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Abstract

Motivation: Within Flux Balance Analysis, the investigation of complex subtasks, such as finding the optimal
perturbation of the network or finding an optimal combination of drugs, often requires to set up a bilevel
optimization problem. In order to keep the linearity and convexity of these nested optimization problems, an ON/OFF
description of the effect of the perturbation (i.e. Boolean variable) is normally used. This restriction may not be realistic
when one wants, for instance, to describe the partial inhibition of a reaction induced by a drug.

Results: In this paper we present a formulation of the bilevel optimization which overcomes the oversimplified
ON/OFF modeling while preserving the linear nature of the problem. A case study is considered: the search of the
best multi-drug treatment which modulates an objective reaction and has the minimal perturbation on the whole
network. The drug inhibition is described and modulated through a convex combination of a fixed number of Boolean
variables. The results obtained from the application of the algorithm to the core metabolism of E.coli highlight the
possibility of finding a broader spectrum of drug combinations compared to a simple ON/OFF modeling.

Conclusions: The method we have presented is capable of treating partial inhibition inside a bilevel optimization,
without loosing the linearity property, and with reasonable computational performances also on large metabolic
networks. The more fine-graded representation of the perturbation allows to enlarge the repertoire of synergistic
combination of drugs for tasks such as selective perturbation of cellular metabolism. This may encourage the use of
the approach also for other cases in which a more realistic modeling is required.

Background

In recent years, genome-scale metabolic networks have
represented an important paradigm of systems biology,
well describing how interesting (and relevant) biological
features can be deduced in spite of the complexity of the
model [1-4]. Thanks to the use of genomic techniques,
metabolic networks have been reconstructed for many
organisms, ranging from small bacteria up to the human
cells. In parallel, the development of quantitative descrip-
tions of these large and complex systems based on simple
computational framework such as Flux Balance Analysis
(FBA) [5,6] has increased both their characterization
[7-9] and the spectrum of applications. Two important
examples are (i) strain improvement [10,11], i.e. the
identification of the best knockout or gene manipulation
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maximizing the biosynthesis of a key metabolite, (ii)
support to drug discovery through the identification of
new inhibition targets [12-15] or of new drug therapies
for various medical purposes [16,17]. All the studies just
mentioned are based on the FBA formalism.

FBA is a linear constraint-based framework for stoi-
chiometric models of metabolic networks; the network is
described by the stoichiometric matrix S = (s;;), where
s;j represents the stoichiometric coefficient of the
i-th metabolite in the j-th reaction (with i = 1,...,m,
j = 1,...,r), and by the reaction fluxes denoted by the
vector v € R” (including chemical transformations, trans-
ports, nutrients supply and waste disposal processes).
Because of the much faster dynamics compared to gene
regulation, metabolic processes are assumed to be at
steady state, which corresponds to imposing

Sv=0 (1)

(this holds for all the metabolites since the vector v
includes all the processes). Thermodynamical constraints
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and availability of nutrients add further constraints, such
as finite lower (L;) and upper-bounds (U;) on the fluxes:

Li<vi<U; Vi=1,...,r. (2)
The constraints (1) and (2) generate a convex and bounded
set W C R’ to which the vector v has to belong. To
obtain the reaction fluxes (a point in W) which describe
the metabolic state of the organism, one has to perform
the maximization of a function ®(v) (or equivalently the
minimization of —®(v)). The choice of ®(v) depends
on the context and on the application: common exam-
ples are biomass production [18], ATP production [2] and
minimal metabolic adjustment [19].

When applications like strain engineering or drug target
identification are treated with this formalism, an addi-
tional function, W [v(h)], is normally introduced, where
h are the variables we can control and which describe,
for example, the knockouts or the drug inhibitions induc-
ing a reduction of the set W to W(h) (see later for its
more precise definition). The corresponding secondary
optimization problem can consist, for instance, of the
maximization of the production of a certain metabolite
[10] or of the maximal inhibition of a target reaction [16].
The problem becomes therefore a bilevel optimization
[20]:

W [v(h)].

] €)

where arg min, ., f(x) stands for the set of x for which the
function f attains its minimum value in Q (or equivalently,
its maximum value for “arg max”). Therefore, (3) says that
the output of the bilevel optimization is the vector h such
that the corresponding vector v(h), which minimizes ® on
W (h), maximizes the function ¥. The reformulation of a
bilevel optimization as a single optimization is commonly
obtained through duality theory [21,22]. When perform-
ing this reformulation, in order to save the linear nature
of the optimization procedure, the variables h (the real
output of the algorithm) have to be Boolean, rather than
continuous [2,10,13]. While this approach is correct for
gene knock-out, in the case of drug treatment (where the
enzymes are inhibited by drug) or gene modification (on
which one changes the enzymes activity) it represents only
a rough approximation which may not constitute a real-
istic description of the biological effect. It is in fact more
plausible to assume that a drug acting on an enzyme leads
to a partial loss of functionality of the latter, and hence
to a partial inhibition of the corresponding reaction(s). In
order to treat the inhibition as a variable to be optimized
and to avoid the ON/OFF oversimplification it is neces-
sary to reformulate the bilevel optimization as a nonlinear
(nonconvex) single optimization problem [23] but this

arg max
h - v(h) € argmin ®(w)
) w e W(h)
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leads to a more complicated situation from a numerical
point of view.

Although a complete inhibition of a disease-causing tar-
get may not represent the right therapeutic solution (in
healthy cells, the level of each metabolite must be in
a finite range) and although expected to be a potential
strategy in a multi-target approach [24], partial inhibi-
tion has been considered only in a few computational
works; moreover, studies like [25,26] dealt with a small
part of the network, modeling the kinetic reactions explic-
itly and solving then numerically. The partial inhibition
then amounts, for instance, to a modulation of one or
more kinetic parameters. Because of the complexity of
the metabolic networks and because of the impossibil-
ity of knowing the kinetic parameters of all biochemical
reactions, this approach cannot be applied at a genome-
wide level. On the other hand, the authors of [27] consider
the whole network, but the (partial) inhibition is given as
initial fixed parameter of the model and only the effect
of the perturbation is quantified. A different approach
is presented in [28] in the context of the prediction of
new drug targets; these targets are identified though a
two-stages FBA (which differs from a bilevel formulation
because the two optimizations are not nested). However,
the potential targets obtained with this method must be
verified exhaustively, which may represent a problem for
networks with more than the 26 reactions of the human
hyperuricemia metabolic pathway considered in [28].

Therefore, the aim of the present paper is to describe a
novel algorithm which allows to provide a more realistic
description of the partial inhibition induced by the drugs
on large networks while still remaining within the frame-
work of Linear Programming (LP). In order to introduce
the algorithm, we refer to a realistic case where a bilevel
minimization is used. Namely we consider the search for
the optimal combination of drugs capable, through a syn-
ergistic effect, to inhibit (or enhance) an objective reaction
(i.e. a putative target for a disease) while inducing the min-
imal perturbation on the rest of the network. Indeed, the
selectivity of the therapy is one of the most important
aspects of any drug discovery project. Replacing a sin-
gle Boolean variable by a convex combination of a fixed
number of Boolean variables, we are able to model the
inhibition as any number belonging to a discretized rep-
resentation of the interval [0, 1]. This approach preserves
the linear nature of the final problem. Notice that the
method we propose can be extended to any bilevel opti-
mization which needs to deviate from the simple ON/OFF
description.

The paper is organized as follows. We first formalize our
example about drug combinations; then, within this case
study, we describe why Boolean variables are necessary
in the reformulation of a bilevel optimization problem
via the strong duality theorem of LP. The presentation of
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the basic idea of the proposed algorithm and the discus-
sion of its limits conclude the Methods Section. Results
and Discussion sections present and comment the out-
comes obtained on a benchmark application to the E.coli
core metabolism and to some other larger networks. Final
considerations are then reported in the Conclusion.

Methods
Optimal drug combination: a guiding example
In FBA the vector v of the metabolic fluxes is obtained
through the optimization of a certain function ®(v).
For unperturbed networks, the production of the macro-
molecular building blocks for the biomass (the growth
rate) is often maximized [18]: we denote by vt
(ut="untreated”; all symbols and variables are listed in
Table 1) the reaction fluxes obtained after this optimiza-
tion. This fluxes can be nonunique [29]: an analysis of the
case in which v** has degenerate values is reported in the
Additional file 1. In any case, throughout the paper these
unperturbed fluxes are considered as given parameters of
the problem. In the following all reactions are irreversible
(Li = 0,Yi = 1,...,r): indeed, by decomposing any
reversible reaction in a couple of irreversible reactions, we
can always assume that fluxes have non-negative values.
The guiding example we introduce here consists in the
search of the most selective combination of drugs: in par-
ticular, we suppose to have a metabolic network and a set
of drugs which inhibit some reactions of this network (the
set of targets of the k-th drug is indicated by Tx). We want
to modulate a certain reaction (for example rendering its
flux less than a given threshold) through a combination
of these drugs, inducing the minimal effect on the rest
of the network. In order to give a more clear presenta-
tion of the algorithm, we assume that a drug induces an
identical fractional inhibition on all its targets. Therefore,
the amount of inhibition by the k-th drug on its target
reaction i € T, can be modeled by the linear constraint

vi < U;(1 — hy), (4)

where U; is the upper-bound of the flux v; and where, for
modeling with partial inhibition, /i € [0, 1]. Through this
formalism we do not consider the allosteric interaction
between two (or more) drugs on the same enzyme: indeed,
our model simply takes the maximum inhibition over the
set of drugs which affect the enzyme of reaction i
v; < U;(1 — max hy).
k:ieTy

Then, the vector h € [0,1]? represents the drug treat-
ment, i.e. the inhibition due to the drugs: for example, for
d = 3, the vector h = [0.5, 0, 0.8] indicates that drug 2 is
not used (43 = 0) while drugs 1 and 3 are used at dosages
which cause respectively a 50% and 80% inhibition of their
targets (hence, in (4), the reduction of their upper-bounds
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to 50% and 20% in the original values). For each choice
of h these inhibitions reduce the set W (generated by the
constraints (1) and (2)) to a subset W (h):

W(h) ={v e W suchthat v; < U;(1 — hy),
Vk=1,...,d, Vie Tgh

The determination of the reaction fluxes v (h)
(tr="treated”) for the drug-treated network is obtained
through the MOMA problem (Minimization Of
Metabolic Adjustment) which has been shown to generate
reasonable and realistic results for perturbed metabolism
[4,19,30-32]. In order to apply the theory of linear pro-
gramming, we use the definition of MOMA in terms of
norm L! [33]. Then

vit(h) = argmin ||v — v"!||;.
ve W(h)

In the following the side effect of a drug treatment is quan-
tified in terms of the distance [|[v'(h) — v*!||; used in (5):
the greater the distance, the bigger the impact of the drugs
on the whole network.

The problem can be stated as follows:

(5)

Given:

e a metabolic network, which means a stoichiometric
matrix § € R™*" and the upper-bounds U € R” of
the reaction fluxes v;
the unperturbed fluxes v';
the set D of drugs together with their inhibition
targets {Ti}k=1,...|D|»

e the index (denoted by “mod”) of the objective
reaction whose flux (vinoq) must be modulated;

e athreshold T €[0,1) for the modulation constraint
0on Vmod;

we want to find the inhibition h € [0, 1) such that
Vi () < TV and such that it causes the minimal side
effect (i.e. the minimal distance |v* (h) —v*t||1 ). Of course,
a different definition of side effect as well as a different
constraint on v;rl od (Perhaps on its maximal value [17]) can
be used if needed by the problem.

According to (5), for a given set of drugs (i.e., for a given
inhibition vector h), we can calculate both v (h) (and then
check whether vif _(h) < 7v% ) and the value of the side

effect. Similarly to (3), the final formulation of the problem
is the following:

min v (h) — v*l;.
vi'(h) = argmin |lw— v
h: weW (h)
tr ut
Vmod(h) = Tvmod

(6)

The bilevel optimization (6) is a min-min linear program. The
inner problem adjusts the fluxes so as to achieve the minimal
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Table 1 Symbol, value range, meaning and type of all quantities used in the algorithm description
Network and drugs
Symbol Range Description Type
r N Number of reactions Parameter
m N Number of metabolites Parameter
d N Number of drugs Parameter
S RM*T Stoichiometric matrix of the network Parameter
v?t,. v Ry Reaction fluxes of the untreated network Parameter
v Ry Reaction fluxes after drug treatment h Variable
mod 1o r Index of the reaction which must be modulated Parameter
w - Set of feasible solutions for unperturbed network Parameter
W(h) - Set of feasible solutions for network perturbed by drug inhibition h Parameter(*)
D - Set of drugs (|D| = d) Parameter
Tk - Set of targets of drug k (k = 1,...,d) Parameter
Outer problem
Symbol Range Description Type
T ©,1) Threshold for the reaction that must be inhibited (vg]od < tvﬁﬁod) Parameter
> 1 Threshold for the reaction that must be activated (v} | > vt )
P No Precision parameter Parameter
hy, ..., hg [0,1 Drug inhibitions Variable
X1.0, X105+« Xdp {0,1} Drug-dosage variables Variable
b 1073 Correction against an “overselection” of drugs Parameter
Inner problem
Symbol Range Description Type
Vieee o, Ve R4 Reaction fluxes (primal problem and outer problem) Variable
Ly,.. . L Ry Lower-bounds for the reaction fluxes (of the primal problem) Parameter
Up,....Ur R4 Upper-bounds for the reaction fluxes (of the primal problem) Parameter
aiy,...,a Ry Absolute fluxes differences a; = |v; — v}“\ (primal problem) Variable
H1eee, m R Dual variables associated to the FBA steady state constraint Variable
Ao Ay Ry Dual variables associated to the unperturbed upper-bounds Variable
81,...,68¢ Ry Dual variables associated to the drug inhibition; t := Zf=1 T Variable
IR Ry Upper-bounds of the dual variables 8's Variable
o, .., 0 R4 Dual variables associated to the first absolute value inequalities Variable
Bi,....Br R4 Dual variables associated to the second absolute value inequalities Variable

(*): The set W(h) is considered as parameter in the sense that its dependence on the variables h is given.

metabolic adjustment, subject to the drug inhibitions
imposed by the outer problem and to the stoichiometric
constraints. The outer problem selects the combination of
drugs which has the minimum side effect and guarantees
a modulated flux lower than the desired threshold.

Since we are looking for a minimum, the absolute value
operation a; = |v;—v"|, necessary for the definition of the
L'-norm, is reformulated in terms of the following linear
inequalities:

a; = +(vi = vi");

a; > —(v; — V).

The sum of a; (i.e. Y f_qa; = Y ;g |vi — v*| = [V (h) —
v¥||1) defines both the objective function of the inner and
the outer problem. In fact in (6), at the optimal point of
the inner problem (at the minimum of ||w—v“||;) we have
that w = v (h), hence ||w — v%!||; is equal to the objective
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function of the outer problem. Notice that, despite of the
common objective function, the two minimization can-
not be merged in a single optimization because of the
additional constraint on vj,0q contained in the outer prob-
lem. Indeed, calling B the set defined by the inequality
v () < TV, the following relation holds:

arg min

{ arg min f(V)}mB#{veW(h)ﬂB

S
ve W(h) ‘

Then, the detailed equations of the bilevel optimization
(6) are the following:

Minimize ) ;_; a; “outer problem”
such that
[ Minimize Y ;_ja; “inner problem”"]
such that
21 Sijvj =0
vi<U;
vi < Ui(1 — hy)
+vi—a; < +v
L —vi—a; < —v" i
Vmod < TVix 4»

The strong duality theorem and the need of Boolean
variables

This bilevel optimization is commonly solved by applying
the strong duality theorem of LP [10,11,34] which states:
“Let A be a matrix, and let b and c be vectors. Then

max{ch such that Ax <b, x> 0}

= min{b”0 such that AT6 > ¢},

providing that both sets are not empty” [22], where x are
the primal variables and 6 are the dual variables (note that,
because of the use of the transpose of the matrix A in the
dual problem, there is a dual variable for each constraint
of the primal problem). Therefore, the application of this
theorem to the inner problem consists in appending a list
of constraints, AT6 > ¢, corresponding to the dual form
of the constraints of the inner problem and setting the
inner objective function equal to its dual ¢c/x = b78 (see
Additional file 2 for a depiction of the structure of the
matrix eventually obtained). Since, from the strong dual-
ity theorem, this equality holds only at the optimal points
of both primal and dual problems, the resulting set of con-
straints is equivalent to selecting only the solutions of the
inner problem.

This leads to the following single minimization, in
which Greek letters refer to dual variables (for clarity, we
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differentiate them according to the associated constraints
of the primal problem, as detailed in Table 1):

.
Minimize Zai such that (7a)
i=1

r

D Sijy=0 Vi=1,...,m (7b)
j=1

vi<lU VNi=1,...,r (7c)
vi<UQ—-hy) VYk=1,...,d, i€ Ty (7d)
vi—a <+ Vi=1,...,r (7e)
—vi—a; <V Vi=1,...,n (7f)

m
DoSipitA+ Y Sita—p=0 Vi=1...r (7g)
i=1 ijeT;

(X,‘-}—,ijl Vi=1,...,n; (7h)

Vmod = TV:;Od; (71)

r r
=Y a=) [ Us Y (=) + (i = BV |
i=1 i=1 ki€ Ty

(7))
where (7a) specifies the objective function of the outer
problem; equations (7b)—(7f) refer to the primal inner
problem (the constraints of the original inner problem);
(7g) and (7h) are the dual constraints; (7i) imposes the
outer problem contraint on vpeq and (7j) is the duality
theorem equality (namely c”x = b”6). However, this last
equation is no longer a linear constraint since it contains
the product between the outer problem variable /; and
the dual variable §;; hence, the problem can no longer be
solved by a linear optimization. It is common to over-
come this complication by restricting the /; variables to
Boolean values. In this case, in fact, the nonlinear terms
8l can be exactly linearized as follows:

Zik = Sihys
0 < zijg < 8" hy; (8)

8 — 8" (1 — i) < ziy < 65,

where §/"** is the upper bound for the dual variable §;.

The restriction to Boolean variables saves the linear
nature of the problem (which however requires now
Mixed Integer Linear Programming) but it implies the
assumption that drugs can only act as switches on the
reactions, or equivalently, that we are considering only an
ON/OFF model.
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Partial inhibition

In this Section we propose a solution which can still use
the duality theorem for solving the bilevel optimization
while including the possibility of inducing a partial inhibi-
tion of the reactions targeted by the drugs. This requires to
create a discretization of the interval [0, 1] and to replace
the ON/OFF action of each drug with P + 1 Boolean vari-
ables describing this discretization (P is a fixed parameter
of the problem). For the k-th drug (k = 1,...,d) we
introduce the set of Boolean variables {xt ,},=0,. . and
define an inhibition coefficient /4 by the following convex
combination:

P
X, X,
I = o 3T )
n=1

P o

In (9) the integer P is related to the desired accuracy of the
[0, 1] discretization. Indeed, the factor /; assumes values
between 0 and 1 with precision 27", Notice that for P = 0
we have the ON/OFF model of the previous section. We
can replace now (4) with the following inequality:

P
Xk,0 Xk,n
2P o Z on ) :

n=1

vi <Ui(1—Iy) =U; (1 -

When the strong duality theorem is applied, the nonlin-
ear terms are the §;/; products. Expanding the product
according to the definition in Eq. (9):

8ixk P s Xk

i*k,0 i*k,n

Sihy = P + Z 7:
n=1

the nonlinearity is now spread over the products §;x

with again xy , a Boolean variables. Similarly to (8), we can

write an equivalent set of linear inequalities:
Zijen = ik n3
max .
0=<2zign < 8" Xi s

8 — 8" (1 — X)) < Zijn < 6;.

Notice that any “representation” of partial inhibition val-
ues can be used in place of (9). Let us imagine, for instance,
that we would like % to have the same values obtained in
the dose-response experiments for the determination of
the half maximal inhibitory concentration (ICsp) of drug k
(see Figure 1):

hi € {0, hk,O’ hk,l» cee hk,P; 1}

(with 0 < ljtk,i < ljzk,j < 1,Vi < j) then we may define /i
by the following convex combination

i == hyoxro + gy — Mico)xxs + - - -+ (1 — g p) i p,
(10)
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Enzyme inhibition ( h)

o

0:00 1 1 | T i T i T i -
0.25 0.5 1.0 2.0 4.0 8.0
Drug concentration

Figure 1 Constructing the inhibition / from the experimental
dose-response curve: an example. The points of the curve are
hypothetical experimental measurements of the effect of the drug on
the activity of the enzyme. The discretization of the curve can be used
as basis for the discretization of the interval [0, 1]: therefore, referring
to (10), we may define hy = 0.10xxo + 0.15xk1 + 0.50x 2 + 0.15x3+
0.10x4.

with a series of inequalities
X0 = Xp1 = Xkt = Xgp-

Of course, the discretization (9) is the most efficient
because, for a given number of Boolean variables (P+1), it
generates the maximum precision (277). For this reason,
in the following we will refer to (9) only.

Inhibitions and activation of the objective reaction
The evaluation of the effect on the fluxes induced by
the drugs is performed through the MOMA formalism.
It is known that this approach describes well the spread-
ing across the network of the effect of the perturbation:
many processes are down-regulated or up-regulated in
order to adjust and compensate the effect of the perturba-
tion (see for example [4]). For the same reason, a second
intervention may amplify the deactivation (recovery) of a
certain metabolic function that was down-regulated (acti-
vated) after the first perturbation [30]. In terms of multiple
drug effect, this means that a drug synergism may rein-
force both the inhibition and the activation of the reaction
fluxes.

In our algorithm, one can selects between these two sit-
uations through a different constraint on vpeq in the outer
problem: indeed, imposing as in the previous Section

ut

Vmod = TVod
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(for 0 < t < 1) the algorithm identifies synergistic
inhibitions, whereas requiring

ut

Vmod = TVqod

(for T > 1) the algorithm generates drug interactions that
up-regulates the objective reaction.
In the following, both versions are applied.

Cases of multiple equivalent solutions (non-uniqueness)
Apart from the nonuniqueness of the unpertubed fluxes
v" analyzed in the Additional file 1, there are also other
cases of degeneracy of the outcome of the algorithm,
which we present here. Indeed, it is worth noting that the
use of the norm L! does not guarantee the uniqueness of
the solution: indeed balls in L' and the polytope W (h)
are convex but not strictly convex sets. Unfortunately this
limit can be overcome only passing to the L? formulation
with the consequent loss of the linearity of the problem.
However, we expect that such a type of situations are quite
rare since they appear only when the hyperplane (or the
intersection of some of them) which defines W(h) and
which realizes the minimum distance with respect to the
vector v't, is parallel to an edge (or face) of the L!-ball (see
Figure 2).

Other (more common) cases of multiple equivalent
solutions (i.e. solutions with the same network perturba-
tion ||Vt —v!f||;) are avoided through a specific correction
mechanism. For instance, if there exists a pair of drugs
k and [ such that 7y C 7; (i.e. drug k inhibits enzymes
which are already target by drug /), any solution which
contains both drugs is equivalent to the solution without
drug k (i.e. drug k is superfluous). Similar reasoning can
be done between a lower and higher dosages of the same
drug. Therefore, in order to prevent an “overselection” of
drugs, we introduce an additional term in the objective
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function of the outer problem. The new function becomes
the following:

r d
Z ai+b Z hy,
i=1 k=1

where the parameter b is chosen small enough (1073
in our computations, much smaller than 103, the com-
mon upper-bounds of the fluxes) in order to keep this
term smaller than the difference in the side effects and
therefore not to change the order between non-equivalent
solutions.

A similar approach is used to solve the redundancy in
the definition of /1x. Indeed, since in (9) x4 and x4 ; have
the same coefficient, the inhibition /; does not change
when swapping the values of these two variables. To avoid
this degeneracy, we require that x;o be one only if all
the other x; (for j = 1,...,P) are one. This is obtained
through the following extra linear constraint:

1 P
< — .
Xk0 = ) El xk,,.
}:

Since the problem is not strictly convex and since equiv-
alent drug combinations may always appear (for instance,
the combination of drug A which targets reaction 1 plus
drug B which targets reactions 2 and 3 is equivalent to
the combination of drug C which targets reaction 2 plus
drug D which targets reactions 1 and 3), the problem of
multiple equivalent solutions needs to be considered. In
all these cases, because of the numerical implementation
of the algorithm, a random choice of one of these optimal
solutions is taken. Since, by definition, all these equivalent
solutions fulfill the conditions on the objective reaction

all
equivalent
solutions
« Effect of drugs
~_inhibition
-
w(h) .
£

unique solution.

Figure 2 Convexity of L!- and L2-formulations and uniqueness of the solution. The two pictures report the unperturbed fluxes (vV!) in the
original set W. When the inhibition h is applied (dotted blue line), the set reduces to W(h). (@) With the L"-norm, balls are not strictly convex,
therefore cases of multiple equivalent solutions may appear. As one can see, these situations occur only when the hyperplane of W(h) which
realizes the minimum distance with respect to v!! is parallel to an edge of the L'-ball. (b) Conversely, L2 balls are strictly convex and always lead to a

L2-balls b

unique e
solution

™ Effect of drugs
~_inhibition
W(h) i

Vi
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and on the minimization of the side effect, their differ-
ences are irrelevant: indeed they concern only some other
fluxes on which we do not have any specific requirements.
For this reason any solution chosen by the implementation
of the algorithm can be considered acceptable.

Results

Computational performaces

The proposed algorithm has been implemented in MAT-
LAB (2012R) and the optimization has been performed
using ILOG-IBM CPLEX 12.1 (http://www-01.ibm.
com/software/commerce/optimization/cplex-
optimizer/) under academic license.

First, the impact of the parameter P on the computa-
tional cost is evaluated on the core metabolism of E.coli
(see Table 2 for the main features of the corresponding
network and the number of drugs that have been selected
from online databases): we choose ribose-5-phosphate iso-
merase as reaction to be modulated (r = 0.35) and run the
algorithm with different values of P from 0 to 5, record-
ing the computational time required to find the solution.
Since there are 8 drugs, the extremal values of P corre-
spond to 8 and 48 Boolean variables in the whole problem.
Notice that for P = 5, the accuracy on the definition of
hy is quite high (277 = 1/32 < 5%). In addition, we esti-
mate the time needed to perform the evaluation of the
inhibitory effect (MOMA) of a single drug combination
as an average over 20 random subsets of the 8 available
drugs. From this value we can predict the approximate
computational cost of an exhaustive search over all possi-
ble drug combinations (and dosages). The comparison of
the performaces of the algorithm with this estimation is
plotted in panel (a) of Figure 3.

Moreover, we run the algorithm on the metabolic net-
work of the six micro-organisms listed in Table 2. Our
scope is to evaluate the impact of the size of the net-
work (parametrized by the number of reactions r) on the
computational performaces. In order to limit the interfer-
ence of other parameters, these calculations are carried
out with the same objective reaction (in particular we
still keep ribose-5-phosphate isomerase since it appears on
all networks we have considered) at constant precision
(P = 2) and threshold (z = 0.35), with the same number
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of drugs (d = 8), and choosing their inhibition targets in a
random manner (unfeasible problems are ignored). How-
ever, since on very large networks it is quite unlikely to
induce the sought modulation on the objective reaction
when only 8 targets are inhibited, the number of targets of
each drug is proportionally increased (on average the total
number of inhibitions is approximately 6% of the total
number of reactions). Because of the randomness in the
choice of the targets, the computational times may present
a significant variation. Therefore, Figure 3 (b) shows the
whole distributions of the computational time over 100
runs for each one of the six metabolic networks we con-
sidered. Finally, Figure 3 (c) reports the mean and the
standard deviation of these distributions as a function of
the size of the network. On average, also for very large net-
works, the computational time is approximately one hour
(on a 2.3 GHz CPU). All these characterizations show the
good performaces of the algorithm.

Screening for optimal drug combinations
The main scope of these calculations is to show the advan-
tage given by the use of value of P higher than zero, i.e. of
passing from the ON/OFF to a more accurate description.
In order to better characterize its behavior (performing a
large number of tests), we run the algorithm on the small
network of the core metabolism of E.coli. A sketch of this
network is depicted in Figure 4.

A set of tests have been carried out combining different
values of T and P, in particular:

r €{0.0, 0.1, 0.5, 1.5, 2.0};
Pelo 1, 2).

For each pair, we perform a screening that considers each
metabolic reaction as objective process to be modulated
(down- or up-regulated depending on the value of 7) and
finds the most selective drug combination. The following
characterization of the solutions is performed. For a given
P and for a given objective reaction vp,4, we consider the
solutions h at different values of t. When the same drug
combination is found for two values of t (for example
71 = 0.1 and 7o = 0.5), the solution is considered valid
only for the most stringent constraint (z; = 0.1, in the

Table 2 Main properties of the metabolic networks used in this paper (from BIGGbigg.ucsd.edu/)

E.coli core S.aureus H.pylori S.oneidensis E.coli S.typhimurium
Number of reactions 95 575 513 696 1911 2224
Number of metabolites 72 455 436 528 1337 1497
Number of genes 137 619 339 783 1261 1271
Number of drugs 8 - - - - -
Reference [35] [36] [37] [38] [39] [40]

For the E.coli core network, drugs and respective targets have been selected from DrugBank database [41]: drugs which are common metabolites (for example
Adenosine) have been discarded and drugs with the same targets have been grouped.


http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
bigg.ucsd.edu/
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example; similarly, if 7; = 1.5 and 72 = 2.0 then the solu-
tion is associated to 7o = 2.0 only). This procedure allows
to considered only cases when passing to a weaker con-
straint on v,,,,4 the severity (for instance the dosage) of the
corresponding optimal drug treatment is reduced too. We
analyze the results by looking at the following four indices.

Number of solutions: Figure 5 (a) shows the total num-
ber of solutions we have found in the screening of all
reactions at different P and 7. One can see that, when a
complete stop of the objective reaction is required (r = 0)
there is no significant advantage in increasing the preci-
sion P. However, when it is necessary to induce a more
accurate modulation of the flux (inhibitory when 0 <
7 < 1), higher values of P allow to find a larger num-
ber of solutions. Through the partial inhibition, indeed,
we can find solutions which are closer to the desired
threshold, whereas the simple ON/OFF model can mostly
induce a complete stop of the objective reaction. A simi-
lar improvement can be also identified while passing from
T=15totr =2.0.

Cardinality of the solutions: More details are presented
in panel (b) of Figure 5, which reports the histogram of the
cardinality of the solutions and their mean values for the
case of T = 0.5 (averages for each value of 7 are reported

in Table 3). When the precision increases, the distribution
of the cardinality shifts slightly to higher values, meaning
that multiple drug treatments are (slightly) preferred.

Perturbation induced by the solutions: For each solu-
tion that we have identified during this screening, also
the corresponding perturbation (i.e. the side effect v —
v'|1) can be evaluated. We calculate the frequency of
these perturbation values (regardless of the value of 7).
The result is shown in Figure 5 (c). We notice that at
higher precision, smaller perturbations become slightly
more probable: as expected, for high values of P, the algo-
rithm can modulate the inhibition more accurately and
therefore reduce the impact on the network, while still
satisfying the request on the flux of the objective reaction.

Nonlinearity exploited by the solutions: The interac-
tion between drugs is normally interpreted as the devi-
ation of the effect of combined drugs with respect to
the linear superposition of the single drug perturbations.
Therefore, similarly to the scaled epistasis measure pre-
sented in literature [42], a index of nonlinearity n(h) can
be defined on the basis of the flux of the objective reac-
tion as follows. Let vgwd(hl, ho, ..., hy) be the flux of the
objective reaction at drug inhibition h = (hy,ho, ..., hy)
and given by (5). Then,
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h1,0,...,0) +--- + 0,...,0,h d— vt hi, ...
n(hl¢---7hd) — mod( 1 ) Il?tOd( hd) ( ) mod — mod( 1 ), (11)
Vimod ~ mod( 1""’ )
since it holds v“mtod mOd(O 0,...,0). From this defini- first two solutions contains a pair of drugs (Fomepizole

tion, n = 0 means linear behav1or and 7 > 0 nonlinear.
Therefore, for each solutions of the screening, we calcu-
late the corresponding 7(h) and we analyzed the distri-
bution of its values (still ignoring the parameter 7): the
result is shown in panel (d) of Figure 5. It is clear that
increasing the value of P the nonlinearity index tends to
be higher. It seems that, thanks to the higher precision,
the algorithm may exploit more efficiently the nonlinear-
ity property and, by consequence, it can limit the dosage
of the drug and consequently reduce the perturbation.

Drug interaction surfaces: three case studies

For three of the solutions found through the screen-
ing procedure, we detail now the drug interactions
exploited by the algorithm. In particular, we considered
the synergisms in the inhibition of tramnsketolase and of
ribose-5-phosphate isomerase, and the synergism in the
up-regulation of glutamate dehydrogenase. Each of the

plus Halofantrine and Fomepizole plus Hexachlorophene
respectively). We explore the drug interaction surface
changing the amount of inhibition induced by each com-
pound, as could correspond in experiments to using
different drug dosages (the interval [0, 1] has been dis-
cretized using (9) with P 4). The 2D surfaces are
reported in Figure 6 panels (a) and (d). In the third case
(up-regulation of glutamate dehydrogenase, panel (g)) the
synergism is obtained combining three drugs (Nitrofura-
zone, Halofantrine and Pemetrexen); therefore, in order to
have the 2D surface of interaction, the first drug is kept at
the optimal inhibition value (#; = 1) and the combina-
tions are explored changing the dosages of the remaining
two drugs. Figure 6 reports also the nonlinearity index
n(h) as defined in (11); panels (b), (e) and (h) show that in
all cases there is a clear enhancement of the effect when
the drugs are combined.

These calculations has been performed with MOMA
based on the L!-norm because, as already mentioned, it
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irreversible and light gray for reversible processes). Nodes highlighted with red border belong to Krebs cycle. For a better readability, common
species like water, Oxygen, HT, Ammonium, CO,, phosphate, NAD (in all forms), Coenzyme-A, AMP, ADP and ATP, as well as all transport and




Facchetti and Altafini BMC Bioinformatics 2013, 14:344
http://www.biomedcentral.com/1471-2105/14/344

Page 11 of 14

a
(2]
(=
o
5
o
w
kS
5]
Ko
[S
3
(=
0 1 2
precision parameter P
C
0.4

- ® - P=0 (mean=16000)

0.35 —e—P=1 (mean=14200)

r.. =e= P=2 (mean=13700)

03 "

frequency
o

30000

perturbation [v'"—v"| ;

0 10000 20000 40000

b
20 —
—_— |- ®=P=0 (mean=2.1)
© | ——P=1 (mean=2.3)
S | e P=2 (mean=2.4)
e 15 ; g
(%}
c -
o ’, - -
- e
2 10 o
0 i
k]
8 s
E
>
= S
0 i N
0 1 2 3 4 5 6 7
cardinality of the solution
d
0.4 .
=& -P=0 (mean=3.8)
0.35 ’ ——P=1 (mean=4.7)

=e=P=2 (mean=5.2)

nonlinearity n
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the case T = 0.5, and shows the frequency of the drug cardinality of the solutions (i.e. the number of drugs used in the solution). For larger P, the
distribution is slightly shifted to higher cardinality (data for each t are reported in Table 3). (c) Beside the number of solutions, higher precision
produces more selective outcomes, i.e. with a lower side effect (as clearly shown by the mean values reported in the legend). The counting is
performed over all different values of the threshold . (d) This plot shows the histogram of the values of the nonlinearity index n(h) (as reported in
(11)) calculated for all the solutions of the screening (still regardless the value of 7). From the curves and from the mean values reported in the
legend, it is possible to see that higher amount of nonlinearity are obtained when P is increased.

allows a definition of a linear function in the optimiza-
tion problem. When compared to the surfaces obtained
from the original quadratic formulation of MOMA (last
column: panels (c), (f) and (j) of Figure 6), the results
from L'-norm show some irregularity of the surfaces
(which makes the original L? version more reliable) but
the main features of the drug-drug interaction are still well
described.

Table 3 Averaged cardinality of the drug combinations
from the screening

=00 T=0.1 =05 =15 T=20
P=0 25 29 2.1 2.1 14
P=1 2.7 30 23 35 3.1
pP=2 29 33 24 37 32

Figure 5(b) shows the details of the screening results for t=0.5 and the
corresponding legend reports the averaged value of the cardinality of the
solutions which have been found; we summarize here the same quantities for all
values of 7.

Discussion

Optimization is a concept widely used in many scientific
fields; for instance, in systems biology, FBA makes use
of it for discriminating reaction fluxes in large metabolic
networks. Following the same philosophy, in order to
cope with more complex situations, multiple optimization
criteria can be needed simultaneously leading in some sit-
uations, like the one discussed in this paper, to a bilevel
optimization problem. The bilevel approach is promising
for studying several features and applications of metabolic
networks, for instance for identifying metabolic objec-
tive functions [23] or for studying perturbations around a
nominal optimum [10,11]. In the context of drug combi-
natorics, in order to efficiently solve the bilevel optimiza-
tion, Boolean variables are commonly used in the outer
problem. However, this ON/OFF description of the corre-
sponding biological quantities may represent a very rough
approximation, as it is the case for the (partial) inhibition
induced by drugs acting on the enzymes of a metabolic
network.
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In order to overcome this limitation, we propose an
improvement on the formulation of the bilevel optimiza-
tion in which a single Boolean variable is replaced by
a convex combination of several Boolean quantities: in
this manner the convex and linear nature of the prob-
lem is preserved and the description of the inhibitory
effects becomes more realistic. Since the problem con-
tains Boolean variables, the optimization falls in the
Mixed Interger Linear Programming (MILP) class: com-
pared to LP, the NP-hard complexity of MILP [22] makes
the new algorithm more expensive from a computational
point of view. For the tasks at hand (see Figure 3), the algo-
rithm behaves well also for large metabolic networks. The
logarithm of the computational time scales linearly with
the number of reactions, but with a small slope, so that
on average the solution is found in a reasonable computa-
tional time, also for networks with around 2500 reactions
and for P = 2.

For testing purposes, we run the algorithm on the cen-
tral carbon metabolism of E.coli screening all reactions.
We have found that increasing the number of Boolean
variables used in the convex combination (the precision
parameter P), it is more likely to find a solution which
succeeds on the modulation of the objective reaction (see
Figure 5 (a)). In particular, partial inhibitions (i.e. mod-
ulations of the dosage of the drugs) are more frequent
for multicomponent solutions (panel (b) of Figure 5): this
result may be interpreted as a wider possibility, offered
by the synergism, to calibrate a drug treatment according
to the specific needs. Moreover our computations repre-
sent a confirmation on large networks of the expected, but
still not verified, higher efficiency of multiple targets drug
treatments in presence of partial inhibition [24]. In this
perspective, the results show that this approach may also
lead to treatments which are more selective (panel (c) of
Figure 5 and Table 3).
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A possible explanation can be found in the unexpected
or hardly predictable drug synergism which are typical of
complex systems such as metabolic networks, even in a
simplified framework like FBA. In particular, concerning
the synergistic interactions between drugs, the analysis
done through the drug-drug interaction surface (Figure 6)
reveals that nonlinear effects, not explained by superpo-
sition of the single drug perturbation, are significant and
can be captured and exploited by the method proposed,
unlike with a more coarse-grained ON/OFF description.
We should mention, that the three case studies presented
in Figure 6 do not pretend to have any clinical value: they
have been selected only for the purpose of illustrating the
method and the advantages it may give in the context
of drug synergism and drug reprofiling for reconstructed
metabolic networks.

Conclusion

The purpose of this paper is to present a novel algo-
rithm, able to relax the assumption on the variables of a
bilevel optimization problem from ON/OFF type to more
fine-graded description. This setting is of interest in the
context of FBA of metabolic networks and in particular in
the modulation of the fluxes by means of drugs, capable
of reducing (but not suppressing completely) the activ-
ity of the metabolic enzymes on which they are acting.
With our algorithm, the problem can be formulated as a
MILP problem of moderate practical complexity. Indeed
we have shown that the algorithm performs well also on
large metabolic networks at a more fine-graded level of
resolution than an ON/OFF representation. Furthermore,
it is capable of exploiting with higher efficiency the pecu-
liar nonlinearity which originates from the topology of the
network, of finding more selective solutions and, there-
fore, of offering a larger spectrum of drug combinations.
These features become more evident when the modula-
tion required for the objective reaction is itself a fraction
(t # 0) of the nominal flux, rather than a simple com-
plete switch off (zr = 0). Indeed, if a disease corresponds
to an anomalous biosynthesis of certain compounds, most
often the cure consists in regulating back those fluxes to
an healthy range, not to a complete inhibition.

It is worth noting that the problem of drug synergism we
presented in this paper must be read as a guiding exam-
ple for a more general class of situations: indeed, the idea
we have proposed for treating bilevel optimization can be
applied to any other case which requires a more realis-
tic modeling with respect to the oversimplified ON/OFF
description, in biology as well as in all the other fields
where LP is already used.

Additional files

Additional file 1: Nonuniquess. This pdf file presents the behaviour of
the algorithm in case of nonunique solution of the untreated network (v'*).
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Additional file 2: Matrix of linear constraints. This pdf file provides the
details about the construction of the matrix of the final single optmiziation
problem, including primal, dual and Boolean variables of the drugs.
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