±0.3)

Jimena Network loading 3.7(±0.2)

Jimena Network simulation (time step: 0.1 s) 3.1(±0.4)

Jimena Network simulation (time step: 0.01 s) 28.2(±0.7)

The Arabidopsis thaliana flower organ specification network was loaded and
simulated ten times in Odefy, SQUAD and Jimena, the mean calculation time
is given in the table.

Karl and Dandekar BMC Bioinformatics 2013, 14:306 Page 8 of 10
http://www.biomedcentral.com/1471-2105/14/306
the Boolean function given in the corrigendum to [7], a
calculation which also benefits greatly from Jimenas
automatic multithreading. For the co-regulator UFO we
assumed a loop (UFO =UFO) which reproduced the
known stable states in Jimenas discrete und NHC model
calculations. By simulating the network from 106 ran-
dom initial states we found that although both models
are based on the same Boolean functions, interestingly
the inflorescence states INF1, INF2, INF3 and INF4 (in-
florescence attractors 1-4), whose biological validity has
been confirmed by gene expression experiments [16],
are much more unstable in the NHC model, having a
combined basin of attraction size of only 0.06% as op-
posed to 5.1% in the discrete model and 17.6% in the
continuous model from [7] (Table 2). In other words,
when simulated from 106 initial states where the values
of the nodes have been chosen randomly from the inter-
val [0,1] only 0.06% of the simulations converge on a
state corresponding to a non-flowering phenotype.
Using active EMF1 (embryonic flower 1) and TFL1

(terminal flower 1) nodes (i.e. EMF1 > 0.5 AND TFL1 >
0.5) as an indicator of an inflorescence state, we then de-
termined the basins of attraction of the same model as-
suming null mutations for all 42 interactions (arrows) of
the network by simulating from 104 random start vec-
tors per mutant. The combined basin of attraction size
of each mutant stayed below 0.5%, except for a removal
of the influence of AP1 (APETALA1) on TFL1 whose
mutation directly causes our condition for inflorescence
state to fail, leading to a combined basin size of ~3.5%.
These results corroborate the hypothesis that the inflor-

escence attractors are transitory in nature, such that small
perturbations lead to progress in plant development
and cell differentiation arriving at few and robust stand-
ard outcomes of floral organs. Furthermore, the low size
of the inflorescence basins of attraction of the mutant
networks is consistent with a reported strong robust-
ness of A. thaliana mutants against a non-flowering
phenotype [17].
Applied example II: Arabidopsis thaliana immunity and
pathogen Pst DC3000
A second example considers a different area, the immune
response of the Arabidopsis thaliana plant against gram
negative bacterium Pseudomonas syringae DC3000 pv to-
mato and its modulation by cytokines [9]. Furthermore, this
interaction network concerns two organisms, plant and its
pathogen and is already due to this fact more complex. The
larger Boolean network features 104 nodes and 156 interac-
tions. In particular, using the immune response marker
node PR1 the counteracting or synergistic effects of differ-
ent hormone and cytokine can be modeled. For instance,
cytokine enhances immune responses while auxin stimu-
lates growth but mitigates immune defence. A number of
further insights were obtained from this network and its
analysis including new cytokine mediated regulatory inter-
actions and specific synergism between cytokinin and sali-
cylic acid pathways as well as differences in network
responses for fully virulent and mitigated pathogens [9].
With a step size of 0.1 s and 0.01 s Jimena needs 20.0(±0.4)
ms and 193(±3) ms respectively to simulate 10 seconds
using the BooleCube model, while SQUAD takes 11.04
(±0.02) s. In Odefy the network cannot be loaded due to
the high number of inputs to some nodes. Since in Jimena
null mutations are part of the computational core, networks
can be mutated and restored very quickly. This not only in-
cludes the removal of nodes, but also the removal of single
interactions between network nodes. We searched for the
stable states of the network for all single null mutations
(n = 156) in the continuous NHC model by randomly sam-
pling the state space with 2000 initial states per mutation,
and compared the resulting stable states with the ones
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obtained by treating the network as a discrete Boolean
model. We found that for all mutants and the original net-
work the stable states of the discrete and the NHC model
seem to be identical.
As we expected, the network exhibits a strong robustness

against null mutations, with only 2 mutations changing the
number of stable states (from 2 to 1). These are the null
mutation of the influence of SA (salicylic acid) on ROS (re-
active oxygen species) and of ROS on SA where SA is a key
hub node of the network and the small cycle SA→RO→
SA is crucial for its number of stable states. For all other
mutations (n = 154) the changes of the stable states are
minor, with only one mutation effecting more than four
changed nodes per stable state, namely the removal of
ETR/CTR1 (ethylene response / cytosolic serine/threonine
kinase constitutive triple response 1)→AHP (Histidine-
containing phosphotransmitters) which causes five nodes
to change, and most single mutations (n = 142) leading to
no change at all.
To check whether the number of stable states increases

assuming multiple mutations we then determined the
stable states for up to 4 null mutations (n ≈ 2.4⋅107) in the
discrete network model and found that the number of
stable states never exceeds 2. Using a single 2.67 GHz CPU
core Jimena constructs and analyzes 2,700 mutants per sec-
ond in this network, and more than 24,000 mutants per
second in the A. thaliana development network from above
(number of interactions = 42), which demonstrates its com-
putational efficiency even for complex networks. The result
of this analysis hints to the robustness of the network
against the emergence of new stable states even when mul-
tiple interactions (up to four) are removed. Inbuilt robust-
ness is not a rare phenomenon in biological signaling
cascades as independently confirmed from experimental
data such as promoter recombination trials in E. coli [18]
or the reported phenotypical robustness of C. albicans
against null mutations of transcriptional regulators [19].
Additional benefits from robustness for this particular
signal cascade include that additional stable states could
be detrimental to the latency and efficacy of immune
reactions.

Conclusion
Within the last years the size and complexity of dis-
covered genetic regulatory networks has increased sub-
stantially, partly due to automated network creation
techniques using time series data from methods such as
real-time RT-PCR or RNAseq.
Motivated by current limitations of Odefy (version

1.18, year 2013), the use of tree data structures and cor-
responding algorithms in Jimena paves the way for the
simulation and analysis of more sophisticated networks
than possible previously, including those beyond the
scope of simple activating and inhibiting influences cov-
ered by SQUAD. This may provide additional insight es-
pecially with regard to the role of nodes that are
influenced by many other nodes, which seem to greatly
influence the behavior of many GRNs.
For an overview of all currently published features of

Jimena see Figure 7.

Availability and requirements
The software, its source code, example data and a tutor-
ial are available from http://stefan-karl.de/jimena/ and
http://www.bioinfo.biozentrum.uni-wuerzburg.de/com-
puting/jimena. Jimena runs on any operating system (win-
dows, Linux, Mac). Jimena requires Java 7 or above.
Additional file

Additional file 1: In this document file (.doc) we include a proof
summary of the BooleCube interpolation algorithm, the topologies
for the benchmarks used and the pseudocode for the interpolation
algorithm.

http://stefan-karl.de/jimena/
http://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/jimena
http://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/jimena
http://www.biomedcentral.com/content/supplementary/1471-2105-14-306-S1.docx
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