
Hayashi and Iwata BMC Bioinformatics 2013, 14:34
http://www.biomedcentral.com/1471-2105/14/34
METHODOLOGY ARTICLE Open Access
A Bayesian method and its variational
approximation for prediction of genomic
breeding values in multiple traits
Takeshi Hayashi1* and Hiroyoshi Iwata2
Abstract

Background: Genomic selection is an effective tool for animal and plant breeding, allowing effective individual
selection without phenotypic records through the prediction of genomic breeding value (GBV). To date, genomic
selection has focused on a single trait. However, actual breeding often targets multiple correlated traits, and,
therefore, joint analysis taking into consideration the correlation between traits, which might result in more
accurate GBV prediction than analyzing each trait separately, is suitable for multi-trait genomic selection. This would
require an extension of the prediction model for single-trait GBV to multi-trait case. As the computational burden of
multi-trait analysis is even higher than that of single-trait analysis, an effective computational method for
constructing a multi-trait prediction model is also needed.

Results: We described a Bayesian regression model incorporating variable selection for jointly predicting GBVs of
multiple traits and devised both an MCMC iteration and variational approximation for Bayesian estimation of
parameters in this multi-trait model. The proposed Bayesian procedures with MCMC iteration and variational
approximation were referred to as MCBayes and varBayes, respectively. Using simulated datasets of SNP genotypes
and phenotypes for three traits with high and low heritabilities, we compared the accuracy in predicting GBVs
between multi-trait and single-trait analyses as well as between MCBayes and varBayes. The results showed that,
compared to single-trait analysis, multi-trait analysis enabled much more accurate GBV prediction for low-heritability
traits correlated with high-heritability traits, by utilizing the correlation structure between traits, while the prediction
accuracy for uncorrelated low-heritability traits was comparable or less with multi-trait analysis in comparison with
single-trait analysis depending on the setting for prior probability that a SNP has zero effect. Although the
prediction accuracy with varBayes was generally lower than with MCBayes, the loss in accuracy was slight. The
computational time was greatly reduced with varBayes.

Conclusions: In genomic selection for multiple correlated traits, multi-trait analysis was more beneficial than
single-trait analysis and varBayes was much advantageous over MCBayes in computational time, which would
outweigh the loss of prediction accuracy caused by the approximation procedure, and is thus considered a
practical method of choice.
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Background
A huge number of genome-wide polymorphisms have re-
cently been elucidated in livestock and crops with the de-
velopment of sequencing technologies. High-throughput
genotyping systems, such as high-density SNP chips con-
taining several tens or hundreds of thousands of genome-
wide SNP markers and GBS (genotyping by sequence) [1],
have become available to efficiently identify genotypes of
individuals for a large number of SNPs at low cost. Conse-
quently, genomic selection [2] is attracting attention as a
new breeding technology utilizing the information of
genome-wide dense SNP markers. In genomic selection, a
model to predict genomic breeding value (GBV) based on
genome-wide SNP genotype is firstly constructed using a
training population consisting of individuals with both
SNP genotypes and phenotypes of a trait and, subse-
quently, using this model, the GBVs of a trait are predicted
for individuals in the tested population, which are selec-
tion candidates, based on their SNP genotypes, allowing
effective individual selection to be performed without
phenotypic records using the predicted GBV. Therefore,
genomic selection requires the construction of prediction
models being able to accurately relate genotypes of
genome-wide SNPs to GBV.
In the original study of genomic selection by Meuwissen

et al. [2], two Bayesian methods were presented for con-
struction of prediction models, which were referred to as
BaeysA and BayesB and have been used for the studies of
genomic selection in their original or modified forms [3,4].
The model of BayesA is equivalent to the Bayesian shrink-
age regression (BSR) model [5], where all SNPs are
included in the prediction model as covariates and the esti-
mates of SNP effects are shrunk by assuming a normal dis-
tribution with mean 0 and SNP-specific variance as prior
distributions of SNP effects, resulting in negligible estimates
for the effects of many SNPs irrelevant to phenotype, but
significantly large estimates for the effects of SNPs contrib-
uting to phenotype. On the other hand, the BayesB method
is regarded as a variant of Bayesian stochastic search vari-
able selection (BSSVS) [6], where the prior probability, π,
that a SNP has zero effect and is removed from the model
was considered in the model fitting to obtain the best
model explaining the phenotypes with a small number of
SNP effects. A normal distribution with mean 0 and SNP-
specific variance is assumed for the prior distribution of
SNP effects in BayesB, as in BayesA, if SNPs are included
in the model with probability 1-π and, otherwise, both the
mean and variance are fixed at 0 with probability π.
In BayesA and BayesB, an additional hierarchical

structure is induced for this SNP-specific variance,
where an inverted chi-square distribution with degree of
freedom ν and scale parameter S is adopted as the prior
distribution of the variance. However, only the informa-
tion of the relevant single SNP can be used for the
posterior inference of this SNP-specific variance regardless
of the number of genotypes or phenotypes. Due to the in-
sufficient Bayesian learning for the variance, the degree of
shrinkage for the estimates of SNP effects is largely influ-
enced by the prior setting for ν and S in BayesA and
BayesB [7]. In BaeysB, the sparseness of the model and the
prediction accuracy are also greatly affected by the prior
probability, π, that a SNP has zero effect, which is treated
as a known fixed value. To overcome these drawbacks of
BayesA and BayesB, the modified methods such as BayesC
and BayesD were proposed. In BayesC, a single variance
common to all SNPs is adopted for the prior distribution
of SNP effects while BayesD allows S to be inferred from
the data, given ν. Furthermore, the step for inferring π,
which is given as a fixed value in BayesB, can be incorpo-
rated in the procedure of BayesC and BayesD and the cor-
responding methods are termed BayesCπ and BayesDπ,
respectively [4].
These Bayesian methods were mainly developed for gen-

omic selection of a single trait. However, actual breeding of
animals and plants often aims to simultaneously improve
multiple correlated traits. Therefore, joint prediction of
GBVs for multiple traits, taking into consideration the cor-
relation structure between traits, is suitable for multi-trait
genomic selection, which requires the extension of existing
methods for single-trait GBV prediction to multi-trait case.
In QTL mapping methods that use similar models to those
of genomic selection, some researchers have developed
multi-trait models [8-10]. Xu et al. [8] extended the BSR
model to a multi-trait case introducing the correlation
structure between traits in estimation of QTL effects and
other non-genetic effects. Banerjee et al. [9] employed a
Bayesian composite model space approach [11,12] for
multi-trait QTL mapping, where a variable indicating inclu-
sion or exclusion of each QTL was incorporated for con-
structing a model with the smallest possible number of
QTLs, a similar approach to BSSVS adopted in BayesB, and
each trait was allowed to have a different model by assum-
ing the trait-specific effects for QTLs and non-genetic fac-
tors that were assumed to be uncorrelated between traits.
Meuwissen and Goddard [10] proposed a multi-trait BSSVS
model for QTL mapping. These methods can be applied
for prediction of multi-trait GBVs in genomic selection.
Calus and Veerkamp [13] applied the method proposed in
[10] with some modification for multi-trait GBV prediction
to compare the accuracy between single-trait prediction
and multi-trait prediction in genomic selection.
The computational procedure with MCMC iteration is

generally used for the Bayesian methods to estimate
parameters in the models, which become complicated
models in genomic selection, including a huge number
of SNPs as covariates and SNP effects that are estimated
as their regression coefficients. The computational bur-
den of MCMC-based Bayesian methods, which requires



Hayashi and Iwata BMC Bioinformatics 2013, 14:34 Page 3 of 14
http://www.biomedcentral.com/1471-2105/14/34
a long time until convergence when estimating many
parameters is huge even in single-trait GBV prediction
and would be further increased in the case of multiple
traits, thus hindering the MCMC procedure depending
on the number of traits to be jointly analyzed. Therefore,
it would be necessary to devise a solution for reducing
the computational burden of Bayesian methods for
multi-trait GBV prediction. So far, some non-MCMC
computational procedures for Bayesian methods have
been proposed in QTL mapping and genome-wide asso-
ciation study, including EM-algorithm [14] and vari-
ational approximation [15,16]. The EM-algorithm was
also applied to single-trait GBV prediction, successfully
reducing the computational time [17,18].
In this paper, we propose Bayesian methods for multi-

trait GBV prediction, in which BSR models allowing
variable selection are developed and MCMC procedures
for estimating model parameters including SNP effects
are described as well as a computationally cost-effective
non-MCMC method using variational approximation as
an alternative computational procedure. Hereafter, the
Bayesian methods based on MCMC iteration and vari-
ational approximation are referred to as MCBayes and
varBayes, respectively. The multi-trait Bayesian models
described here include a Bayesian shrinkage regression
(BSR) models that are equivalent to those adopted by
BayesA and BayesD when variable selection is not con-
ducted, and the models of BSSVS that are regarded as
slightly modified versions of BayesB and BayesDπ meth-
ods when a step of variable selection step is incorpo-
rated. We develop computationally-effective variational
approximation procedures to construct the posterior dis-
tributions of parameters of these Bayesian models.
Using simulated datasets consisting of genotypes of

genome-wide dense SNPs and phenotypes of three corre-
lated traits with high and low heritabilities, we investigated
the differences in prediction accuracy for each trait be-
tween multi-trait analysis, where GBVs of three traits were
simultaneously predicted taking the correlation structure
between traits into consideration, and single-trait analysis,
where each trait was separately predicted for GBV. We
also evaluated the prediction accuracy of the varBayes
methods in comparison with MCBayes. Moreover, we
investigated the performance of multi-trait analysis in
simulated data including missing phenotypes.

Methods
In this section, we describe Bayesian models for multi-
trait GBV prediction and computational procedures for
Bayesian estimation of the model parameters, including
construction of posterior distributions of the parameters
using MCMC iteration and variational approximation.
Here, we consider the statistical models for BSR and
BSSVS, which are shown to be equivalent to BayesD and
similar to BayesDπ, respectively. In these Bayesian mod-
els concerned, BSR is regarded as a special version of
BSSVS by setting π =0, where π is a prior probability
that a SNP does not contribute to traits; thus, we
present the multi-trait GBV prediction models in a uni-
fied fashion in terms of BSSVS.
We assume that the number of SNPs genotyped is N

and a training dataset including n individuals with
phenotypic records of multiple traits, where the number
of traits is denoted by T, and SNP genotypes is available
for estimating parameters in the prediction model. We
also assume that a test dataset consists of individuals
with only SNP genotypes, for each of which GBV is pre-
dicted. We denote two alleles at each SNP by 0 and 1
and three genotypes by ‘0_0’, ‘0_1’, and ‘1_1’.

Models for Bayesian stochastic search variable selection
in multi-trait genomic selection
We propose the following Bayesian multi-locus linear
model for the phenotypes of T traits of the ith individ-
ual, which are denoted as a Tx1 vector yi (i = 1,2,. . .,n),
as a BSSVS model for multi-trait GBV prediction:

yi ¼ Xibþ
XN
l¼1

γluilgl þ ei; ð1Þ

where b is a f × 1 vector of non-genetic effects including
interceptions of the model with Xi being a T × f design
matrix linking b to the ith individual; uil is a variable in-
dicating the genotype of the ith individual at the lth SNP
taking a value of −1, 0 or 1 corresponding to the geno-
types, ‘0_0’, ‘0_1’, or ‘1_1’, respectively; gl is a T × 1 vector
of the effects of the lth SNP on the phenotypes of T
traits; γl is a variable indicating the inclusion of the lth
SNP in the model with 1 or 0 depending on whether or
not the lth SNP is included in the model; and ei is a T ×
1 vector of residual errors following a T-variate normal
distribution N(0, Σe) with 0 being a T × 1 vector of zeros
and Σe being a TxT covariance matrix of ei.
Within the Bayesian framework, prior distributions are

assigned to the parameters of the model (1). We assume
that the priors of the elements of b are the improper
uniform distribution over the possible values. The prior
probabilities that γl =1 and γl =0 are presented as 1- π
and π, respectively, considering the prior probability that
a SNP does not contribute to the trait and is excluded
from the model is π. The prior distribution of gl given γl
has the form

gljγ l e N 0;Σgl
� �

γ l ¼ 1
� �

δ 0ð Þ γ l ¼ 0
� � ;

(
ð2Þ

where Σgl is a T × T matrix that is the variance and co-
variance matrix of gl given γl =1 and δ (0) is the delta
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function that concentrates a total mass at zero for all T
elements of gl. We induce a hierarchical structure for Σgl

by assigning an inverse Wishart distribution with degree
of freedom ν and scale parameter S, denoted by IWT(ν,S),
to the prior distribution of Σgl :

ΣgleIWT v; Sð Þ∝��S ν=2
�� ��Σgl

��� νþTþ1ð Þ=2
expf� 1

2
tr SΣgl

�1
� �g

ð3Þ

Although the SNP effect gl is zero and irrelevant to Σgl

when γl =0 as shown in (2), we assume that Σgl is a
priori distributed as given in (3) regardless of γl. We
treat ν as a given fixed value but infer S from the data
within the Bayesian framework. For simplicity, we as-
sume here that S is a diagonal matrix with the kth diag-
onal element being sk , that is S = diag(sk) (k = 1,2,. . .,T),
and we adopt the improper uniform distribution over
positive values for a prior distribution of sk. The residual
variance and covariance matrix Σe is assumed to have a
uniform distribution over the positive definite matrices
as a prior distribution.
Denoting these parameters of the Bayesian model col-

lectively by θ, the prior distribution of θ by p(θ) and
observed phenotypes yi and SNP genotypes uil (i = 1,2,. . .,
n;l = 1,2,. . .,N) by Y and U, respectively, we can write the
posterior distribution of θ, g(θ| ν,Y, U), as

gðθ ν;Y;Uj Þ∝jΣej�n=2 expð� 1
2

Xn
i¼1

yi�0Σe
�1yi�Þ

�
YN
l¼1

½ 1� πð Þf jΣglj�1=2 expð� 1
2
gl

0Σgl
�1glÞg

γ l
πδ 0ð Þf g1�γ l �

�
YN
l¼1

��S ν=2
�� ��Σgl

��� νþTþ1ð Þ=2
expð� 1

2
trSΣgt

�1Þ ð4Þ

from (1), (2) and (3), where yi* is a residual given by

yi� ¼ yi � Xib�
XN
l¼1

γ luilgl.

Given that S is fixed, posterior distribution (4) is
equivalent to that of BayesA extended to multi-trait case
when π = 0 leading to γl =1 for all SNPs. When π > 0,
the selection of SNPs to be included in the model is per-
formed as in BayesB. However, it should be noted that
posterior distribution (4) is not equivalent to that of the
multi-trait version of BayesB, which supposes that Σgl is
a zero matrix as well as gl when γl =0, while, in (4), the
prior distribution of Σgl is assumed to be IWT(ν, S) re-
gardless of γl. The form of posterior distribution (4)
allows Gibbs sampling in the MCMC estimation for all
parameters including gl and Σgl. The full conditional
posterior distributions of parameters used in MCBayes
are described in Additional file 1.
Variational approximation procedure for multi-trait
Bayesian model
We adopted variational approximation as an alternative
to MCMC iteration for constructing marginal posterior
distributions of parameters based on joint posterior dis-
tribution (4). In the variational approximation proced-
ure, the joint posterior distribution is approximated by
the product of functions for subsets of parameters with
lower dimension. Briefly, we assume that g(θ| ν, Y, U) is
approximated by a function of θ, q(θ), which is factor-
ized as q(θ) = q1(θ1) q2(θ2). . .qK(θK), where θ1, θ2,. . . ,θK
are mutually exclusive subsets of θ such that [ k = 1

K θk = θ
and qk (θk) (k = 1,2,. . .,K) may generally depend on ν,Y
and U although this dependence is omitted here for sim-
plicity. This approximating marginal posterior distribu-
tion, qk(θk), is referred to as the variational posterior of
θk [19]. The form of qk(θk) is determined such that the
Kullback–Leibler divergence between g(θ|ν,Y, U) and q
(θ| q1(θ1) q2(θ2). . .qK(θK), D(q||g), is minimized [20],
where D(q||g) is defined as

D qjjgð Þ ¼
Z

q θð Þ log q θð Þ
g θjν;Y;Uð Þ dθ

It can be shown that qk(θk) is expressed as

qk θkð Þ ¼ Cexp E�θk logg θ ν;Y;Uj Þð �½ gf ð5Þ

where C is a normalized constant and E-θk[.] indicates
the expectations of parameters other than θk that are
calculated with respect to every other parameter’s vari-
ational posteriors except qk(θk) [21].
In the varBayes method that applies the variational ap-

proximation procedure to the multi-trait Bayesian model
considered here, g(θ|ν,Y, U) is assumed to be approxi-
mated by a factorized function q(θ) that is written as

q θð Þ ¼ q bð Þq Σeð Þ
YN
l¼1

q γ l; gl
� �

q Σgl
� �� �

q Sð Þ

where we denote all of the variational posteriors for the
different parameters in the right-hand side by q(.) for
simplicity with the understanding that q(b), q (Σe) and
so on take different forms depending on the parameters.
The forms of these variational posteriors are derived
from (5) in a manner similar to that used for derivation
of the full conditional posteriors for the parameters in
Gibbs sampling and the computational details are given
in Additional file 2. In the following, we will give
the variational posteriors for parameters, γl, gl, Σgl

(l = 1,2,. . .,N), b, Σe and S.
The variational posterior for b, q(b),is a multivariate

normal density with mean
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E bð Þ ¼ f
Xn
i¼1

Xi
0E Σe

�1
� �

Xig�1
Xn
i¼1

Xi
0E Σe

�1
� �

fyi �
XN
l¼1

uilE γ lgl
� �g ð6Þ

and variance-covariance matrix

V bð Þ ¼ f
Xn
i¼1

Xi
0E Σe

�1
� �

Xig�1

where E(.) indicates the expectation calculated with re-
spect to the variational posteriors of relevant parameters,
while q (Σe) is IWT (n-T-1, Se) with

Se ¼
Xn
i¼1

fyi�XiE bð Þ �
XN
l¼1

uilE γ lgl
� �g

fyi � XiE bð Þ �
XN
l¼1

uilE γlgl
� �g0 ð7Þ

from which we obtain

E Σe
�1

� � ¼ n� T � 1ð ÞSe�1 ð8Þ
The variational posterior of Σgl is represented by IWT

(νgl, Sgl), where

νgl ¼ νþ E γ l
� �

and

Sgl ¼ E Sð Þ þ E γ lglgl ’
� �

The expectation of Σgl
-1 with respect to this posterior

distribution is

E Σgl
�1

� � ¼ νglSgl
�1

¼ νþ E γ l
� �� �

E Sð Þ þ E γ l glgl ’
� �� � ð9Þ

For γl and gl, we consider joint distribution for vari-
ational posterior q(γl, gl) that is expressed as

q γ l; gl
� �

∝½ 1� πð ÞjVglj1=2jE Σl
�1

� �j1=2 expf1
2
ĝ
l

0Vgl
�1 ĝ

l
g

�φ gl ĝl;Vgl

�� �� �γ l � πδ 0ð Þ½ �1�γ l ð10Þ

where ϕ gl ĝl;Vgl

�� ��
is a density function of a multivari-

ate normal distribution N ĝl;Vgl
� �

with mean

ĝl ¼ fE Σl
�1

� �þXn
i¼1

uil
2E Σe

�1
� �g�1E Σe

�1
� �Xn

i¼1

uil

fyi � XiE bð Þ �
X
j≠l

uijE γ jgj
� 	

g ð11Þ

and variance-covariance matrix
Vgl ¼ fE Σl
�1

� �þXn
i¼1

uil
2E Σe

�1
� �g�1 ð12Þ

The marginal posterior distribution of γl is a binomial
distribution with probabilities of γl =1 and 0 given by

q γ l ¼ 1
� � ¼ E γ l

� �
¼

1� πð ÞjVglj1=2jE Σl
�1ð Þj1=2 exp 1

2 ĝ0lVgl
�1 ĝl

n o
1� πð Þ Vgl

1=2j jE Σl
�1ð Þ 1=2 exp 1

2 ĝ0lVgl
�1 ĝl

n o
þ π

������
ð13Þ

and

q γ l ¼ 0
� � ¼ 1� q γ l ¼ 1

� �
¼ π

1� πð ÞjVgl
1=2j jE Σl

�1ð Þj1=2
exp 1

2 ĝ0lVgl
�1 ĝl

n o
þ π

The conditional distribution of gl given γl is given by

qðgl γ l
�� � ¼ N ĝl;Vgl

� �
γ l ¼ 1
� �

δ 0ð Þ γl ¼ 0
� �


Therefore, we obtain

E γ lgl
� � ¼ q γ l ¼ 1

� �
Eðgl γ l ¼ 1

�� �þ q γ l ¼ 0
� �

Eðgl γ l ¼ 0
�� �

¼ E γ l
� �

ĝl ð14Þ
and

E γ lglgl ’
� � ¼ E γ l

� �
ĝl ĝ

0
l þ Vgl

� � ð15Þ
From (4), the variational posterior of S is a T-variate

Wishart distribution with a scale matrix ΣS and degree
of freedom νs, WT(νs, ΣS), where Σs = {

P
l = 1
N E(Σgl

− 1)}− 1

and νs =Nν + T + 1, and the expectation of S is expressed
as

E Sð Þ ¼ νsΣS

¼ Nνþ T þ 1ð Þf
XN

l¼1
E Σgl

�1
� �g � 1 ð16Þ

As outlined above, a well-known probability distribu-
tion, such as normal, inverse Wishart and so on, is
assigned to the variational posterior of each parameter,
which is characterized by the expectations of the func-
tions of other parameters, taken with respect to their
variational posteriors. The relationships between these
expectations are given by (6), (8), (9), (13), (14), (15) and
(16), from which the expectations can be calculated with
numerical iterations to obtain the variational posteriors.
Moreover, the prior probability for a SNP to have zero

effect, π, can be treated as a variable parameter to be in-
ferred from the data as in BayesCπ and BayesDπ when
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0 < π < 1. Here, we assume a uniform prior on 0 < π < 1
to obtain a Beta distribution, B(a,b), as a variational poster-
ior from (4), where a =N −

P
l= 1
N E(γl) + 1 and b =

P
l= 1
N E

(γl) + 1, with the expectation

E πð Þ ¼ a= aþ bð Þ
¼ N �

XN

l¼1
E γ l
� �þ 1

n o
= N þ 2ð Þ ð17Þ

Accordingly, the variational posteriors of the other
parameters are modified with π substituted by E(π)
when π is involved in the Bayesian inference.

Treatment of missing phenotypes
In the phenotypic records for multiple traits, it is com-
mon for trait values to be partially missing in some indi-
viduals. Missing phenotypes of a trait in individuals can
be inferred with the observed phenotypes of other traits
in the same individuals. The step for inferring missing
phenotypes can be implemented in the MCBayes and
varBayes procedures as described below.
When there are missing phenotypes in an individual,

the residual vector of the individual, e in model (1), is
partitioned into components eo and em corresponding to
observed and missing phenotypes, respectively. Follow-
ing [22], em can be sampled from the following normal
distribution,

emeN ΣmoΣoo
�1eo;Σmm � ΣmoΣoo

�1Σmo’
� � ð18Þ

where Σmm, Σmo and Σoo indicate the partition of the re-
sidual variance-covariance matrix Σe corresponding to em
and eo. Accordingly, em is drawn with Gibbs sampling in
MCBayes while it is obtained as E(Σmo)E(Σoo)

-1eo* in var-
Bayes, where, denoting the component corresponding to
the missing traits by subscript ‘o’, eo* is written as

eo� ¼ yo � XoE bð Þ �
XN
l¼1

uilE γ lgol
� �

and the expectations can be calculated with the variational
posteriors of Σe, b and gl . Missing phenotypes are inferred
as the sum of the estimates of b, gl and em, which are used
for the construction of the prediction model.

Simulation experiments
We simulated datasets to evaluate the accuracy of the
predicted GBVs using the proposed Bayesian methods,
MCBayes and varBayes, for multiple traits. In generating
the datasets, three traits, denoted as A, B and C, were
considered. The simulation of population and genome
was carried out following [3] where a single trait was
treated, while multiple traits were generated through a
modified approach. The simulated population, genotypes
and phenotypes are described in the following.
Populations with an effective population size of 100
were maintained by random mating for 1000 generations
to attain mutation drift balance and LD between SNPs
and QTLs. In generation 1001 and 1002, the population
size was increased to 1000. The population in the 1001st
generation was treated as a training population, where
the phenotypes of three traits and SNP genotypes of the
individuals were simulated and analyzed to estimate the
SNP effects in the model. The phenotype of each trait
for each individual in the 1001st generation was given as
the sum of QTL effects over the polymorphic QTLs and
environmental effects, which were sampled as described
later. For simplicity, no other fixed effects were assumed.
The population in the 1002nd generation was used as a
test population, where the individuals were only geno-
typed for SNP markers without phenotypic records and
GBVs of three traits were predicted for each individual
using a model with SNP effects estimated based on the
training population in the 1001st generation. The true
breeding value (TBV) of the individual in the 1002nd
generation was also simulated as the sum of QTL effects
corresponding to the QTL genotype for each trait and
used for evaluating the accuracy of predicted GBV, but
was regarded as unknown and unavailable in the estima-
tion of SNP effects in the models. Accuracy was mea-
sured based on the correlation between the TBV and
predicted GBV, rTBV,pGBV, for each trait and regression of
TBV on predicted GBV, bTBV,pGBV, was also obtained for
assessing the bias of the prediction.
The genome was assumed to consist of 10 chromo-

somes each 100cM in length. Two scenarios were consid-
ered for the number of available SNP markers and the
datasets under these two scenarios were denoted as Data I
and Data II. In Data I, 101 marker loci were located every
1cM on each chromosome for a total of 1010 markers on
a genome. In Data II, 1010 equidistant marker loci were
located on each chromosome for a total of 10100 markers.
We assumed that 100 equidistant QTLs were located on
each chromosome such that a QTL was in the middle be-
tween two marker loci in both Data I and Data II. There-
fore, there were a total of 1000 QTLs located on a whole
genome. The mutation rates assumed per locus per mei-
osis were 2.5 × 10-3 and 5.0 × 10-5 for the marker locus
and QTL, respectively. At least one mutation occurred in
the most of the marker loci with a high mutation rate dur-
ing the simulated generations. In the marker loci experien-
cing more than one mutation, the mutation remaining at
the highest minor allele frequency (MAF) was regarded as
visible, whereas the others were ignored, which resulted in
the marker loci having two alleles similar to SNP markers.
Although the mutation rate for QTL was assumed 2.5 ×
10-5 in the simulation for a single trait conducted in [3],
we here doubled it for generating TBVs of multiple traits
for the reason as described below.
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The polymorphic QTLs at which mutation occurred
were used to simulate the three traits, A, B and C, the her-
itabilities of which, denoted by hA

2 , hB
2 and hC

2 , respectively,
were assumed to be hA

2 = 0.8, hB
2 = 0.1 and hC

2 = 0.1. We
divided all polymorphic QTLs into four groups, Group1,
Group2, Group3 and Group4, according to the causal re-
lationship with traits, where Group1 was a group of QTLs
affecting both traits A and B, Group2 was a group of
QTLs affecting only trait A, Group3 was a group of QTLs
affecting only trait B and Group4 was a group of QTLs
affecting only trait C. Therefore, it was assumed that
QTLs of Group1 had pleiotropic effects on traits A and B
while QTLs of other groups affected only a single trait.
Each polymorphic QTL was randomly assigned to one of
these groups, that is, to Group1, Group2, Group3 and
Group4 with respective probabilities 0.4, 0.1, 0.1 and 0.4.
Therefore, 80% of the QTL loci affecting trait A were
shared by trait B on average and whereas all the QTL loci
affecting trait C influence neither traits A nor B. In this
setting of multi-trait case, the mutation rate of QTL was
increased to 5.0 × 10-5 from 2.5 × 10-5, the mutation rate
adopted in [3] for generating a single trait, to retain the
number of QTL per trait.
The pleiotropic effects of each QTL in Group1 were

assumed to be correlated between traits A and B with
correlation coefficient of 0.9. Consequently, genetic cor-
relations between traits A and B, between A and C and
between B and C, denoted as ρGAB, ρGAC and ρGBC, re-
spectively, were ρGAB = 0.72 and ρGAC = ρGBC = 0 on
average although the values of correlation coefficients
were somewhat fluctuated in each data generation. This
setting of traits was adopted to investigate how the pre-
diction accuracy was increased for a low-heritability trait
(trait B) by simultaneous analysis for multiple traits in-
cluding a correlated high-heritability trait (trait A).
The effects of QTL alleles were sampled from gamma

distributions independently for each QTL. Pleiotropic
effects of QTL alleles in Group1 were determined for
traits A and B by generating two correlated gamma ran-
dom variables, x and y, with the correlation coefficient of
0.9, and assigning them with positive or negative values
with equal probabilities. The effects of QTL alleles in the
other groups, which affected each single trait only, was
determined by sampling a gamma random variable z and
by similarly assigning it with the positive or negative sign.
We generated these three random variables x, y and z such
that their marginal distributions were the same gamma
distribution with scale parameter 0.4 and shape parameter
1.66, Gamma(0.4,1.66). For obtaining correlated variables
x and y, we generated three independent gamma variables,
x1, x2 and x3, which were sampled from Gamma
(0.36,1.66), Gamma(0.04,1.66) and Gamma(0.04,1.66), re-
spectively, and determined the values of x and y as x = x1
+ x2 and y = x1 + x3. It can be shown that x and y had a
correlation coefficient of 0.9 and the same marginal distri-
bution Gamma(0.4,1.66) [23].
The environmental correlation coefficients between

three traits were denoted by ρEAB, ρEAC and ρEBC, re-
spectively, and assumed as ρEAB = 0.1, ρEAC = 0.2 and
ρEBC = 0.3. The environmental effects were sampled from
a trivariate normal distribution with a mean vector 0
and a variance-covariance matrix RE, where

RE ¼
σEA2 ρEABσEAσEB ρEACσEAσEC

ρEABσEAσEB σEB
2 ρEBCσEBσEC

ρEACσEAσEC ρEBCσEBσEC σEC2

0@ 1A
with σEA

2 , σEB
2 and σEC

2 indicating environmental variances
of three traits. Environmental variance of trait A was
given by σEA

2 = (1/hA
2 -1)σGA

2 with its heritability hA
2 and

genetic variance σGA
2 , which was variance of TBV of trait

A, and those of traits B and C were obtained similarly.
The environmental effects were added to TBVs which
were given by the sum of QTL effects to determine
phenotypic values of three traits for individuals in the
1001st generation.
In Data I, 100 replicated datasets were simulated while

Data II consisted of 20 replicated datasets due to the larger
number of SNPs. Each of replicated datasets included
records of phenotypes of three traits and genotypes of
SNPs for the training population (1001st generation) and
only SNP genotypes for the test population (1002nd gen-
eration). To simulate the situation of missing phenotypes,
we generated additional datasets by deleting the pheno-
typic records of some traits for some individuals in the
100 replicated training datasets of Data I. These 100 repli-
cated datasets were referred to as Data III, where the
phenotypic records of traits A, B and C were respectively
deleted for individuals of i = 801–1000, individuals of
i = 1-500 and individuals of i = 201-700 in 1000 individuals
(i = 1-1000) of the 1001st generation of Data I. Therefore,
in Data III, the prediction model for GBVs was con-
structed with a training dataset consisting of the pheno-
types of 800, 500 and 500 individuals for traits A, B and C,
respectively, where only 100 individuals (i = 701-800) had
phenotypic records of all three traits, and 1000 individuals
in the 1002nd generation were predicted for GBV based
on the genotypes of 1010 markers. The setting of non-
zero environmental correlations, i.e., ρEAB = 0.1, ρEAC = 0.2
and ρEBC = 0.3, was adopted here to assess the benefit from
the estimation process of missing phenotypes implemented
in multi-trait analyses for the prediction accuracy, where
the information of environmental covariance between
observed and missing phenotypes was utilized as in (18).
Each replicated dataset in Data I, Data II and Data III

was analyzed using the proposed methods for multiple
traits, MCBayes and varBayes, to construct the GBV
prediction model in the1001st generation and investigate
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rTBV,pGBV and bTBV, pGBV for each trait in the 1002nd
generation. For a comparison with conventional single-
trait GBV prediction, the same datasets were also ana-
lyzed with the single-trait setting of MCBayes where
three traits were separately treated without considering
the correlation structure between traits.
We conducted cross-validation as well to evaluate the

prediction performance within a population in the 1001st
generation without the 1002nd generation since the techni-
ques of cross-validation have commonly been used for
evaluation of the accuracy in the studies of genomic selec-
tion with the actual datasets of animals [24-26] and plants
[27-29], where the prediction accuracy of the model for the
unobserved future samples was of concern. We applied 10-
fold cross-validation. In brief, we randomly split a popula-
tion of 1000 individuals in the 1001st generation into ten
subpopulations with each size 100. By using a single subpo-
pulation used as a test set and the remaining nine subpopu-
lations as a training set to construct prediction model, the
prediction accuracy and bias were assessed for the test set.
This process was repeated ten times until all single subpo-
pulations were used as test sets exactly once. We averaged
the prediction accuracy and bias over ten repetitions to
evaluate the prediction performance in each dataset. Be-
cause of much computational burden with MCMC analysis
for repeated model constructions in cross-validation, evalu-
ation with 10-fold cross-validation was carried out for Data
I only, where mean of the prediction accuracies and biases
in 100 datasets were obtained as rTBV,pGBV and bTBV, pGBV
for each trait and for each prediction method. In the
process of cross-validation, we also investigated the correl-
ation between predicted GBV and the phenotypic value,
ry,pGBV, in place of TBV, and regression of predicted GBV
on phenotypic value, by, pGBV, for each trait.
Table 1 Accuracy and bias of predicted GBVs in Data I

Method

MCBayes π = 0 rTBV,pGBV

bTBV,pGBV

0 < π <1 rTBV,pGBV

bTBV,pGBV

varBayes π = 0 rTBV,pGBV

bTBV,pGBV

0 < π <1 rTBV,pGBV

bTBV,pGBV

single-trait π =0 rTBV,pGBV

(MCBayes) bTBV,pGBV

0 < π <1 rTBV,pGBV

bTBV,pGBV

Averages and standard errors based on 100 replicates of simulated data are listed f
probability that a SNP has zero effect, π, we considered two settings, in which π wa
over 0 < π <1 and inferred from the data.
Two settings for the prior probability that a SNP has
zero effect, π, were adopted in model construction, i.e., π
was fixed at 0 or π was variable over the range 0 < π <1
and inferred from the data. The values of hyperparameter
ν, degree of freedom of prior inverse Wishart distribution
of Σgl, were set to 5.0 and 3.2 corresponding to π =0 and
0 < π <1 after preliminary analyses to evaluate the effects
of the values of ν on prediction accuracy over 3 < ν <6
although the accuracy was little affected by the values of ν.
In the MCMC iteration of MCBayes, we repeated 11000

cycles including a burn-in period of the first 1000 cycles.
The values of parameters were sampled every 10 cycles to
obtain the posterior means that were used to determine a
prediction model for each generated dataset. In the method

of varBayes, we adopted the criterion j θ̂�� θ̂ 2=j j θ̂� 2j < 10-8

for convergence in numerical iteration for computing the

expectations of parameters, where θ̂
�
and θ̂ are the current

and previous value of the expectations of parameters. When
this criterion was satisfied, the computational procedure
with variational approximation was regarded as converged.
Results
We evaluated the accuracy and bias of the predicted
GBVs, rTBV,pGBV and bTBV, pGBV, obtained by the pro-
posed methods for genomic selection of multiple traits
including MCBayes and varBayes in 100 simulated data-
sets of Data I and Data III and in 20 datasets of Data II
in comparison with the prediction accuracy with single-
trait MCBayes analysis. The means of accuracies and
biases of prediction evaluated using a test population in
the 1002nd generation are summarized in Table 1,
Table 2 and Table 3 for Data I, Data II and Data III, re-
spectively. In all of datasets, MCBayes provided higher
Trait A Trait B Trait C

0.788 ± 0.051 0.581 ± 0.103 0.453 ± 0.090

0.994 ± 0.038 1.048 ± 0.264 1.00 ± 0.370

0.753 ± 0.060 0.580 ± 0.117 0.364 ± 0.137

1.070 ± 0.064 1.149 ± 0.340 1.016 ± 0.364

0.754 ± 0.061 0.570 ± 0.113 0.383 ± 0.117

1.054 ± 0.051 0.994 ± 0.233 0.899 ± 0.247

0.716 ± 0.070 0.548 ± 0.122 0.347 ± 0.131

0.894 ± 0.054 0.834 ± 0.186 0.636 ± 0.202

0.783 ± 0.051 0.469 ± 0.083 0.455 ± 0.076

0.978 ± 0.037 1.020 ± 0.301 0.970 ± 0.259

0.778 ± 0.050 0.491 ± 0.114 0.483 ± 0.101

1.089 ± 0.054 1.110 ± 0.634 1.061 ± 0.338

or prediction accuracy, rpGBV,TBV, and bias, bpGBV,TBV, of each trait. For the prior
s fixed at 0, meaning the inclusion of all SNPs in the model, and π was varied



Table 2 Accuracy and bias of predicted GBVs in Data II

Method Trait A Trait B Trait C

MCBayes π = 0 rTBV,pGBV 0.902 ± 0.032 0.706 ± 0.103 0.519 ± 0.097

bTBV,pGBV 0.998 ± 0.034 0.902 ± 0.111 0.796 ± 0.179

0 < π <1 rTBV,pGBV 0.868 ± 0.047 0.731 ± 0.120 0.401 ± 0.182

bTBV,pGBV 1.092 ± 0.093 1.189 ± 0.199 1.198 ± 0.553

varBayes π = 0 rTBV,pGBV 0.859 ± 0.049 0.656 ± 0.110 0.438 ± 0.074

bTBV,pGBV 1.059 ± 0.065 0.799 ± 0.105 0.724 ± 0.111

0 < π <1 rTBV,pGBV 0.838 ± 0.061 0.678 ± 0.140 0.330 ± 0.157

bTBV,pGBV 0.983 ± 0.034 0.851 ± 0.138 0.562 ± 0.155

single-trait π =0 rTBV,pGBV 0.884 ± 0.039 0.485 ± 0.086 0.493 ± 0.089

(MCBayes) bTBV,pGBV 0.974 ± 0.035 0.766 ± 0.113 0.766 ± 0.113

0 < π <1 rTBV,pGBV 0.843 ± 0.044 0.597 ± 0.120 0.601 ± 0.109

bTBV,pGBV 1.562 ± 0.261 1.787 ± 0.431 1.832 ± 0.565

Averages and standard errors based on 20 replicates of simulated data are listed for prediction accuracy, rpGBV,TBV, and bias, bpGBV,TBV, of each trait. For the settings
of the prior probability that a SNP has zero effect, π, see Table 1.
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prediction accuracy than varBayes in multi-trait analysis
(Tables 1, 2 and 3). In Data I, rTBV,pGBV obtained with
multi-trait MCBayes analysis was 0.788 (0.051), 0.581
(0.103) and 0.453 (0.090) for traits A, B and C, respect-
ively, when π was fixed at 0, where standard errors were
given in parenthesis here and hereafter, while that was
0.753 (0.060), 0.580 (0.117) and 0.364 (0.137) when π
was varied and inferred. In Data II with the number of
SNPs increased to 10100, rTBV,pGBV with multi-trait
MCBayes analysis was higher at 0.902 (0.032), 0.706
(0.103) and 0.519 (0.097) for traits A, B and C, respect-
ively, when π was fixed at 0 while that was 0.868 (0.047),
0.731 (0.120) and 0.401 (0.182) when π was inferred.
With multi-trait varBayes analysis, rTBV,pGBV was 0.754
(0.061), 0.570 (0.113) and 0.383 (0.117) for traits A, B
and C with π =0 and that was 0.716 (0.070), 0.548
Table 3 Accuracy and bias of predicted GBVs in Data III

Method T

MCBayes π = 0 rTBV,pGBV

bTBV,pGBV

0 < π <1 rTBV,pGBV

bTBV,pGBV

varBayes π = 0 rTBV,pGBV 0

bTBV,pGBV

0 < π <1 rTBV,pGBV

bTBV,pGBV

single-trait π =0 rTBV,pGBV

(MCBayes) bTBV,pGBV

0 < π <1 rTBV,pGBV

bTBV,pGBV

Averages and standard errors based on 100 replicates of simulated data are listed f
settings of prior probability that a SNP has zero effect, π, see Table 1.
(0.122) and 0.347 (0.131) with π variable in Data I while
that was 0.859 (0.049) , 0.656 (0.110) and 0.438 (0.074)
with π =0 and 0.838 (0.061) , 0.678 (0.140) and 0.330
(0.157) with π variable in Data II. The prediction with
multi-trait MCBayes was almost unbiased in Data I,
where bTBV,pGBV was near 1, but was biased in Data II
for traits B and C (Tables 1 and 2). The analysis with
varBayes showed greater bias than with MCBayes.
In single-trait analysis where MCBayes was applied for a

single-trait model, rTBV,pGBV was comparable with that of
multi-trait analysis for high-heritability trait A while it was
significantly decreased for low-heritability trait B which
was highly correlated with trait A (Table 1 and Table 2).
For trait C which had same heritability as trait B but was
genetically independent of trait A (ρGAC = 0.0), multi-trait
MCBayes analysis gave the accuracy comparable to single-
rait A Trait B Trait C

0.766 ± 0.058 0.500 ± 0.127 0.322 ± 0.082

0.977 ± 0.048 0.998 ± 0.356 0.967 ± 0.773

0.723 ± 0.069 0.503 ± 0.141 0.202 ± 0.119

1.065 ± 0.076 1.195 ± 0.530 0.799 ± 0.523

.726 ± 0.072 0.447 ± 0.131 0.261 ± 0.134

0.984 ± 0.052 0.582 ± 0.241 0.383 ± 0.181

0.679 ± 0.081 0.387 ± 0.115 0.228 ± 0.112

0.840 ± 0.068 0.389 ± 0.132 0.240 ± 0.110

0.760 ± 0.058 0.345 ± 0.070 0.336 ± 0.068

0.965 ± 0.047 0.931 ± 0.368 0.969 ± 0.510

0.758 ± 0.057 0.362 ± 0.105 0.354 ± 0.101

1.086 ± 0.068 1.455 ± 1.401 1.251 ± 1.310

or prediction accuracy, rpGBV,TBV, and bias, bpGBV,TBV, of each trait. For the
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trait MCBayes analysis when π =0 while, when π was var-
ied and inferred, single-trait analysis showed considerably
higher accuracy than multi-trait MCBayes and varBayes
analyses as shown in Table 1 and Table 2. The prediction
with single-trait analysis was almost unbiased In Data I,
but that was likely to be biased in Data II with bTBV,pGBV
much deviated from 1 especially when π was varied and
inferred.
In Data III with missing phenotypes, which was derived

from Data I by removing some phenotypic records, rTBV,
pGBV was decreased for all traits in all methods due to the
smaller sample size in comparison with Data I (Table 3).
The rate of decrease in rTBV,pGBV was greater for traits B
and C than A as the greater reduction of the sample size
was made in B and C. Multi-trait MCBayes analysis pro-
vided higher prediction accuracy than multi-trait varBayes
analysis for all traits except for trait C withπ varied and in-
ferred. For trait B, multi-trait analysis showed higher pre-
diction accuracy than single-trait analysis, but gave less
accurate prediction for trait C. For the bias of predicted
Table 4 Accuracy and bias of predicted GBVs evaluated with

Method

MCBayes π = 0 rTBV,pGBV

bTBV,pGBV

ry,pGBV

by,pGBV

0 < π <1 rTBV,pGBV

bTBV,pGBV

ry,pGBV

by,pGBV

varBayes π = 0 rTBV,pGBV

bTBV,pGBV

ry,pGBV

by,pGBV

0 < π <1 rTBV,pGBV

bTBV,pGBV

ry,pGBV

by,pGBV

single-trait π = 0 rTBV,pGBV

(MCBayes) bTBV,pGBV

ry,pGBV

by,pGBV

0 < π <1 rTBV,pGBV

bTBV,pGBV

ry,pGBV

by,pGBV

Averages and standard errors evaluated with 10- fold cross-validation are listed bas
accuracy, rpGBV,TBV, and bias, bpGBV,TBV, as well as correlation between phenotypic va
predicted GBV, by,pGBV , of each trait. For the settings of prior probability that a SNP
GBV, bTBV, pGBV, the MCBayes analysis with π =0 was
almost unbiased for both multi-trait and single-trait
analyses, where bTBV, pGBV ranged 0.931 to 0.998, although
the standard error of bTBV, pGBV was increased for
low-heritability traits B and C, for which the MCBayes
analyses with π varied and varBayes showed much biased
prediction.
We listed rTBV, pGBV and bTBV, pGBV obtained by cross-

validation conducted in a population of the 1001st gener-
ation of Data I as well as ry,pGBV and by,pGBV, correlation
between predicted GBV and phenotype and regression of
phenotype on predicted GBV, in Table 4. The prediction
accuracy evaluated with cross-validation was considerably
higher than that evaluated with a test population in the
next generation, with the prediction bias being similarly
for both evaluated with cross-validation and use of a test
population. The relative merits in performance of predic-
tion between the methods were also similar for both eva-
luations. It was shown in Table 4 that the relational
expression, rTBV,pGBV = ry,pGBV/h [30], held with h being a
cross-validation in Data I

Trait A Trait B Trait C

0.832 ± 0.039 0.611 ± 0.095 0.501 ± 0.083

1.016 ± 0.022 1.072 ± 0.231 1.052 ± 0.341

0.741 ± 0.037 0.191 ± 0.045 0.160 ± 0.050

1.013 ± 0.015 1.062 ± 0.125 1.039 ± 0.130

0.791 ± 0.048 0.603 ± 0.112 0.390 ± 0.127

1.132 ± 0.064 1.210 ± 0.303 1.180 ± 0.379

0.705 ± 0.045 0.191 ± 0.046 0.121 ± 0.060

1.131 ± 0.065 1.210 ± 0.170 1.119 ± 0.373

0.813 ± 0.049 0.620 ± 0.108 0.470 ± 0.118

1.080 ± 0.048 0.994 ± 0.157 0.963 ± 0.201

0.722 ± 0.047 0.187 ± 0.056 0.143 ± 0.058

1.072 ± 0.049 0.945 ± 0.195 0.931 ± 0.289

0.779 ± 0.059 0.593 ± 0.111 0.423 ± 0.123

0.944 ± 0.040 0.816 ± 0.139 0.662 ± 0.153

0.690 ± 0.056 0.180 ± 0.055 0.125 ± 0.062

0.935 ± 0.039 0.787 ± 0.166 0.626 ± 0.255

0.826 ± 0.040 0.515 ± 0.073 0.505 ± 0.074

0.997 ± 0.023 1.073 ± 0.270 1.030 ± 0.303

0.735 ± 0.039 0.159 ± 0.045 0.162 ± 0.044

0.993 ± 0.012 1.071 ± 0.162 1.055 ± 0.222

0.821 ± 0.039 0.531 ± 0.099 0.522 ± 0.094

1.131 ± 0.046 1.265 ± 0.555 1.192 ± 0.405

0.731 ± 0.037 0.164 ± 0.051 0.164 ± 0.048

1.127 ± 0.043 1.249 ± 0.482 1.205 ± 0.457

ed on 100 replicates of simulated data in Data I are listed for prediction
lue and predicted GBV, ry,pGBV, and regression of phenotypic value on
has zero effect, π, see Table 1.
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square-root of heritability and that bTBV,pGBV was almost
the same as by,pGBV.
Correlation coefficients between predicted GBVs of trait

A, B and C were listed in Table 5 for multi-trait MCBayes
and varBayes analyses and single-trait MCBayes analysis
in all datasets as well as the correlation coefficients be-
tween simulated breeding values (TBVs) of three traits in
the 1002nd generation. Although the correlation of simu-
lated breeding values between traits A and B was expected
to be 0.72, the actual correlations obtained were biased
upwards: 0.755 (0.133) and 0.735 (0.166) in Data I (III)
and Data II, respectively. Multi-trait analysis could better
estimate these correlations compared to single-trait ana-
lysis as seen in the correlation between predicted GBVs
between traits A and B. For trait C which was genetically
independent of A and B, the correlations between pre-
dicted GBVs for traits A and C and traits B and C did not
significantly deviate from zero (Table 5).

Discussion
In this study, we proposed Bayesian methods for simul-
taneously predicting GBVs for multiple traits, where two
computational procedures were devised using MCMC it-
eration and variational approximation, referred to as
MCBayes and varBayes, respectively. A Bayesian model
Table 5 Correlations between predicted GBVs for trait A, B an

Data Method A-B (

I MCBayes π = 0 0.588 ±

0 < π <1 0.699 ±

varBayes π = 0 0.688 ±

0 < π <1 0.644 ±

Single-trait (MCBayes) π = 0 0.446 ±

0 < π <1 0.452 ±

Simulated BV 0.755 ±

II MCBayes π = 0 0.606 ±

0 < π <1 0.721 ±

varBayes π = 0 0.614 ±

0 < π <1 0.671 ±

Single-trait (MCBayes) π = 0 0.394 ±

0 < π <1 0.479 ±

Simulated BV 0.735 ±

III MCBayes π = 0 0.530 ±

0 < π <1 0.662 ±

varBayes π = 0 0.555 ±

0 < π <1 0.455 ±

Single-trait (MCBayes) π = 0 0.315 ±

0 < π <1 0.323 ±

Averages and standard errors are listed based on 100 replicates of simulated data i
simulated breeding values, where expected correlations are 0.72, 0.0 and 0.0 for tra
between simulated breeding values are the same as those in Data I.
for simultaneously analyzing multiple traits was obtained
by extending a Bayesian model for single-trait genomic
selection proposed by [2] and [4] to multi-trait case. We
introduced the prior probability that a SNP has zero ef-
fect, π, and accordingly, MCBayes with π fixed at 0,
meaning that all SNPs are included in a model as covari-
ates, constructs a model for multi-trait GBV prediction
in a similar manner to BayesD. On the other hand, the
MCMC procedure of MCBayes with π variable and in-
ferred from the data is not exactly the same as that of
BayesDπ, where a prior distribution of the variance and
covariance matrix of SNP effects, Σgl, is assumed to be
independent of whether the SNP is included (γl = 1) or
excluded(γl = 0) from the model in MCBayes, as seen in
(4), while it is dependent onγl and takes different forms
for γl = 1 and γl = 0 in BayesDπ. This modification allows
MCMC iteration of MCBayes to be performed with only
Gibbs sampling.
In the simultaneous analysis of multiple traits for con-

structing a GBV prediction model, the computational
burden greatly increases depending on the number of
analyzed traits in comparison with single-trait analysis.
We developed a variational approximation procedure,
varBayes, for MCBayes to reduce the computational
time for multi-trait analysis. In varBayes, the joint
d C

0.72) A-C (0.0) B-C (0.0)

0.181 −0.071 ± 0.175 −0.091 ± 0.199

0.188 −0.057 ± 0.250 −0.076 ± 0.301

0.184 −0.100 ± 0.241 −0.077 ± 0.279

0.169 −0.053 ± 0.192 −0.058 ± 0.247

0.132 0.058 ± 0.096 0.096 ± 0.121

0.183 0.035 ± 0.090 0.060 ± 0.111

0.133 0.003 ± 0.054 0.004 ± 0.060

0.197 −0.129 ± 0.113 −0.071 ± 0.140

0.222 −0.161 ± 0.149 −0.128 ± 0.179

0.206 −0.176 ± 0.135 −0.090 ± 0.179

0.210 −0.153 ± 0.168 −0.047 ± 0.193

0.115 0.020 ± 0.075 0.072 ± 0.111

0.206 −0.018 ± 0.084 0.022 ± 0.094

0.166 −0.031 ± 0.054 −0.012 ± 0.041

0.195 −0.032 ± 0.223 −0.037 ± 0.238

0.208 −0.014 ± 0.326 −0.013 ± 0.369

0.194 −0.028 ± 0.218 −0.023 ± 0.248

0.167 −0.001 ± 0.158 0.021 ± 0.190

0.106 0.029 ± 0.105 0.080 ± 0.134

0.138 0.024 ± 0.097 0.057 ± 0.130

n Data I and Data III and 20 replicates in Data II. Simulated BV indicates
it-pairs A-B, A-C and B-C as listed in parentheses. In Data III, correlations
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posterior distribution of parameters was approximated
by a factorized function, each component of which
approximated marginal posterior distribution of each
parameter and was referred to as a variational posterior.
Variational posteriors were shown to be well-known dis-
tribution functions such as normal or inverse Wishart
that could be derived by simple non-MCMC based nu-
merical iteration.
In genomic selection, it is important to construct a

model that enables accurate prediction for GVBs. There-
fore, precise point estimation of the model parameters is
more relevant rather than the construction of their poster-
ior distributions. Accordingly, the evaluation of loss of
prediction accuracy with varBayes in comparison with
MCBayes would be suitable for the evaluation of approxi-
mation accuracy of varBayes. Using simulation experi-
ments, we investigated the performance of the prediction
model constructed with multi-trait analysis compared with
single-trait analysis as well as the model constructed using
variational approximation. Moreover, the performance of
multi-trait analysis in the case of missing phenotypic
records commonly occurring in the treatment of the ac-
tual data of multiple traits were evaluated based on the
results of simulations. These points are discussed below
including the computational time and the possible exten-
sion of prediction model considering polygenic effects.

Increase in accuracy for GBV prediction with multi-trait
analysis
We evaluated the increase in prediction accuracy with
multi-trait analysis in comparison with single-trait ana-
lysis using the datasets without missing phenotypes,
Data I and Data II (Table 1 and Table 2). For trait A hav-
ing heritability 0.8, multi-trait analysis and single-trait
analysis made no difference in the prediction accuracy
with MCBayes. Therefore, the advantage of multi-trait
analysis over single-trait analysis in predicting GBV is
negligible for high-heritability traits. However, we antici-
pate the increase in accuracy with multi-trait analysis for
low-heritability traits utilizing correlations with high-
heritability traits. Actually, for low-heritability trait B
with heritability 0.1, which has highly correlated with
trait A (ρGAB = 0.72), prediction accuracy was increased
with multi-trait analysis. As trait C was not genetically
correlated with trait A, the accuracy of predicting the
GBV of C was not improved with multi-trait MCBayes
analysis. The accuracy of predicted GBV of trait B was
also increased with multi-trait varBayes analysis in Data
I and Data II in comparison with single-trait MCBayes
analysis while the prediction accuracy of trait C was
lower with multi-trait varBayes analysis (Table 1 and
Table 2). The genetic correlations between traits A and
B were better estimated with predicted GBVs in multi-
trait analysis than in single-trait analysis as shown in
Table 5. Therefore, it can be concluded that low-heritability
traits (heritability around 0.1) are better predicted for GBVs
utilizing their correlations with high-heritability traits
(heritability around 0.8), if any, with multi-trait analysis.
However, the benefit of multi-trait analysis would be subtle
for high-heritability traits. A similar finding was also
reported in [13]. For uncorrelated low-heritability traits
such as trait C, it is likely that the prediction using multi-
trait analysis with π varied and inferred is less effective in
comparison with single-trait analysis. Therefore, multi-trait
analysis with π fixed at 0, which allows highly accurate pre-
diction for correlated traits while retaining prediction
accuracy comparable with single-trait analysis for uncorre-
lated low-heritability traits, would be a suitable method of
choice for multi-trait genomic selection.

Approximation accuracy of variational procedure for
MCMC estimation
Generally, constructing a GBV prediction model with
MCMC estimation based on genotypic records for tens
of thousands of SNPs and phenotypes for hundreds of
individuals requires considerable computational time
even for single-trait cases. Much more computational
burden would be imposed in constructing a model in
multi-trait analysis, depending on the number of traits
of interest. Therefore, we proposed a computationally
cost-effective method, varBayes, approximating MCMC
based method, MCBayes, using a variational approxima-
tion procedure.
Simulation experiments showed that the prediction ac-

curacy was lower with varBayes than with MCBayes in
multi-trait analysis but the rate of loss of accuracy was not
remarkable and was less than 10 percent for traits A and
B under the same setting of π while it was greater for C
(Table 1 and Table 2). The prediction accuracy for trait B
correlated with high-heritability trait A was still higher
with multi-trait varBayes analysis than with single-trait
MCBayes analysis indicating that varBayes could well
utilize the information on the correlation structure in
multiple traits. Actually, multi-trait varBayes analysis
could better capture the genetic correlation between A
and B than single-trait MCbayes analysis (Table 5).
The computational time was greatly reduced for

multi-trait varBayes analysis in comparison with multi-
trait MCBayes analysis. We carried out all computations
using a Fortran program written to implement multiple-
trait analysis on a computer having two CPUs each with
a quad-core processor (Intel Xeon 2.4GHz). In Data I,
where 100 replicates of datasets each including geno-
types of 1010 SNPs for 1000 individuals were simulated,
varBayes took only 12 minutes with π fixed and 22 min-
utes with π varied for 100 times of model constructions
while the computational time for MCBayes was respect-
ively 440 and 435 minutes. Therefore, the average
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computational time required to construct a prediction
model for each dataset in Data I was less than 15 sec-
onds for varBayes and was more than 4 minutes for
MCBayes. For a larger data, Data II, that included 20
replicates of datasets each consisting of genotypes of
10100 SNPs for 1000 individuals, the computational
time was 21 and 19 minutes for varBayes with π fixed
and π varied, respectively, and the time for MCBayes
were increased to more than 12 hours with the average
computational times for each model construction being
about 1 minute for varBayes and more than 30 minutes
for MCBayes. In cross-validation process in which a
total of one thousand repetitions of model constructions
were performed in Data I, the computational time was
about 3days with MCBayes while varBayes completed
the analysis within only 4 hours.
Taking computational time and prediction accuracy

into account, varBayes is considered a useful method for
multi-trait genomic selection, which can rapidly con-
struct a prediction model that is less accurate than that
with the MCMC-based method for multi-trait analysis,
but is more accurate than that with single-trait analysis
for correlated traits. The usefulness of varBayes would
be more remarkable for simultaneous prediction of
GBVs of a large number of traits based on a huge num-
ber of SNPs where the application of an MCMC-based
method might be prohibited.

Multi-trait analysis of dataset with missing phenotypes
In Data III, we simulated the datasets under the same
condition as Data I except that some phenotypes were
assumed to be unobserved. In short, we assumed that
phenotypes of traits A, B and C were not available for
200, 500 and 500 individuals, respectively, in a total of
1000 individuals with only 100 individuals having the
phenotypes of all three traits. In multi-trait analysis,
missing phenotypes of individuals can be estimated with
their observed phenotypes of other traits using (18),
which indicates that residual effects of missing pheno-
types can be restored from those of observed pheno-
types. When the model fitting is successful for observed
phenotypes, the residual effects of the phenotypes are
well estimated by subtracting SNP effects and other
fixed effects from the phenotypic effects, and those of
missing phenotypes are suitably obtained by (18) utiliz-
ing the environmental correlation (covariance) between
observed and missing phenotypes. Therefore, by assum-
ing non-zero environmental correlation between traits
(ρEAB = 0.1, ρEAC = 0.2, ρEBC = 0.3), the loss of prediction
accuracy caused by missing phenotypes was anticipated
to be less with multi-trait analysis than with single-trait
analysis. We expected that, in Data III, the prediction ac-
curacy of trait C, environmentally correlated with trait A
(ρEAC = 0.2), was maintained higher in the presence of
missing records for some phenotypes using multi-trait
analysis in comparison with single-trait analysis. How-
ever, the rate of loss for the prediction accuracy for trait
C was similar between multi-trait and single-trait ana-
lyses as seen in the comparison of the prediction accur-
acies between Data I and Data III (Tables 1 and 3). The
utility of implementation of (18) for imputing missing
phenotypes in the process of multi-trait model construc-
tion remains unclear in the settings of simulation
adopted here.

Model extension by including polygenic effects
We can modify the Bayesian model (1) by including
polygenic effects as follows;

yi ¼ Xibþ
XN
l¼1

γluilgl þ vi þ ei; ð19Þ

where vi is a vector of polygenic effects for multiple
traits and assumed to follow a multivariate normal dis-
tribution, vi ~N(0, Σv) with Σv being a variance-
covariance matrix of polygenic effects. The polygenic
effects for all individuals of a training population and a
test population are collectively denoted by V, then the
variance-covariance matrix of V can be expressed as
A ⊗ Σv, where A is additive genetic relationship matrix
for analyzed individuals, computed from the information
of pedigree or markers. When the low-density markers
are used for the analysis, a considerable portion of gen-
etic effects could not be captured by markers. Accord-
ingly, if pedigree information is available, inclusion of
polygenic effects estimated based on pedigree is benefi-
cial in predicting breeding values for genomic selection.
The revised model (19) can be similarly treated by
MCBayes and varBayes as the model (1), where estima-
tion steps for additional covariates and parameters, V
and Σv, can be easily implemented in the procedures of
Bayesian multi-trait model construction using MCMC
iteration and variational approximation. When no pedi-
gree information is available, A is computed from mar-
ker information as a genomic relationship matrix.
However, the model (19) includes all available markers
as covariates, resulting in redundantly using the same
marker information in the model fitting. In the availabil-
ity of high-density SNP markers, which is the case for
some species of animals and plants currently, the genetic
relationships between individuals can be well captured
by markers themselves in the multi-locus model (1), the
benefit from the inclusion of the polygenic effects in the
model would be subtle [31].

Conclusion
In this study, we described a statistical model for Bayesian
simultaneous prediction of GBVs in genomic selection
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targeting multiple traits and devised an MCMC-based
method and a computationally cost-effective method util-
izing the variational approximation procedure, referred to
as MCBayes and varBayes, respectively, to estimate para-
meters included in the model. The results of simulation
experiments showed that the multi-trait analysis that
could utilize the correlation structure between traits
allowed more accurate prediction of GBVs for correlated
traits compared to single-trait analysis that treated each
trait separately, where, for low-heritability traits correlated
with high-heritability traits, the prediction accuracy for
GBVs was remarkably improved with multi-trait analysis.
Although the prediction accuracy with varBayes was lower
than that with MCBayes in multi-trait analysis, the rate of
loss in accuracy was moderate and the accuracy for corre-
lated low-heritability traits was still higher with varBayes
analysis compared to single-trait analysis. Considering the
benefit of greatly reduced computational time, varBayes
was considered to be a practical method for predicting
GBVs in multi-trait genomic selection.
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