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Abstract

Substructure (MCS) based approach.

Background: Malaria is a major healthcare problem worldwide resulting in an estimated 0.65 million deaths every
year. It is caused by the members of the parasite genus Plasmodium. The current therapeutic options for malaria are
limited to a few classes of molecules, and are fast shrinking due to the emergence of widespread resistance to
drugs in the pathogen. The recent availability of high-throughput phenotypic screen datasets for antimalarial
activity offers a possibility to create computational models for bioactivity based on chemical descriptors of
molecules with potential to accelerate drug discovery for malaria.

Results: In the present study, we have used high-throughput screen datasets for the discovery of apicoplast
inhibitors of the malarial pathogen as assayed from the delayed death response. We employed machine learning
approach and developed computational predictive models to predict the biological activity of new antimalarial
compounds. The molecules were further evaluated for common substructures using a Maximum Common

Conclusions: We created computational models using state-of-the-art machine learning algorithms. The models
were evaluated based on multiple statistical criteria. We found Random Forest based approach provides for better
accuracy as assessed from ROC curve analysis. We further evaluated the active molecules using a substructure
based approach to identify common substructures enriched in the active set. We argue that the computational
models generated could be effectively used to screen large molecular datasets to prioritize them for phenotypic
screens, drastically reducing cost while improving the hit rate.

Background

Malaria is a major health problem across the world,
more so in the tropics and especially in developing
nations [1]. According to the recent World Malaria Re-
port, released by the World Health Organization
(WHO) in 2011, there were about 216 million cases of
malaria across the globe and 0.65 million deaths in 2010;
with highest mortality found within children living in
Africa [2,3]. Malaria is a mosquito-borne disease and is
caused by protozoan parasites belonging to the genus
Plasmodium. P. falciparum, P. vivax, P. ovale and
P. malariae are the four species of the parasite which
are routinely implicated as the causative agents in
humans, with P. falciparum being the most commonly
encountered and deadliest amongst them all and
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associated with 90% of the fatalities in Africa [4,5]. En-
demic to the tropical and subtropical regions of Africa,
Asia, South and Central America where hot and humid
climatic conditions prevail, malaria has been indicated as
a major constraint to economic development [6-8].

One of the major roadblocks in the adequate control of
malaria has been the limited therapeutic options available
for its treatment. The current commonly used classes of
drugs are limited to aminoquinolines and their derivatives
such as arylamino alcohols, methanols, biguanides,
diaminopyrimidines and antimalarial endoperoxidases.
Chloroquine and primaquine have been extensively
used for the treatment and prophylaxis of malaria
[9,10]. However, widespread drug resistance to available
therapeutic agents and the emergence of multi-drug
resistant strains has resulted in limited treatment
options [11-14]. The current pipeline for drug discovery
of anti-malarials is also limited, with just 13 products
in clinical trials and 8 in preclinical stages of
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development [15]. Large scale collaborative initiatives
have made it possible to assemble large datasets of
chemical structure information online [16]. This has
been complemented by the annotation of biological ac-
tivities of these molecules. Many of the biological activ-
ities have been derived by high-throughput bioassays
made possible by recent advances in automation of
these assays. The availability of chemical structure and
bio-activity information in standardized forms provide
immense opportunities for creating predictive compu-
tational models to understand the correlation between
chemical properties and their activities and also opens
up the possibility to create predictive computational
models for bio-activities [17,18]. These predictive
models make it possible to computationally screen large
molecular datasets thereby offering a possibility to im-
prove the hit-rate and thereby reduce the overall costs
of drug discovery. We have also previously successfully
generated such predictive models for anti-tubercular
molecules [19,20] and for small molecule modulators of
miRNA [21].

In the present study, we applied the machine learning
technique to create classification models from high-
throughput screens of anti-malarial agents that inhibit
the development of the apicoplast in the malaria para-
site, P. falciparum. In addition, we used a Maximum
Common Substructure (MCS) based approach to iden-
tify substructures enriched in the bioactive molecules.
Our result suggests that efficient and accurate computa-
tional predictive models could be built to screen large
datasets in silico and could be potentially used to
prioritize molecules for high-throughput screens.

Results and discussion

Descriptor generation and model construction

Initially, a total of 179 2D molecular descriptors were
generated for the active and inactive datasets
downloaded from PubChem. After data processing, as
explained in methods section, the number of descriptors
was reduced to 154 (Additional file 1), since not many
descriptors were removed after data processing, we
assumed the compounds to be structurally diverse. As
the dataset used in the study was large, the heap-size in
Weka was increased to 4 GB to handle out-of-memory
exception. The initial experiments were done using
standard base classifiers; however, to reduce the rate of

Table 1 Classification results
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False Negatives, cost sensitivity was introduced in
classifiers using the meta-learners. Misclassification cost
was set for False Negatives and was incremented so as to
stay around the upper limit of False Positives (i.e., 20%).
As expected, introducing cost for each of the classifier
resulted in an increase in the number of True Positives
and decrease in the number of False Negatives thereby
increasing the robustness of the model. The final mis-
classification cost used for each classifier is presented in
Table 1. The Naive Bayes classifier required the smallest
misclassification cost setting and was also the fastest in
building the model.

Model evaluation

A number of models were trained using 5-fold cross val-
idation on the training dataset using different misclassifi-
cation cost settings for False Negatives until cost
optimized models were obtained. The best model for
each classifier NB, RF and J48, was chosen based on
their performance evaluated using different statistical
measures (Table 1). All statistical results reported in
Table 1 are based on independent test set and not on
the training set. The overall efficiency of a classifier in
generating the models was judged from the accuracy.
The accuracy for all the models came out to be around
75% (Figure 1). Sensitivity and specificity plots were used
for identifying the best models for each dataset for
evaluating the effectiveness of the classifier in correctly
identifying positive and negative labelled instances
(Figure 2). The specificity for all the models was ap-
proximately 80% and the sensitivity ranged from 40-50%
with RF being the most sensitive classifier for the dataset
and NB the least sensitive.

Since our dataset was highly imbalanced, accuracy
alone cannot be used as a reliable statistical measure for
assessment of the classifiers performance. In addition to
this, other performance measures were employed to
check the robustness of the model which included the
BCR rate and ROC curve analysis. The balanced accur-
acy values turned out to be satisfactory for all the
models with best for Random forest (Table 1), being
more accurate than Naive Bayes and J48. ROC curve
analysis has been widely accepted as one of the most re-
liable approach for quick performance assessment of vir-
tual screening approaches therefore, it has been widely
deployed in evaluating the discriminatory power of

Classifier” TP rate FP Rate TN rate FN rate ROC area Accuracy (%) BCR* Cost
CSCNB 418 214 786 58.2 65.1 74.81 59.5 2
CSC RF 51 209 79.1 49 70.8 76.27 64 40
MetaCost J48 446 21 789 554 62.3 75.38 61 9

“CSC denotes CostSensitiveClassifier, “Balanced Classification Rate.
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Figure 1 Comparison of accuracy and balanced
classification rate.

virtual screens. All the models had significant area under
curve (AUC) obtained from ROC plot of the three
classifiers depicted in the Figure 3. Random forest on
the whole establishes to be the best classifier followed by
NB and J48 producing a significant AUC of 70% as
compared to NB (65%) and J48 (62%).

Evaluation of substructures

For identification of potentially enriched substructures
in the bioactive molecules, the active dataset containing
22,335 compounds were clustered using LibMCS algo-
rithm. All the ~22 k compounds were clustered into
1,842 scaffolds spread over 5 hierarchical levels. Only
top level clusters were selected for further analysis.
There were a total of 295 clusters at level 5 which
included 80 singletons. As our aim was to identify po-
tentially enriched substructures, all singletons were
removed and only 215 scaffolds were taken up for
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further analysis. The number of occurrences of each of
the 225 scaffolds in the active and the inactive datasets
was determined. Chi-square test and p-value were used
to determine the significance of enrichment (Table 2).
20 scaffolds had p-value less than 0.01 and an enrich-
ment factor > 2. In order to assess the structural similar-
ity of the scaffolds with the active molecules, the final 20
scaffolds were aligned against the active molecule
dataset. Figure 4 represents an alignment generated with
the top 20 compounds of the active set as determined
from Tanimoto similarity and overlap between query
scaffold and active molecules.

Conclusions

Malaria is a neglected tropical disease. Widespread
drug-resistance to commonly used anti-malarials which
has limited the therapeutic options available has
warranted the need to search for novel molecules with
anti-malarial activity. The availability of high-throughput
chemical screens in the public domain provides an ex-
cellent opportunity to create predictive computational
models to prioritize molecules using a virtual screening
approach. Such an approach therefore will, not only
serve to aid the rapid screening of compounds but also
subsequently enhance the identification of true hits and
thereby would lead to reduced cost of carrying out bio-
logical screens. Our analysis shows that a systematically
designed computational model for activity based on
chemical descriptors could be potentially used for
virtual-screening. The work encompasses a machine
learning based framework to build in silico predictive
models based on datasets from high-throughput screens
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Table 2 Significantly enriched scaffolds in the active dataset
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Table 2 Significantly enriched scaffolds in the active dataset (Continued)
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for apicoplast inhibitors of the malaria parasite. Com-
parative analysis of various classifiers revealed that
Random Forest performed better than both Naive Bayes
and J48. The study was extended further to explore
potentially enriched substructures in bioactive molecules,
which resulted in the identification of 20 significantly
enriched scaffolds. Predictive models in conjunction with
the enriched scaffold information can be potentially used
as a molecular filtering criterion for prioritizing molecules
for biological screens for anti-malarial activity.

Methods

Source of bioassay data

The cell based assay used in the current study [AID:
504834] consists of antimalarial compounds and was

obtained from PubChem database maintained by National
Center for Biotechnology Information (NCBI) [16]. Briefly,
the bioassay contained compounds which have the poten-
tial to inhibit apicoplast formation in Plasmodium. The
assay was based on a Luciferase reporter assay and the
compounds that cause inhibition of apicoplast formation
was assayed by a delayed death response at 96 hours. The
dataset AID: 504834 contained a total of 323,201 tested
compounds. Compounds having a PubChem activity
score between 40 and 100 were considered as active
(N =22,335), and all compounds with a score of 0 were
considered as inactive (N = 197,373). Besides the active
and inactive set of compounds, the assay depositor also
reported two other sets consisting of inconclusive and
unspecified compounds which were excluded from our
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study because of the un-certainty in their bioactivities.
The compounds from the active and inactive datasets
were downloaded in Structural Data Format (SDF).

Descriptor generation and data pre-processing

2D molecular descriptors were generated for the
molecules in the active and inactive datasets using
PowerMV [22]. PowerMV is popular software used for
descriptor generation statistical analysis and molecular
similarity search and extensively used in the field. The
datasets contained large number of chemical compounds
which could not be processed in one single run, so they
were initially split into smaller SDF files using
SplitSDFiles Perl script available from Mayachem tools
[23]. A total of 179 descriptors were generated using
PowerMV. Among the descriptors generated, 147
belonged to pharmacophore fingerprints while 24
belonged to weighted burden numbers and 8 were prop-
erty descriptors (Additional file 1). For the bit string
descriptors, the attributes having only one value (all 0’s
or all 1’s) throughout the dataset were filtered out to
reduce the dimensionality of the dataset. Using a custom
script, the dataset was split randomly into 80% train-
cum-validation set and a 20% independent test set. A
5-fold cross validation was employed for training and
validation set.

Cost sensitive classifiers

Machine Learning (ML) is a scientific discipline that
deals with the generation of predictive models based on
known properties learned from training datasets. In this

particular scenario, ML was employed to create binary
classifiers for the molecules based on their bio-activity
viz., actives and inactives. One of the issues to keep in
consideration while using standard classifiers for model
building is the imbalanced nature of the dataset, ie. the
class imbalance problem. Class imbalance arises from
the fact that in most of the high-throughput unbiased
screens, the numbers of inactive molecules exceeds far
beyond the number of actives, the minority ratio being
11% in our study. Standard classifiers that use equal
weighting for all the classes are incapable to handle such
highly imbalanced data and tends to assume that all mis-
classification errors cost equally. One of the alternatives
for this is to use cost sensitive classifiers in which
misclassification costs are used [24]. We applied Weka
(Waikato Environment for Knowledge Analysis) [25], a
popular suite of machine learning algorithms in our
study. Weka supports algorithms for data pre-
processing, analysis, classification, clustering, feature se-
lection techniques and visualization tools. Weka
introduces cost sensitivity in the base classifiers by means
of a confusion matrix, which for a binary classification
scheme consists of four sections: True Positives (TP) for
actives correctly classified as actives; False Positives (FP)
for inactives incorrectly classified as actives; True
Negatives (TN) in which inactives correctly classified as
inactives and False Negatives (FN) for active compounds
incorrectly classified as inactive. As False Negatives are
considered more important in an experiment for com-
pound selection, we set misclassification cost for False
Negatives to lessen the False Negatives number at the cost
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of increasing the False Positives. However, increasing the
cost for False Negatives will increase both the False
Positives and True Positives. Therefore we set an empir-
ical upper limit of 20% on the False Positive rate. Setting
of the misclassification cost is always arbitrary and no gen-
eral rule exists for it. It is more or less dependent on the
base classifier used.

Classification algorithms

Machine learning encompasses the application of a wide
variety of methods and algorithms that extract rules and
functions from large datasets. In our study, we used
three different classifiers Naive Bayes, Random forest
and J48. The Naive Bayes classifier, is based on the
Bayesian theorem, and assumes that each predictor is
conditionally independent of the other [26]. The algo-
rithm for Random forest (RF), a form of multiple deci-
sion trees, was developed by Leo Breiman [27]. J48, a
version of earlier algorithm (the very popular C4.5)
developed by J. Ross Quinlan, builds decision trees from
a set of labelled training data using the fact that each at-
tribute of the data can be used to make a decision by
splitting the data into smaller subsets [28].

Cost sensitivity was introduced by means of meta-
learners. The two meta-learners employed in this study
were MetaCost for J48 and CostSensitiveClassifier for
Naive Bayes and Random Forest respectively [29].

Model assessment

Standard ML statistical measures such as Accuracy, Sen-
sitivity, Specificity, Balanced Classification Rate (BCR)
and Receiver Operating Characteristic curve (ROC) were
used to evaluate the performance of the classifiers. Ac-
curacy is the percentage of predictions that are correct
((TP + TN)/(TP + TN + FP + FN)). Sensitivity is the per-
centage of positive labelled instances that are predicted
as positive (TP/(TP + FEN)). Specificity refers to percent-
age of negative labelled instances that are predicted as
negative (TN/(TN + FP)). BCR is the average of sensitiv-
ity and specificity and enforces balance in the correct
classification rate between two classes. A ROC curve is a
graphical plot of True Positive rate vs. False Positive rate
that illustrates a binary classifier’s performance by means
of area under the curve (AUC).

Maximum common substructure search

In order to identify potentially enriched substructures in
the bioactive molecules, we employed a Maximum Com-
mon Substructure (MCS) based approach. We used a
MCS based hierarchical clustering algorithm ‘LibMCS’
available from ChemAxon [30]. The minimal MCS size
was empirically set to '8 atoms owing to the size and
structural complexity of the molecules.
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The molecular scaffolds thus generated as a result of
MCS clustering were then used for similarity searching
in active and inactive datasets using the jcsearch’ algo-
rithm available from ChemAxon [31]. The evaluation of
substructures was done using the chi-square test. The p-
value which is the probability value associated with chi-
square was used to test the significance of enrichment.
Using the VROCS (release 3.1.2) [32] we performed a
molecular alignment of the selected scaffolds with
molecules of active dataset and visualized the alignment
in VIDA (4.1.1) [33] available from OpenEye Scientific
Software, Inc. [34].

Additional file

[ Additional file 1: List of descriptors calculated for the dataset. ]
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