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Abstract

Background: One of the major issues in the fight against infectious diseases is the notable increase in multiple
drug resistance in pathogenic species. For that reason, newly acquired high-throughput data on virulent microbial
agents attract the attention of many researchers seeking potential new drug targets. Many approaches have been
used to evaluate proteins from infectious pathogens, including, but not limited to, similarity analysis, reverse
docking, statistical 3D structure analysis, machine learning, topological properties of interaction networks or a
combination of the aforementioned methods. From a biological perspective, most essential proteins (knockout
lethal for bacteria) or highly conserved proteins (broad spectrum activity) are potential drug targets. Ribosomal
proteins comprise such an example. Many of them are well-known drug targets in bacteria. It is intuitive that we
should learn from nature how to design good drugs. Firstly, known antibiotics are mainly originating from natural
products of microorganisms targeting other microorganisms. Secondly, paleontological data suggests that
antibiotics have been used by microorganisms for million years. Thus, we have hypothesized that good drug
targets are evolutionary constrained and are subject of evolutionary selection. This means that mutations in such
proteins are deleterious and removed by selection, which makes them less susceptible to random development of
resistance. Analysis of the speed of evolution seems to be good approach to test this hypothesis.

Results: In this study we show that pN/pS ratio of genes coding for known drug targets is significantly lower than
the genome average and also lower than that for essential genes identified by experimental methods. Similar
results are observed in the case of dN/dS analysis. Both analyzes suggest that drug targets tend to evolve slowly
and that the rate of evolution is a better predictor of drugability than essentiality.

Conclusions: Evolutionary rate can be used to score and find potential drug targets. The results presented here
may become a useful addition to a repertoire of drug target prediction methods. As a proof of concept, we
analyzed GO enrichment among the slowest evolving genes. These may become the starting point in the search
for antibiotics with a novel mechanism.
Background
Endless modifications of existing antibiotics might lead
to the appearance of cross-resistance; therefore there is
a need for parallel efforts of developing new types of
antimicrobials. The preceding step is often finding a new
drug target for these drugs. However, given the wealth of
information provided by genome sequencing, mass spec-
trometry and microarray experiments, the selection of a
potential drug target for pathogenic species and their
relatives is not a trivial task. The repertoire of
approaches starts with simple similarity searches, during
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reproduction in any medium, provided the or
which sequences of bacterial proteins are compared to
known drug targets and human proteins [1]. Other
methods are more extensive and implement analyses of
metabolic and interaction networks [2] - approaches
that, to our knowledge, were first tested with human
protein drug targets [3]. There have been attempts to
use machine learning methods to mine the substantial
amount of data that can be found and derived for bac-
terial proteins. These approaches may focus on proteins
as targets, providing lists of features (sequence length,
mostly beta or alpha secondary structure, cytoplasmic/
membrane bound, enzyme/non-enzyme, etc.) for a typ-
ical drug target [4]. Alternatively, they can focus on
protein-protein interactions [5]. Finally, given a small
molecule, one can dock it to the set of protein structures
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described in [6], which aids in the identification of new,
potential drug targets for known compounds.
In general, all essential proteins of a given organism

constitute potential drug targets [7,8]. The most promin-
ent, essential proteins, such as the ribosomal proteins,
are already approved drug targets in bacteria [9]. Their
importance for the cell results in their evolutionary con-
servation [10]. For over 30 years, it has been commonly
thought that essential genes are likely subject to stronger
negative (purifying) selection (with a less frequent occur-
rence of mildly deleterious substitutions) [11] compared
to nonessential genes. However, the prokaryotic and
eukaryotic kingdoms seem to differ in this respect. No
statistical difference in the relative rate of evolution be-
tween essential and nonessential genes was evident for
the mouse, if immune genes were excluded [12]. Ana-
lysis of the yeast genome sheds light on eukaryotic spe-
cies, by explaining why it was difficult to see a statistically
significant difference in that case [13] (they observed a sig-
nificantly higher rate of evolution of nonessential proteins
when they compared essential proteins with the “most dis-
pensable” half of nonessential proteins). In bacteria, stron-
ger negative selection on essential genes was shown by
Jordan [14] in the case of Escherichia coli K12. By applying
an orthology-based essentiality transfer from Escherichia
coli, the authors also predicted that this should be true for
pathogenic species in the Neisseria and Helicobacter
genera. This finding has been used for prediction of essen-
tial genes on its own or in conjunction with other methods.
No doubt we can learn a lot about choosing good drug

targets from nature. Antibiotics are mainly originating
from natural fungal and bacterial products [15]. Micro-
organisms have been using them for millions of years to
combat (successfully) competing organisms. This im-
pressive finding has been confirmed recently using
paleontological data [16]. From the evolutionary point
of view it may suggest that good drug targets are evolu-
tionary constrained and are subject to purifying selec-
tion, which makes them less susceptible to random
development of resistance. The efforts to validate this
hypothesis and to find its application in drug design
workflows comprise the aim of this study.
Analysis of evolutionary rates to identify putative drug

targets has been already suggested by Searls [17], but no
comprehensive study has been published so far. Moreover,
two methods were proposed to identify evolutionary con-
strained residues in drug targets. Durand and co-workers
[18] assessed purifying selection on individual sites in
Plasmodium falciparum drug targets using the dN/dS
ratio. The method is called “evolutionary patterning” (EP).
A second method called “evolutionary tracing” (ET) [19],
was proposed by Lichtarge in 1996. The Lichtarge method
is based solely on evolutionary conservation. In both
methods the key assumption is that a good drug should
bind to the slowly evolving protein pocket. This expect-
ation is based on intuition that at such sites development
of drug resistance will be less probable. Both methods do
not provide the overall picture of the evolutionary rates of
genes of pathogenic species as they focus on individual
sites, not the whole genes.
Generally speaking the key question we wanted to an-

swer in this study was whether proteins which are targeted
by antibiotics tend to evolve slowly. For this purpose we
analyzed relative rate of evolution of genes from seven
bacterial pathogens and from E. coli. We used polymorph-
ism analysis, i.e. pN/pS ratio (which represents an appro-
priate measure of purifying selection in the case of
comparison of inter-species diversity) and reproduced the
analysis with dN/dS ratio (which is better for comparing
sequences derived from different species) [20]. In both
cases the rate of evolution of known drug targets, was not
only significantly lower than the genome average but was
also significantly lower than that for the essential genes,
suggesting a higher selective force acting on a wide
spectrum of drug targets. This finding suggests that calcu-
lation of evolutionary rate can aid in scoring during the
process of drug target selection and can provide additional
insights into whether a particular protein might or might
not be an attractive drug target. As such, it complements
EP/ET approaches.

Methods
Data preparation
The input set for our analysis consisted of bacterial gen-
omes for which experimental data for the identification
of essential genes existed (Table 1). Data on essential
genes were obtained from the DEG database [21]. We
obtained alignments of clusters of coding sequences
(CDS) from whole-genome alignments of the reference
genome (strain with experimental list of essential genes)
and genomes of other strains from the ATGC (Alignable
Tight Genomic Clusters) database [22].
For further comparison, we chose only reference gen-

omes with at least two alignments with strains (subspecies)
with complete genomes available in the ATGC database.
The majority of cluster alignments we have obtained con-
sisted of two sequences (one-to-one orthology assign-
ments). However, in a small number of cases (~5%) we had
more than one orthologous sequence representing a par-
ticular cluster in the compared genomes. Such duplications
were resolved using reciprocal BLAST [23] on the corre-
sponding protein sequences.
All genes were divided into three sets (see Table 1).

The first group contained all genes from a particular or-
ganism, and the second group contained all of its essen-
tial genes (from the DEG database). The third group,
referred to later as “potential wide-spectrum drug tar-
gets”, consisted of genes belonging to one of the orthology



Table 1 Summary of the data used at pN/pS analysis

Reference genome (strain with experimental
data on essential genes; NCBI Taxonomy ID
in brackets)

Other strains with complete pairwise
alignments with reference genome
(NCBI Taxonomy IDs)

The number
of all genes*

The number of
essential genes*

The number of
drug targets*

Escherichia coli K12 (83333) 155864, 199310, 316407, 331111, 331112,
362663, 364106, 386585, 405955

4294 771 41

(3104) (616) (31)

Francisella novicida U112 (401614) 119857, 177416, 393011, 393115, 418136,
458234

1719 391 34

(1065) (320) (32)

Haemophilus influenzae Rd KW20 (71421) 262727, 262728, 281310, 374927, 374928,
374930, 374931, 374932, 374933, 375063,
375177, 375432

1581 477 39

(1024) (399) (34)

Helicobacter pylori 26695 (85962) 357544, 85963 1576 336 30

(992) (292) (28)

Pseudomonas aeruginosa UCBPP-PA14 (208963) 208963, 381754 5892 335 40

(4530) (305) (36)

Salmonella typhimurium LT2 (99287) 209261, 220341, 295319, 321314 4425 481 41

(3140) (403) (31)

Staphylococcus aureus N315 (93061) 158878, 158879, 196620, 273036, 282458,
282459, 359786, 359787, 367830, 418127,
426430, 93062

2892 351 35

(1918) (277) (28)

Streptococcus pneumoniae TIGR4 (170187) 171101, 373153, 406556, 406557, 406558,
406559, 406560, 406561, 406562, 406563

1965 195 37

(1532) (175) (33)
*All genes, essential genes and drug targets comprised the three groups of genes compared in our study. The final analysis was restricted to genes for which no
recombination events were detected, numbers of which are presented in brackets.
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groups (as defined by KEGG KO [24]) covering bacterial
drug targets with a known broad-spectrum activity acting
as antagonist, inhibitor or in an adduct. In the case of
duplications, (more than one gene in a single KO), the bi-
directional best hit was selected using the KEGG SSDB
database. The most comprehensive database containing
FDA-approved existing drug targets is DrugBank [25]. We
used provided data and then manually verified them. The
verification included removal of beta-lactamases, which
are drug targets and drug resistance enzymes at the same
time which leads to a completely different evolutionary
pattern than a typical drug target. However, we have
included the enoyl-acyl carrier protein reductase (fabI
gene), as this protein is a known drug target of the anti-
bacterial agent Triclosan [26]. Data for Triclosan are not
in DrugBank yet, however, this compound was used in an
antibiotic profiling study in Escherichia coli [27], and it
seemed reasonable to use it for further analysis. The final
list of drug targets for each species is shown in additional
table file (see Additional file 1).
All three groups were mutually exclusive. We removed

the genes corresponding to known drug targets from the
group of essential genes. Similarly, in the group of all
genes, those known as lethal genes or known as drug
targets were excluded. The rationale for such approach
was to avoid biasing the p-value tests.
Estimation of evolutionary rate
For each MSA of orthologous sequences, we evaluated
polymorphism (the pN/pS ratio) using polyDnDs soft-
ware [28]. We chose simple statistics based on a number
of nonsynonymous and synonymous mutations (not tak-
ing into account number of possible places where muta-
tions can occur).

Assessment of pN/pS differences
For each species, we assessed the statistical difference of
relative speed of evolution between the three aforemen-
tioned groups of genes (all, essential and potential wide-
spectrum drug targets). We used the Mann–Whitney U
test [29]. The p-values for a difference between sets were
calculated using R implementation of the test (wilcox.
test function; two sided).In our statistical approach we
tested 24 hypotheses (three sets compared in one com-
bination for eight species). We corrected our p-values
using FDR approach (Benjamini-Yokutieli correction for
multiple testing approach) [30].

Gene ontology analysis
We used ontologies from Gene Ontology [31] (file gen-
e_ontology_edit.obo; 10.07.2011), while annotations were
obtained from EBI (Uniprot-GOA [32]). More than 60%
of genes for all the species had at least one GO term



Gladki et al. BMC Bioinformatics 2013, 14:36 Page 4 of 10
http://www.biomedcentral.com/1471-2105/14/36
assigned. For each species, 10% of the slowest evolving
genes were selected as study set, while all genes in the
species comprised the population set. Analysis was per-
formed using command line version of Ontologizer [33].

Plasmodium falciparum pN/pS analysis
We estimated evolutionary rate of all Plasmodium fal-
ciparum genes and ranked them on this parameter. It
enabled the assessment of evolutionary rate of the two
genes used in the evolutionary patterning (EP) study,
i.e. dihydrofolate synthase (DHFR-TS) and glycerol
kinase (GK).
The pN/pS ratio was estimated using the approach pro-

posed by Krzyczmonik et al. [34]. Thus we calculated pN/
pS using nonsynonymous and synonymous SNPs from
PlasmoDB [35]. We used SNP observable for the Plasmo-
dium falciparum 3d7 strain and other strains of this spe-
cies. As it was shown by Krzyczmonik et al. [34] in many
cases P. falciparum genes have only nonsynonymous
Figure 1 Evolutionary rate differences of four Enterobacteriaceae spe
genes of interest: ALL -all genes, ESS - essential genes and ADT - approved
this case pN/pS values were compared using Mann–Whitney U test (wilcox
of pN/pS with 95% confidence intervals are presented (number of genes in
Enterobacteriaceae. Abbreviations: ECO: Escherichia coli, STM – Salmonella ty
genes and under such conditions it is impossible to calcu-
late pN/pS ratio (as pS equals zero). We applied the cor-
rection suggested by those authors, i.e. in such cases pS
were approximated by 1.

Additional tests
In addition to the above analyses, we have conducted
the tests using omega (dN/dS) instead of pN/pS. While
such an approach is obviously biased, we were interested
if the overall results would be different. Detailed meth-
ods, incorporating correction on recombinant genes, are
provided in the supplementary materials.

Results
The evolutionary rate of potential wide-spectrum drug
targets
We have analyzed genomes of seven pathogenic species.
The results are summarized in Figure 1 and Figure 2
(see Additional file 2 for more statistical details). Potential
cies. Evaluation of evolutionary rate differences between three sets of
drug targets). Evolutionary rate was estimated using (pN/pS ratio). In
.test in R language, two sided hypothesis tested). Box plots of means
given set are shown in brackets). Result for four species from

phimurium, PAU – Pseudomonas aeruginosa, FTN – Francisella novicida.



Figure 2 Evolutionary rate differences of four non-Enterobacteriaceae species. Evaluation of evolutionary rate differences between three
sets of genes of interest: ALL -all genes, ESS - essential genes and ADT - approved drug targets). Evolutionary rate was estimated using (pN/pS
ratio). In this case pN/pS values were compared using Mann–Whitney U test (wilcox.test in R language, two sided hypothesis tested). Box plots of
means of pN/pS with 95% confidence intervals are presented (number of genes in given set are shown in brackets). Result for four species not
from Enterobacteriaceae taxon. Abbreviations: HPY: Helicobacter pylori, HIN – Haemophilus influenzae, SAO – Staphylococcus aureus, SPN –
Streptococcus pneumoniae.
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drug targets had significantly lowered values of pN/pS
compared to all genes from a given genome, as assessed
by the average pN/pS ratio per orthologous group (al-
though in the case of S. aureus and H. influenzae the
differences were not statistically significant). Also, we
observed lower pN/pS values for potential drug targets in
comparison to essential genes (for all except F. novicida
and S. aureus). In most genomes (all except H. influenzae
and H. pylori), essential genes showed higher negative se-
lection than the genome average, confirming the results of
Jordan [14].
We also performed the same analysis on the genome

of the non-pathogenic species, Escherichia coli strain
K12. In this case, essential genes had lower pN/pS values
than the genome average, and potential drug targets had
lower pN/pS values than essential genes and the genome
average. All those differences were highly significant
(p-value < 0.01).
It should be noted, that the results of the analysis

above are similar when using omega (dN/dS) instead of
pN/pS. Details can be found in Supplementary Materials
(see Additional file 3 and Additional file 4).

Characterization of the orthology groups of drug targets
The assignment of known drug targets to KEGG KO
orthology groups (see Methods) resulted in 44 represen-
tative groups (see Table 2). The three largest groups
were various ribosomal proteins (~30%), proteins related
to DNA processing and penicillin binding proteins. We
ranked all of the orthology groups according to the aver-
age dN/dS of genes belonging to a given group across the
eight genomes (seven pathogenic species and Escherichia



Table 2 Ranking of known drug targets (from the evolutionary perspective)

Drugs KEGG KO Mean pN/pS SD Gene name; description

Cycloserine ko:K01921 0.5813 0.136342 ddl; D-alanyl-alanine synthetase A

ko:K01775 0.4017 0.260427 alr; alanine racemase

Triclosan ko:K00208 0.2425 0.084719 fabI; enoyl-(acyl carrier protein) reductase

Trimethoprim ko:K00287 0.6356 0.265319 folA; dihydrofolate reductase

Sulphonamides ko:K00796 0.5708 0.213370 folP; dihydropteroate synthase

Fusidic acid ko:K02355 0.1284 0.104805 fusA; elongation factor G

Mupirocin ko:K01870 0.3031 0.139443 ileS; isoleucyl-tRNA synthetase

Quinolones ko:K02469 0.3063 0.167897 gyrA; DNA gyrase subunit A

ko:K02470 0.2195 0.192711 gyrB; DNA gyrase subunit B

ko:K02621 0.3364 0.158633 parC; DNA topoisomerase IV subunit A

ko:K02622 0.3016 0.231233 parE; DNA topoisomerase IV subunit B

Rifampin ko:K03046 0.1263 0.047384 rpoC; DNA-directed RNA polymerase subunit beta'

ko:K03043 0.1423 0.092346 rpoB; DNA-directed RNA polymerase subunit beta

ko:K03040 0.4072 0.388638 rpoA; DNA-directed RNA polymerase subunit alpha

Macrolides ko:K02926 0.2090 0.242629 rplD; 50S ribosomal protein L4

ko:K02890 0.2212 0.408734 rplV; 50S ribosomal protein L22

ko:K02864 0.4581 0.364803 rplJ; 50S ribosomal protein L10

ko:K02911 0.5297 0.438268 rpmF; 50S ribosomal protein L32

Tetracyclines ko:K02986 0.4107 0.343409 rpsD; 30S ribosomal protein S4

ko:K02982 0.1927 0.187825 rpsC; 30S ribosomal protein S3

ko:K02965 0.1139 0.171661 rpsS; 30S ribosomal protein S19

ko:K02992 0.3173 0.327775 rpsG; 30S ribosomal protein S7

ko:K02954 0.4495 0.467237 rpsN; 30S ribosomal protein S14

ko:K02994 0.1578 0.203180 rpsH; 30S ribosomal protein S8

ko:K02996 0.1692 0.216565 rpsI; 30S ribosomal protein S9

Glacycyline ko:K02952 0.6584 0.422977 rpsM; 30S ribosomal protein S13

Retapamulin ko:K02906 0.2112 0.307444 rplC; 50S ribosomal protein L3

Aminoglycosides ko:K02946 0.1711 0.293128 rpsJ, nusE; 30S ribosomal protein S10

ko:K02878 0.1300 0.151462 rplP; 50S ribosomal protein L16

ko:K02950 0.4372 0.425007 rpsL; 30S ribosomal protein S12

beta-lactam antibiotics ko:K07258 0.4060 0.280471 dacA; D-alanyl-D-alanine carboxypeptidase fraction A

ko:K05515 0.2293 0.118958 mrdA; penicillin-binding protein 2

ko:K03693 0.4693 0.000000 penicillin-binding protein 1B

ko:K03587 0.2658 0.077185 ftsI; division specific transpeptidase (PBP3)

ko:K00687 0.3279 0.000000 penicillin-binding protein 2B

ko:K12553 0.4829 0.000000 penicillin-binding protein 3

ko:K05365 0.3425 0.334610 mrcB, ponB; penicillin-binding protein 1B

ko:K05366 0.3644 0.086939 mrcA; penicillin-binding protein 1A

ko:K07262 0.3863 0.118514 pbpG; D-alanyl-D-alanine endopeptidase

ko:K12556 0.3431 0.000000 penicillin-binding protein 2X

ko:K12555 0.5859 0.000000 penicillin-binding protein 2A

ko:K05367 0.7132 0.001414 pbpC; penicillin-binding protein 1C

ko:K07259 0.3973 0.161482 dacB; D-alanyl-D-alanine carboxypeptidase/endopeptidase

Fosfomycin ko:K00790 0.2551 0.183465 murA; UDP-N-acetylglucosamine 1-carboxyvinyltransferase

Drug targets are ordered by drug class. Mean pN/pS as well as standard deviation (SD) were calculated using data from eight species analyzed in the study.
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coli K12) (see Additional file 1 for more details). Riboso-
mal and DNA processing enzymes ranked at the top and
were the most attractive drug targets from an evolutionary
perspective. The same could be said about penicillin bind-
ing protein (PBP) - 2 and PBP3 but not PBP4, PBP5/6 and
PBP7. These results agree well with experimental data on
these proteins [36]. PBP2 and PBP3 are bound by beta-
lactam antibiotics with high affinity and are known to be
the main/lethal target of these drugs. Affinity is lower in
the cases of PBP4, PBP5/6 and PBP7. PBP4 to 7 contribute
to penicillin resistance but are considered auxiliary drug
targets.
Among protein groups with relatively high rate of

evolution are alanine racemase and d-alanine ligase,
which are targeted by sulphonamides [37]. Both of these
proteins seem to be only moderately attractive drug tar-
gets from an evolutionary perspective. The D-alanine
ligase gene has paralogs in Escherichia coli and Salmon-
ella typhimurium, and such genes generally do not con-
stitute good drug targets [38]. The same can be said
about folate reductase and dihydropteroate synthase,
two genes from the folate pathway targeted by two
distinct classes of drugs. In the case of these genes, the
fast appearance of resistance is commonly known [39].
Thus, drugs for these targets are often applied in com-
bination. It is worth to note that all these proteins
(alanine racemase, alanine ligase, folate reductase,
dihydropteroate synthase) are drug targets of human
designed antibiotics (i.e. synthetic as opposite to semi-
synthetic antibiotics being derivatives of bacterial nat-
ural products). Thus we see clearly how difficult it is to
find a good novel drug target without referring to evolu-
tionary history of pathogenic species. This is probably
one of the key reasons why there has been no new class
of antibiotic introduced into the market for the past
twenty years [40].
Table 3 GO analysis for slowly evolving genes

GO P-value Study-fraction Population-fractio

GO:0005198 2.7e–37 0.00523 0.0359

GO:0005515 1.8e–12 0.0257 0.0685

GO:0005488 2.9e–12 0.274 0.373

GO:0019843 1.4e–06 0.0028 0.0194

GO:0015453 0.00043 0.000997 0.00627

GO:0000104 0.0076 0.000436 0.00285

GO:0016667 0.011 0.00567 0.012

GO:0003735 0.014 0.00392 0.0308

GO:0015078 0.027 0.00361 0.00856

GO:0046872 0.045 0.0756 0.105

Enrichment of GO terms (molecular function domain): data for slowly evolving gene
comprised the study set. Genes with reliable pN/pS (of eight studied species) comp
Benjamini-Hochberg correction for multiple testing and Parent–child-Union Setting
Functional classes among slowly evolving genes
Additionally, we analyzed slowly evolving genes by
means of GO enrichment. Results partially overlap with
common functional classes characterizing known drug
targets (see Table 3). Statistically significant terms were
“rRNA binding” and “structural molecule activity” corre-
sponding to ribosomal proteins or “nucleic acid binding”
corresponding to topoisomerases, RNA polymerases and
gyrases. However we also identified some novel classes,
usually not associated with known drug targets, such as
succinate dehydrogenase or metal binding proteins.
These may become interesting starting points in finding
new drug targets with a unique mechanism of action.

Complementation of other evolutionary approaches for
drug target discovery
In our opinion the approach presented here could be a
good complementation to other drug target discovery
methods based on evolutionary data: evolutionary tra-
cing (ET) and evolutionary patterning (EP). As a proof
of concept we analyzed the data of both approaches and
put them into the context of our approach.
In the case of EP, Durand et al. analyzed the position

specific evolutionary rate for two Plasmodium falcip-
arum genes: known drug target, dihydrofolate reductase
(DHFR-TS) and drug target candidate, glycerol kinase
(GK). We estimated pN/pS genome wide, for almost all
genes of Plasmodium falciparum (3d7 strain) and ranked
genes using this parameter. Then we were able to evalu-
ate those genes in the context of observed genome-wide
distribution of pN/pS. We observed high purifying selec-
tion (slow evolutionary rate) for glycerol kinase (ranked
in 32-nd percentile), which allows this gene to be
considered as an attractive drug target from our per-
spective. We also observed rather weak purifying selec-
tion in the case of dihydrofolate reductase (ranked in
n Description

structural molecule activity

protein binding

binding

rRNA binding

oxidoreduction-driven active transmembrane transporter activity

succinate dehydrogenase activity

oxidoreductase activity, acting on a sulfur group of donors

structural constituent of ribosome

hydrogen ion transmembrane transporter activity

metal ion binding

s. Ten percent of genes (of eight studied species) with the lowest pN/pS rank
rised the population set. Analysis was performed using Ontologizer (with
s).



Gladki et al. BMC Bioinformatics 2013, 14:36 Page 8 of 10
http://www.biomedcentral.com/1471-2105/14/36
76-th percentile). It agrees well with the fact that antifo-
late resistance in the malaria parasite is well recognized
[41]. Moreover, orthologous dihydrofolate reductases
being known antibacterial drug targets are also under
relatively weak selection pressure (as we pointed out
earlier; see also Table 2).
In the case of evolutionary tracing (ET) Adikesavan

et al. [42] presented in 2011 a first application of their
approach to prokaryotes. They identified evolutionarily
important surface amino acids involved in Escherichia
coli RecA functions. RecA is already known as a drug tar-
get or co-drug target (in species for which gene knock-
out results in higher effectiveness of antibiotics). We
compared evolutionary rate of the recA gene in the eight
bacterial species analyzed in our study. In all cases (ex-
cept for the Streptococcus pneumoniae) the recA gene
was under strong evolutionary pressure (ranked in the
lower quartile for these species and in the upper quartile
in the case of S. pneumoniae) which makes it a good
drug target from the perspective of our approach.

Discussion
Antibiotics are mainly natural products used by micro-
organisms against other micro-organisms. They seem to
be relatively evolution proof, i.e. resistance is sufficiently
rare and it is still beneficial for microorganism to use
antibiotics against competing microorganisms.
We have shown that in most of the analyzed pathogenic

genomes potential drug targets have statistically signifi-
cant higher negative selection than essential genes or the
genome average. Our explanation for this phenomenon is
that such proteins are evolutionary constrained, i.e. they
are overall highly sensitive to perturbations, which could
correspond to relatively infrequent point mutations (in-
cluding those leading to resistance).
One may ask the question whether our observation is

not the result of the fact that bacteria have already been
subject to considerable “drug” pressure - either by med-
ical usage of compounds [43] or by more ancient and
long term exposures to the natural products on which
the antibiotics are based [44]. The observed purifying se-
lection may, in this case, be the result of selective sweeps
brought about by the drugs. If it would be the case more
sensitive variants would be removed due to selection
caused by the drug. The dN/dS analysis suggests that this
possibility should be excluded. This test compares relative
rate of evolution observed in the comparison of two
closely related species. In contrast to the pN/pS test which
takes in account existing allelic diversity, dN/dS takes into
account only fixed mutations (with frequency = 1 in the
population). Therefore, it is much more robust to the
observed selective sweeps caused by antibiotics.
In some cases in our study we observed exceptions to the

described general pattern. For example for Staphylococcus
aureus and Haemophilus influenzae we did not observe a
statistical difference in average pN/pS values between es-
sential genes and potential drug targets (although drug tar-
gets evolve much slower than other genes). It is likely that
for many drug targets, directed positive selection has led to
intrinsic resistance; many Staphylococcus aureus strains are
known to be resistant to vancomycin (VRSA) as well as
methicillin (MRSA). Similarly, many Haemophilus influen-
zae strains have intrinsic resistance to beta-lactam drugs. It
makes the observable differences in evolutionary rate be-
tween drug targets and other analyzed groups (essential
genes and all genes) being lower than they in fact are.
Drug targets also have a higher negative selection

when assessed by dN/dS ratio (omega). We consider
these results supplementary as omega analysis has cer-
tain drawbacks (e.g. sensitiveness to recombination, lim-
ited range of dS for which dN/dS ratio is considered to
be reliably estimated or non-linear dependency on time).
Nevertheless, dN/dS analysis confirms the results obtained
by the pN/pS approach.
When thinking about developing drugs against a cer-

tain target, one must also consider issues such as resist-
ance mechanism (efflux pumps, other resistance proteins),
drug target accessibility or host-related factors. Considering
whether a gene is essential (even in a broader context than
is commonly considered [45]) or conserved is often not
sufficient. The assessment of evolutionary rate (e.g. by pN/
pS values) helps substantially in the evaluation of potential
drug targets. The resulting targets have an evolutionary
history suggesting that they are less likely to randomly de-
velop resistance via point mutations. And while it seems
that the only cases one could find are the “obvious” ones,
we show that this approach identified metal ion binding
genes and succinate dehydrogenases - neither of which
corresponds to well-studied wide-spectrum drug targets.
Our results show that pN/pS analyses are an attractive
addition to drug target prediction pipelines.
On the other hand one should be aware of the biases

in our method. First, we used only whole genomes to
limit the cases where low quality alignments will sub-
stantially affect pN/pS estimation. Because of that the
eight chosen species are among the most common in-
fective bacteria (they were among the first sequenced
species). This, of course, is advantageous to address con-
cerns like MRSA and VRSA and other antibiotic resist-
ant pathogens, but then there is no evidence that the
conclusions of this study apply to the less common
human pathogens, to veterinary pathogens, or to other
bacteria which could be antibiotic targeted. Second, we
needed to limit the analysis to only eight species as the ap-
proach undertaken requires data on essential genes. This
raises a concern whether Gram-negative species dominat-
ing in this study led to biased results. And finally, predict-
ing evolutionary rate with pN/pS is limited to alignments
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of closely related sub-species. The last issue can be
avoided by performing dN/dS analysis, but as we men-
tioned above dN/dS methodology has its own drawbacks.

Conclusions
In this study we showed that good drug targets evolve
slowly and that the rate of evolution is a better predictor
of drugability than essentiality. This to some extent
explains why known antibiotics (usually being of micro-
bial origin) have been efficiently targeting other microor-
ganisms for millions of years of evolution [16].
Our study also shows that evolutionary rate can be

used to score and find potential drug targets. Generally
our approach can be considered a useful complementa-
tion to EP (Evolutionary Patterning) and ET (Evolution-
ary Tracing) approaches. Both those methods can be
useful in designing a drug that targets a specific site and
has a known mechanism of operation. Our approach can
be considered an attractive solution in the preceding
step, i.e. finding the targets which could be analyzed in
detail by ET or EP.
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