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Abstract

Background: Proteins are the key elements on the path from genetic information to the development of life.
The roles played by the different proteins are difficult to uncover experimentally as this process involves complex
procedures such as genetic modifications, injection of fluorescent proteins, gene knock-out methods and others.
The knowledge learned from each protein is usually annotated in databases through different methods such as the
proposed by The Gene Ontology (GO) consortium. Different methods have been proposed in order to predict GO
terms from primary structure information, but very few are available for large-scale functional annotation of plants,
and reported success rates are much less than the reported by other non-plant predictors. This paper explores the
predictability of GO annotations on proteins belonging to the Embryophyta group from a set of features extracted
solely from their primary amino acid sequence.

Results: High predictability of several GO terms was found for Molecular Function and Cellular Component. As
expected, a lower degree of predictability was found on Biological Process ontology annotations, although a few
biological processes were easily predicted. Proteins related to transport and transcription were particularly well
predicted from primary structure information. The most discriminant features for prediction were those related to
electric charges of the amino-acid sequence and hydropathicity derived features.

Conclusions: An analysis of GO-slim terms predictability in plants was carried out, in order to determine single
categories or groups of functions that are most related with primary structure information. For each highly predictable
GO term, the responsible features of such successfulness were identified and discussed. In addition to most published
studies, focused on few categories or single ontologies, results in this paper comprise a complete landscape of GO
predictability from primary structure encompassing 75 GO terms at molecular, cellular and phenotypical level. Thus, it
provides a valuable guide for researchers interested on further advances in protein function prediction on
Embryophyta plants.

Background
The universe of protein functions can be summarized
through the use of the GeneOntology (GO) project, which
aimed to construct controlled and structured vocabular-
ies known as ontologies, and apply them in the annotation
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of gene products in biological databases [1]. Molecular
Function ontology refers to biochemical activities at the
molecular level, no matter what entities accomplish that
function or the context where it takes place; Cellular
Component ontology refers to the specific sub-cellular
location where a gene product is active, describing differ-
ent parts of the eukaryotic cell; Biological Process ontology
refers to a series of events with a defined beginning and
end, to which the gene product contributes. Currently,
as of February 2013 there are 38137 defined GO terms,
distributed over 9467 molecular functions, 3050 cellu-
lar components and 23928 biological processes. However,
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in spite of such variety of functions, all proteins share a
common basic configuration: a linear polypeptide chain
composed by different combinations and repetitions of
the twenty amino acids encoded by genes. Although,
currently there are almost 8 million sequences in non-
redundant databases, for most, we know just that amino
acid sequence deduced from the DNA chain [2]. Assess-
ment of protein functions requires, in most cases, exper-
imental approaches carried out in the lab. Unfortunately,
these procedures must be focused on specific proteins or
functions, and require either cloned DNA or protein sam-
ples from the genes of interest. Additionally, the function
of many proteins may be related to its own native environ-
ment. Such perspective has led some authors to conclude
that the only effective route towards the elucidation of the
function of some proteins may be computational analysis
and prediction from amino acid sequences that later can
be subjected to experimental verification [3].
Many approaches have been developed in this matter

(for complete revisions, see [4-6]). One of the earliest
applications, yet still one of the more popular bioinfor-
matics tools is the Basic Local Alignment Search Tool for
proteins (BLASTP) [7] which has been applied for obtain-
ing annotation transfers based on sequence alignments.
Also, a high number of methods (GOblet [8], OntoBlast
[9], GOFigure [10] and GOtcha [11]) are based on the
idea of refining and improving initial results from classic
alignment tools such as BLASTP, by performing map-
pings and weightings of GO terms associated to BLASTP
predictions. However, in such methods, the failure of con-
ventional alignment tools to adequately identify homol-
ogous proteins at significant E-values is not considered
[12]. The same applies for some more recent methods
that have improved specific points of this methodology
such as speeding up the procedure through decision rules
[13], including additional functionality for visualization
and data mining [14] or also including some statistics of
GO terms to refine selection [15]. In order to avoid the
dependency to BLAST alignments in the cases where the
alignment-based annotation transfer approach is not so
effective, more recent methods have used machine learn-
ing techniques trained over feature spaces of physical-
chemical, statistical or locally-based attributes. Those
methods employ techniques such as neural networks
(ProtFun [16]), Bayesian multi-label classifiers [17] and
support vector machines (SVM-Prot [18], GOKey [19],
PoGO [20]), obtaining high performance results in their
own respective databases, mostly composed by model
organisms such as bacteria and a few high order species.
There are, however, several aspects that must be dis-

cussed about current performances in prediction of GO
terms, when applied to non-model organisms such as
land plants (Embryophyta). First, from the previously
described methods, only Blast2GO [14] was specialized

for predicting GO terms in plant proteins. In fact, as
it is pointed out by the authors of Blast2GO, very few
resources are available for large-scale functional annota-
tion of non-model species. Some methods specialized on
vegetative species have been proposed recently, but they
are only intended for performing cellular component pre-
dictions (Predotar [21], TargetP [22], Plant-mPloc [23]).
Moreover, Predotar and TargetP can discriminate among
only three or four cellular location sites. Plant-mPloc, in
turn, covers twelve different location sites and it was rig-
orously tested over a set of proteins with less than 25%
of identity among them, where homologue-based tools
like BLASTP would certainly fail. For such dataset, they
obtained an overall success rate of 63.7%, much less than
reported by other cellular location predictors tested over
non-plant datasets. Second, none of the existing methods
can be used to deal with plant proteins that can simul-
taneously exist or move between two or more different
location sites [23], or belong to multiple functional classes
at the same time [24].
In order to improve the performance of current GO

term predictors for land plants, it would be useful to have
a better understanding of the underlying relationships
between primary structure information and protein func-
tionality. However, the structure of the machine learning
models behind high-accuracy predictors often makes dif-
ficult to understand why a particular prediction was made
[24]. In this sense, a recent method called Yloc [24] was
proposed for analyzing what specific features are respon-
sible for given predictions. This method, nevertheless, is
not intended to predict GO terms, but instead, it uses
annotation information from PROSITE [25] and GO as
inputs to the predictor. Additionally, their study is only
focused on predicting protein locations in the cell.
Since most of the current GO prediction methods are

limited to a few arbitrary functional classes and single
ontologies, they cannot provide any information about
relationships on the predictability at the various levels
of protein functionality (molecular, cellular, biological),
which could be another key element for determining how
the information of the primary structure is related to
protein function.
This work presents an analysis on the predictability

of GO terms over the Embryophyta group of organ-
isms, which is composed by the most familiar group of
plants including trees, flowers, ferns, mosses, and vari-
ous other green land plants. The analysis provides the
following key elements: predictions are made by using
features extracted solely from primary structure informa-
tion; analysis comprises most of the available organisms
belonging to the Embryophyta group; biases due to pro-
tein families are avoided by considering only proteins
with low similarity among them and a strong evidence
of existence; predictions and analysis are made over a
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set of categories belonging to the three ontologies; pro-
teins are allowed to be associated to several GO terms
simultaneously.
Results from this work answer whether it is possible

to predict most GO-slim terms from primary structure
information, what categories are more susceptible to be
predicted, which ontology is most related to the infor-
mation contained in the primary structure and what
relationships among ontologies could be influencing the
predictability at different levels of protein functionality in
land plants.

Methods
The implemented methodology for assessing predictabil-
ity of GO terms in Embryophyta proteins comprises the
following parts: (i) selection of the protein sequences con-
forming the database in order to cover the highest number
of available plant proteins, while ensuring high confidence
annotations and avoiding possible biases; (ii) categories
describing positive and negative samples associated to
each GO term are determined in order to minimize the
impact of hierarchical relationships; (ii) protein sequences
are mapped into feature vectors that encode a number
of attributes of varied nature; (iii) computed features are
clustered into groups of similar information content; (iv)
one binary classifier is learned for each GO term and each
feature cluster in order to evaluate the prediction power
of individual clusters, and finally (v) one binary classifier is
learned for each GO term using the whole set of features
in conjunction with an automatic feature selection strat-
egy in order to determine the global predictability of each
GO term.
The following subsections describe the methods

employed for each part of the methodology. All sim-
ulations were implemented on the R environment for
statistical computing [26]. Additional tools were mainly
provided by Bioconductor [27], and the seqinR pack-
age [28], all of them freely distributed under the GNU
General Public License.

Database
The database comprises all the available Embryophyta
proteins at UniProtKB/Swiss-Prot database ([29], file ver-
sion: 10/01/2013), with at least one annotation in the Gene
Ontology Annotation (GOA) project ([30], file version:
7/01/2013). The resulting set comprises proteins from 189
different land plants.
In order to avoid the presence of protein families that

could bias the results, the dataset was filtered at several
levels of sequence identity using the Cd-Hit software [31].
Themain results are reported for the lowest identity cutoff
(30%). However, additional analyses at 40%, 50%, 60%, 70%
and 80% were also performed in order to provide further
information on the robustness of the method.

The main set comprises a total of 3368 protein
sequences, fromwhich 1973 sequences are annotated with
molecular functions, 2210 with cellular components and
2798 with biological processes. Automatically-assigned
annotations were not included in the analyses.

Definition of classes
Although, in principle, the method can be trained to pre-
dict any GO term for which there are enough training
sequences, all tests were performed over the set of cate-
gories defined by the plants GO slim developed by The
Arabidopsis Information Resource - TAIR ([32], file ver-
sion: 14/03/2012). This choice was made because GO
includes a large number of categories that do not occur
in plants, due to its broad size. In turn, slims are smaller,
more-manageable sub-sets of GO, that focus on terms rel-
evant to a specific problem or data set [33], thus allowing
to generate higher-level annotationmore robust to tests of
statistical significance [34].
Positive and negative samples associated to each GO

term are selected by considering the propagation princi-
ple of GO. If a protein is predicted to be associated to
any given GO term, it must be automatically associated
to all the ancestors of that category and thus, it is enough
to predict only the lowest level entries. Consequently, for
each GO term, positive samples are all those proteins that
have been annotated with this term or any of its descen-
dants, excepting those descendants that are also included
as categories. All the remaining samples in the database
are selected as negative samples for that GO term. In order
to explicitly note that some GO terms are not including
their descendants categories, such “incomplete” GO terms
are marked with an asterisk throughout the paper.
After defining the membership of the sequences, cate-

gories with less than 30 proteins were discarded because
they did not have enough samples to train a statistically
reliable classifier. The final set is thus comprised by 14 GO
terms in the molecular function ontology, 20 GO terms
in the cellular component ontology and 41 GO terms in
the biological process ontology. Table 1 shows the final list
of categories, as well as the acronyms used to cite them
throughout this paper and the number of samples in each
one for the 30% identity cutoff.

Characterization of protein sequences
Protein sequences are mapped into feature vectors by
extracting three types of attributes: physical-chemical fea-
tures, primary structure composition statistics and sec-
ondary structure composition statistics (see Table 2). The
first group provides information directly related with bio-
chemistry of the molecule: weight, polarity of amino acid
side chains, isoelectric point, and hydropaticity index
(GRAVY). The second group is based on counting the
occurrences of all possible subsequences of a fixed length
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Table 1 Definition and size of the classes

Class Acronym Size Class Acronym Size

Molecular Function Biological Process

Nucleotide binding Ntbind 47 Reproduction* Reprod* 337

Molecular function* MF* 268 Carbohydrate metabolic process ChMet 315

DNA binding DnaBind 107 Generation of precursor metabolites MetEn 150

Transcription factor activity TranscFact 307 and energy

RNA binding RnaBind 43 Nucleobase, nucleoside, nucleotide, NaMet* 712

Catalytic activity* Catal* 334 nucleic acid metabolic process*

Receptor binding RecBind 38 DNA metabolic process DnaMet 191

Transporter activity Transp 125 Translation Transl 82

Binding* Bind* 173 Protein modification process ProtMod 391

Protein binding* ProtBind* 630 Lipid metabolic process LipMet 324

Kinase activity Kinase 68 Transport Transport 531

Transferase activity* Transf* 173 Response to stress StressResp 790

Hydrolase activity Hydrol 190 Cell cycle CellCycle 234

Enzyme regulator activity EnzReg 41 Cell communication* CellComm* 66

Signal transduction SigTransd 305

Cell-cell signaling Cell-cell 53

Cellular Component Multicellular organismal development* MultDev* 490

Cellular component* CC* 234 Biological process* BP* 879

Extracellular region ExtcellReg 109 Metabolic process* Met* 279

Cell wall CellWall 77 Cell death CellDeath 95

Intracellular* Intracell* 167 Catabolic process Catabolic 479

Nucleus* Nucleus* 421 Biosynthetic process* Biosint* 1125

Nucleoplasm NuclPlasm 51 Response to external stimulus* ExtResp* 65

Nucleolus Nucleolus 84 Tropism Tropism 36

Cytoplasm* CitPlasm* 168 Response to biotic stimulus BioResp 275

Mitochondrion Mitochond 244 Response to abiotic stimulus AbioResp 642

Endosome Endosome 58 Anatomical structure morphogenesis StrMorph 366

Vacuole Vacuole 171 Response to endogenous stimulus EndoResp 332

Peroxisome Peroxisome 32 Embryonic development EmbDev 139

Endoplasmatic reticulum EndRet 109 Post-embryonic development* PostDev* 375

Golgi apparatus GolgiApp 100 Pollination Poll 43

Cytosol Cytosol 389 Flower development FlowerDev 228

Ribosome Ribosome 98 Cellular process* CP* 1486

Plasma membrane PlasmMb 353 Response to extracellular stimulus ExtcellResp 59

Plastid Plastid 696 Photosyntesis Photosyn 102

Thylakoid Thylk 147 Cellular component organization CellOrg 757

Membrane* Mb* 472 Cell growth CellGrowth 133

Protein metabolic process* ProtMet* 187

Cellular homeostasis CellHom 53

Secondary metabolic process SecMet 164

Cell differentiation CellDiff 267

Growth* Growth* 64
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Table 1 Definition and size of the classes (Continued)

Regulation of gene expression, RGE 103

epigenetic

The list of GO terms covered by this analysis is intended to provide a complete landscape of GO predictability at the three levels of protein functionality in
Embryophyta plants. For classification purposes, classes marked with an asterisk (*) were redefined. The number of samples in those categories corresponds to the
sequences associated to that class and none of its also listed descendants.

n. Only features corresponding to n = {1, 2} are employed,
provided that the size of the feature space grows expo-
nentially with n, and simple counts were converted into
relative frequencies (summing to one). The third group
is analogous to the second one, but applying such char-
acterization to the predicted secondary structure of the
protein. Predictions were computed with the Predator 2.1
software [35], whose output is a linear sequence with three
structural domains: alpha helices, beta sheets and coils.
In the case of ambiguous characters in the amino

acid sequence, each feature was computed as its statisti-
cal expected value, with natural abundance percentages
of amino acids as their prior probabilities. Additionally,
since different groups of features are very heterogeneously
scaled, z-score normalization was performed so that each
feature has a zero mean and unitary standard deviation.
The full feature matrix is provided in the supplementary

material along with a file specifying the membership of
samples to each category.

Feature clusters
As a first step to perform an analysis of discriminant
features for each GO term, features were hierarchically
clustered into groups of similar information content
(Additional file 1). For this purpose, the Ward clustering

Table 2 Initial set of features extracted from amino acid
sequences

Nature Description Number

Physical-chemical Sequence length 1

Molecular weight 1

Positively charged residues (%) 1

Negatively charged residues (%) 1

Isoelectric point 1

GRAVY 1

Primary structure
statistics

Amino acid frequencies 20

Amino acid dimer frequencies 400

Secondary structure
statistics

Structure frequencies 3

Structural dimer frequencies 9

Total 438

Features are divided into three broad categories: physical-chemical features,
primary structure composition statistics and secondary structure composition
statistics.

algorithm was used, with absolute Pearson correlation
distance as metric. This procedure yielded 15 clusters
that are summarized in Table 3 (a complete description
can be found in the Additional file 2) and are used for
assessing the influence of specific feature groups on the
predictability of each category.

Feature selection strategy
The feature selection procedure is carried out in the sec-
ond part of the Results and discussion section, where the
global predictability of each GO term is evaluated by using
the whole feature set. Since redundant features would pos-
sibly overfit the training data, an analysis of relevance and
redundancy was applied. Let fi, i = 1, 2, . . . , n, be the ini-
tial set of features, y be the vector of labels, cij = cor(fi, fj)
be the linear correlation computed between any pair fi and
fj and ciy = cor(fi, y) be the linear correlation between fi
and y. Defining this, relevance of features can be quanti-
fied by computing ciy for all features and then, redundant
ones can be identified by analyzing the n × n feature cor-
relation matrix. In order to speed up the calculations, an
algorithm based on the Fast Correlation-Based Filter of
[36] was used.

Decision making
In order to allow samples to be associated to multi-
ple categories, decision making was implemented follow-
ing the one-against-all strategy. The method produced a

Table 3 Feature clusters

Group Main feature Size Group Main
feature

Size

1 Protein length 34 9 Proline 14

2 Negative charge /
Acidic

8 10 Glutamine 35

3 Positive charge /
Basic

30 11 Arginine 26

4 Alanine 10 12 Tryptophan 38

5 Cysteine 38 13 Tyrosine 35

6 Hidrophobic 46 14 Alpha helices 6

7 Histidine 29 15 Beta sheets 4

8 Asparagine /
Methionine

85

Description of the clusters of features with similar information content. A
complete description of features belonging to each cluster can be found in the
Additional file 2.



Jaramillo-Garzón et al. BMC Bioinformatics 2013, 14:68 Page 6 of 11
http://www.biomedcentral.com/1471-2105/14/68

strong class imbalance since it trains a number of binary
classifiers, each one intended to recognize samples from
one class out of the whole training set. To overcome the
problems that imbalanced classes commonly produce in
pattern recognition techniques, the Synthetic Minority
Over-sampling Technique (SMOTE) was employed [37].
A support vector machine (SVM) with Gaussian kernel

was used for running all the classification tests. This SVM
is trained with the ’kernlab’ package, available in R-CRAN
[38]. Dispersion of the kernel and trade-off penalization
parameter of the SVM are tuned for each test with a par-
ticle swarm optimization meta-heuristic, a bio-inspired
optimizationmethod that has been used inmultiple appli-
cations in the past years [39].
In order to estimate the performance of the predictive

model, a 5-fold cross-validation strategy is implemented.
In such strategy, the test procedure is repeated five times,
and each time an 80% of the data is used for adjusting
the SVM parameters and training the model, while the
remaining 20% is used as testing samples. This strategy
also allows providing an estimation of the reliability of the
model by computing the variability of the results through
the five repetitions.

Results and discussion
Analysis of predictability with individual feature clusters
Classification results with individual feature clusters, for
an identity cutoff of 30%, are condensed in Figure 1. The
square root of the product between sensitivity and speci-
ficity (geometric mean), is depicted as global performance
measure and the color scale has been adjusted to highlight
the highest (green) and the lowest (blue) performances.
Note that the rows and columns have been ordered to
explicitly locate best predicted GO terms on top and most
discriminant groups to the left.

Figure 1(a) shows the analysis for the molecular func-
tion ontology. For all feature groups, Receptor binding
achieved the highest classification scores. This category
is intended to comprise proteins that interact selectively
and non-covalently with one or more specific sites on
a receptor molecule. About 63% of the proteins associ-
ated to this category in the database are proteins involved
with binding of serine/threonine kinase receptors, which
turned out to be easily predicted frommost of the defined
features.
Transcription factor activity achieved was easily pre-

dicted from the feature groups 1, 3, 6, 8 and 14. Not
so surprising is the fact that DNA binding also presents
a similar behavior since most transcription factors must
interact with DNA molecules and consequently they are
also included in this category. However it is worthy to
note that several other proteins also perform DNA cleav-
age, such as polymerases, nucleases and histones, and they
were also well predicted from the same feature groups.
The conclusion from these results becomes more evident
by observing the results of the DNA metabolic process in
Figure 1(c), which confirm the high predictability of all
proteins involved with transcription when using the men-
tioned features groups. A similar behavior is also observed
for nucleus* in Figure 1(b), supported by the fact that
the transcription process is mostly carried out in that
sub-cellular location.
Transporter activity refers to proteins that enable the

directed movement of substances into, out of, within or
between cells. Most of them are integral transmembrane
proteins, that are distinguished by their high content of
hydrophobic residues [40]. In fact, some of the highest
performances of transporter activity were reached with
the groups 3 and 6, which include GRAVY index as well
as monomer and dimer frequencies of three out of the
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Figure 1 Prediction performance with different feature clusters for the three ontologies (a) Molecular function, (b) Cellular component
and (c) Biological process. Rows represent classes in Table 1 while columns represent feature groups in Table 3. For each ontology, best predicted
categories are ordered from top to bottom while most discriminant feature groups are ordered from left to right.



Jaramillo-Garzón et al. BMC Bioinformatics 2013, 14:68 Page 7 of 11
http://www.biomedcentral.com/1471-2105/14/68

four most hydrophobic residues: leucine, isoleucine and
phenylalanine. Additionally, predictability of this molecu-
lar function is reflected, while in a minor degree, on the
transport biological process, which reaches its highest val-
ues for the same feature groups (see Figure 1(c)). Themain
difference between those GO terms lies in that transport
is a broader category, including external agents such as
oxygen carriers and lipoproteins that perform transport
within multicellular organisms.
On the other hand, the root node of the molecular

function ontology was GO terms with the lowest average
prediction performances. Remember that the root node
contains the proteins that do not belong to any of its
descendant categories, so it keeps a small set of sequences
of a sparse nature, which explains the impossibility to
model and predict them as a group. It is interesting to
note that the same behavior is observer for the other two
ontologies (Figures 1(b) and 1(c)).
Concerning the cellular component ontology, it can

be observed in Figure 1(b) that ribosome category has
reached the highest classification accuracies, specially
with groups 1, 2, 3 and 11. Such groups mainly consist
of the four charged residues: lysine, arginine, glutamic
acid and aspartic acid. This can be explained since ribo-
somal proteins must interact with the negatively charged
phosphodiester bonds in the RNA backbone, so they are
expected to have a high percentage of positively charged
residues to neutralize such charge repulsion. In agree-
ment with this, [40] describes the composition of iso-
lated ribosomal proteins as showing a high percentage of
lysine and arginine residues and a low aromatic content.
Hence, there is enough evidence to establish that riboso-
mal proteins are another highly predictable category from
primary structure information.
As explained before, nucleus* becomes easily predicted

from the same feature groups that have shown high dis-
criminant capabilities for transcription related proteins. A
similar behavior is also observed for proteins belonging
to the nucleolus component, which encompasses proteins
including RNA polymerases, transcription factors, pro-
cessing enzymes and ribosomal proteins among others,
which must interact with nucleic acids and have shown
low isoelectric points in comparison to the remaining
proteins in the database.
Thylakoid proteins also presented high prediction per-

formances with several feature groups. Further studies
would be required to explain this results.
Broad categories such as membrane* showed poor per-

formances with most feature groups, presumably due to
its high diversity. However, some rather well-defined cat-
egories such as mitochondrion and perixosome were also
ranked in the lowest places in Figure 1(b), simply prov-
ing to be poorly predictable from the extracted feature
groups.

Concerning Figure 1(c), the biological process that was
better predicted for most group features is regulation of
gene expression, epigenetic. This GO term encloses pro-
teins involved in modulating the frequency, rate or extent
of gene expression and is highly composed by histones.
In fact, since histones are highly alkaline proteins, it
is consistent to observe that this category became par-
ticularly well predicted from groups 3, 6 and 7, which
are mainly conformed by frequencies of phenylalanine,
leucine, isoleucine, lysine and histidine residues. Also,
cysteine related frequencies were highly discriminant for
regulation of gene expression, epigenetic (group 5 which
can be explained by the fact that altering the redox state
of cysteines serves for modulating protein activity, and
several transcription factors become activated by the oxi-
dation of cysteines that form disulfide bonds [41].
Tropism and Cell Cycle also appeared near the top of

Figure 1(c), just before DNA metabolic process which was
already discussed.

Analysis of predictability with the full set of features
Analyses in the previous section were done after discard-
ing sequences with identities superior to 30%. Otherwise,
the predictability of certain terms could be enhanced from
the fact that many proteins in training and testing sets
are copies (or close relatives) from another, rather than
from predictive value of certain sequence-derived fea-
tures. However, in order to provide further information
on the robustness of the proposed methodology when the
identity cutoff changes, Figure 2 presents an analysis of
predictability with the full feature set (although applying
the feature selection procedure described in the Methods
section), while varying the identity cutoff. For compari-
son purposes, results achieved by BLASTP are depicted
in blue, while results of the proposed methodology are
depicted in green. The first thing that can be noted from
Figure 2 is the fact that alignment-based predictions are
more sensitive to the variation of the identity percentage
than the proposed methodology. It can be clearly seen
that BLASTP suffers a strong performance degradation
as the identity filter is more stringent, while the perfor-
mance of the proposedmethodology remains more stable.
Moreover, although in Figure 2(a) it can be seen that,
when predictingmolecular functions, BLASTP is superior
than the proposed methodology for high identity cutoffs,
the difference at 30% is not statistically significant. Con-
versely, the proposed methodology clearly outperforms
BLASTP for low identity percentages when predicting cel-
lular components and biological processes (Figures 2(b)
and 2(c)).
Figure 3 depicts detailed results of predicting each class

with the full feature set for an identity cutoff of 30%.
Left plots show sensitivity, specificity and geometric mean
(green line) achieved with the five-fold cross-validation
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(a) Molecular function (b) Cellular component (c) Biological process

Figure 2 Performance variation in function of the identity cutoff for the three ontologies (a) Molecular function, (b) Cellular component
and (c) Biological process. Green and blue plots show the variation of the general prediction performances for SVM and BLASTP, respectively,
according to the identity percentage cutoff used in the dataset. Boxplots show the dispersion throughout the 75 GO terms.

procedure, while right plots depicts boxplots for analyz-
ing performance variation throughout the five repetitions.
Left plots also depicts the performance of the BLASTP
algorithm for comparison purposes (blue line). Similar
figures for the whole sweep of identity cutoffs are pre-
sented in the Additional file 3.
Note that GO terms were ordered again from top to bot-

tom according to their predictability, but this order is not
strictly the same as in Figure 1. Some interesting results
in Figure 3(b) are provided by categories such as plas-
tid, which was not easily predicted with any feature set
independently, but reached medium to high classification
results when the complete set was used. Such behavior is
a clear example of the multivariate associations that could
be missed when analyzing only individual feature sets.
Other results were consistent with the insights pro-

vided by the previous analyses, showing that some of the

best predicted GO terms were transporter activity, tran-
scription factor activity, and DNA binding in molecular
functions; ribosome, nucleus*, nucleolus and thylakoid in
cellular components; regulation of gene expression, epige-
netic, Cell cycle, Photosyntesis and DNA metabolic process
in biological processes.
A reduced number of categories had performances

under 50%, most of them from the biological process
ontology and a few form the molecular function ontol-
ogy. It is important to note that the majority of those
categories achieved very high specificities and low sen-
sitivities, pointing out to a high dispersion of such cat-
egories over the feature space, which yields to a very
high number of false negatives. Also, the high disper-
sions observed in the boxplots for some of the worst
predicted classes demonstrate that there is a high variabil-
ity among repetitions of the experiment which means that
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Figure 3 Prediction performance with the complete set of features for the three ontologies (a) Molecular function, (b) Cellular
component and (c) Biological process. Bars in the left plots show sensitivity and specificity of SVMs. Lines depict geometric mean as a global
performance measure for SVM (green) and BLASTP (blue). Right plots depicts variability throughout the five folds of cross-validation. For each
ontology, best predicted categories are ordered from top to bottom.
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those low performances are not confident. Conversely,
the categories with high performances show also low dis-
persions associated to them, hinting consistency in the
predictors.
Although the main purpose of this work is not to design

a highly accurate GO term predictor, but to provide a
comprehensive analysis of the predictability of GO terms
from primary structure information, it is important to
mention how this method compares with currently used
prediction tools. The blue and green lines in Figure 3 rep-
resent the prediction performances of BLASTP and the
SVM based predictor used in this work, respectively. Both
methods were tested over the same database described
in the Methods section. From Figure 3(a) it is possible to
conclude that the two methods provide similar prediction
capabilities for the molecular function ontology at this
identity cutoff. However, Figures 3(b) and 3(c) show that
the SVM out-performed BLASTP for the cellular compo-
nent and biological process ontologies, with only a few
exceptions. It is also important to point out that the results
achieved here are competitive with those reported by [23],
which is one of the more recent and effective predictors
dedicated to plant proteins.
Finally, Figure 4 depicts the accuracy obtained in each

category, when predictions of inferior GO terms were
propagated up to their parents. Observe that asterisks

have been removed to point out that GO terms are now
including all their descendants.
It is notable how categories with the major number of

descendants have been negatively affected by their false
positives. This is especially observed in Figure 4(b) for
cytoplasm, and intracellular, and Figure 3(c) for cellular
process and metabolic process. Conversely, a few classes
that were lacking sensitivity were favored by the contri-
butions of their descendants, as it is the case of the root
nodes of the ontologies.

Conclusions
An analysis of GO terms predictability in land plants
proteins was carried out in order to determine sin-
gle categories or groups of related functions that are
more related with primary structure information. For this
purpose, pattern recognition techniques were employed
over a feature set of physical-chemical and statistical
attributes computed over the primary structure of the
proteins. High predictability of several GO terms was
observed in the three ontologies. Proteins associated to
transport activities showed high correct prediction rates
when using hydropathicity related features. Also, pro-
teins involved with transcription (and therefore asso-
ciated to the nucleus) presented high discriminability
from the extracted features. Ribosomal and other proteins

(a) (b)

(c)

Figure 4 Propagated prediction performance for the three ontologies (a) Molecular function, (b) Cellular component and (c) Biological
process. Prediction performance when propagating predictions of children nodes to their parents. Note that asterisks in the category names have
been removed since categories include all their member now.
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involved with translation, proved to be highly predictable
from features related to electric charges of the amino
acid sequence. At the biological process level, proteins
related to regulation of gene expression and nucleic acid
metabolic process were easily predicted, while some other
biological processes showed low predictability from the
extracted primary structure features. The information
derived from this study could be used to get further
improvement in prediction performances by combining
the information from SVM classifiers with annotation
transfer methods.

Additional files

Additional file 1: Data Set. The main set comprises a total of 3368
protein sequences, from which 1973 sequences are annotated with
molecular functions, 2210 with cellular components and 2798 with
biological processes. Automatically-assigned annotations were not
included in the analyses.
Two files are provided, both of them in character separated value (CSV)
format; comma is used for the decimal point and a semicolon as column
separator, according to the Excel convention for CSV files in most Western
European locales.
features.csv: Contains the feature matrix of 3369 rows (3368 proteins +
header) and 439 columns (438 features + header). The first column
contains the Uniprot identifiers of proteins and the first row contains the
feature names. Position (1,1) is an empty field.
labels.csv: Contains the membership matrix of 3369 rows (3368 proteins +
header) and 76 columns (75 GO terms + header). The first column contains
the Uniprot identifiers of proteins and the first row contains the GO keys of
functional categories. Position (1,1) is an empty field. Each position in the
matrix contains the number zero or the number one to establish whether
or not the protein of that row is associated to the GO term corresponding
to that column.

Additional file 2: Feature clusters description. Table describes the
feature clusters derived from correlation analysis. For this purpose, the
Ward clustering algorithm was used, with absolute Pearson correlation
distance as metric. A single letter stands for a single amino acid frequency
according to their one-letter code, while letter pairs stand for dimmer
frequencies. Also, symbols α, β and −, stand for frequencies of alpha
helices, beta sheets and coils respectively.

Additional file 3: Detailed results for several identity thresholds.
Figures depicting detailed results for each class with the full feature set, for
several identity cutoffs. Left plots show sensitivity, specificity and
geometric mean (green line) achieved with the five-fold cross-validation
procedure, while right plots depicts boxplots for analyzing performance
variation throughout the five repetitions. Left plots also depicts the
performance of the BLASTP algorithm for comparison purposes (blue line).
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