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Abstract

Background: NMR chemical shift prediction plays an important role in various applications in computational
biology. Among others, structure determination, structure optimization, and the scoring of docking results can profit
from efficient and accurate chemical shift estimation from a three-dimensional model.
A variety of NMR chemical shift prediction approaches have been presented in the past, but nearly all of these rely on
laborious manual data set preparation and the training itself is not automatized, making retraining the model, e.g., if
new data is made available, or testing new models a time-consuming manual chore.

Results: In this work, we present the framework NightShift (NMR Shift Inference by General Hybrid Model Training),
which enables automated data set generation as well as model training and evaluation of protein NMR chemical shift
prediction.
In addition to this main result – the NightShift framework itself – we describe the resulting, automatically generated,
data set and, as a proof-of-concept, a random forest model called Spinster that was built using the pipeline.

Conclusion: By demonstrating that the performance of the automatically generated predictors is at least en par with
the state of the art, we conclude that automated data set and predictor generation is well-suited for the design of
NMR chemical shift estimators.
The framework can be downloaded from https://bitbucket.org/akdehof/nightshift. It requires the open source
Biochemical Algorithms Library (BALL), and is available under the conditions of the GNU Lesser General Public License
(LGPL). We additionally offer a browser-based user interface to our NightShift instance employing the Galaxy
framework via https://ballaxy.bioinf.uni-sb.de/.

Background
Nuclear Magnetic Resonance (NMR) chemical shift
prediction has developed into a valuable tool for
computational structural biology and biomolecular NMR
spectrometry. While the high dependency of NMR chem-
ical shifts on structural details renders their prediction
a formidable task, it simultaneously makes them a very
valuable source of structural information for applica-
tions like structure determination and optimization [1-4],
and the scoring of protein-protein docking results [5-7].
Hence, a variety of fields profit from efficient and accu-
rate chemical shift estimation from a three-dimensional
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model of the molecule under consideration – in docking,
for instance, predicted shifts for the candidate complexes
are compared to the experimentally observed ones as a
measure of reconstruction error.
The development of novel NMR chemical shift predic-

tion techniques is a challenging task. Previous approaches
either focus on full quantum mechanical models (e.g.
[8-11]) which are computationally very expensive, or set-
tle for so called semi-classical approximations borrowed
from classical physics [5,12-14]. As a third option, pre-
diction techniques can use statistical models based on
semi-classical, structural, or sequential features of the
proteins (e.g. PROSHIFT [15], ShiftX [14,16], SPARTA
[17], CamShift [18], BioShift [19], SPARTA+[20], ShiftX2
[21], or shAIC [22]). For high-throughput applications, the
most successful approaches today offer good prediction
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accuracy with relatively low computational cost by com-
bining semi-classical and statistical approaches. These
techniques are known as hybrid methods.
Developing a new hybrid method, or extending an exist-

ing one, is a hard and complex task for which three
questions have to be addressed: which features should
be included into the model, which statistical technique
should be employed, and which data set can be used.
The question of data set generation in particular is a

very difficult one. The required information for creating
such a data set is spread over several data bases, such as
the BiologicalMagnetic Resonance Bank (BMRB) [23] and
the Protein Data Bank (PDB) [24] and is stored in dif-
ferent, notoriously hard-to-parse, file formats. To make
matters worse, real-life data sets often contain serious syn-
tactical, semantical, and logical errors or inconsistencies.
Consequently, a number of publications [21,25-29] dis-
cuss the necessity of checking and correcting the given
data, BMRB NMR data and PDB coordinates alike. Typi-
cal issues for creating NMR chemical shift prediction data
sets are the completeness and quality of PDB files, the
chemical re-referencing problem for NMR data, and the
exclusion of homologs within the data set. For BMRB files,
a number of approaches (e.g. [25-28]) have been devel-
oped to detect and correct assignment and referencing
errors. Mainly due to these complications, most former
approaches rely on hand-curated data sets created by
the application of unstandardized sequences of restriction
and correction methods.
Another challenge when training prediction models is

the computation of the semi-classical terms, or the struc-
tural and sequential features to learn from. Computing
these terms and molecular features correctly, reliably, and
efficiently requires complexmolecular data structures and
algorithms. Further technical challenges are the computa-
tion and the choice of a statistical model.
In this work, we present an extensible automated frame-

work calledNightShift for data set generation and training
of hybrid NMR chemical shift prediction methods. Most
importantly, typical semi-classical terms for shift predic-
tion are implemented and readily available. As of now, we
include random coil contributions, aromatic ring current
effects, electric field contributions, and hydrogen bond-
ing effects. In addition, the feature set for the training
of the statistical term encompasses sequential, structural
(angles, surface, and density), force-field based, as well as
experimental properties. All features are computed using
our open source library BALL [30], and can be easily
extended.
Due to its modular nature, the framework can employ

data for both, protein structures and chemical shifts, from
a variety of sources. As long as the input is available in
the form of one of several recognized standard file for-
mats (e.g., PDB for the proteins and NMRStar for the shift

data), NightShift can easily train and evaluate models on
it. As demonstrated in this paper, this freedom can, e.g.,
be helpful in addressing some of the current controversies
in shift prediction. For instance, the user can freely decide
on a shift reference correction method of his choice, or
validate models trained on non-reference corrected data
sets on rereferenced ones, or study the difference of mod-
els trained on X-Ray-derived protein structures to those
based on NMR-derived ones.
To demonstrate that the data collected by the frame-

work is indeed of use for NMR shift prediction, we train
and evaluate a simple hybrid prediction model. The whole
training and evaluation process is completeley automated
and does not require human intervention. Based on recent
research [16,21], we choose a random forest model for
the statistical contribution of this proof-of-concept pre-
dictor which is known for its prediction quality and
efficiency, and in our experiments has demonstrated to
yield very accurate and stable results. In general, however,
the pipeline is model-agnostic and can be used with any
regression technique implemented in R [31].

Methods
A framework as complex as NightShift depends on a rea-
sonable data model that can be easily accessed during all
stages, as well as be easily extended.
To this end, we store all accumulated information that

is needed for the training of our chemical shift prediction
model in later stages, namely the experimental shifts of the
atoms, the corresponding atomic features, and the filter or
quality scores, in an SQLite data base (www.sqlite.org).
The underlying data model consists of two tables: a

PDB-BMRB-chain mapping and an atomic property table,
focusing at individual chemical shifts and the computed
atomic features.

Data sources
In principle, a number of data sets for NMR protein chem-
ical shift prediction is available, e.g., the recent ShiftX2
[21] training and test set, the RefDB [25], the PROSHIFT
set [15], the TALOS+ set [32], or the general PDB to
BMRB mapping of the BMRB [23] itself. Apart from the
RefDB and the BMRB mapping tables, the data sets were
hand crafted in a time-consuming manual process. To the
best of our knowledge, all previously proposed prediction
approaches created such a data set manually, using many
individually chosen filtering criteria. This, however, has
three major disadvantages: first, it is a very cumbersome
and time-consuming process that is usually not repeated
when new experimental information becomes available.
Second, the manual curation of the data set may impose a
certain bias into the final models. And third, cutting away
much of the input space might remove valuable informa-
tion. The first problem could be circumvented by using

www.sqlite.org


Dehof et al. BMC Bioinformatics 2013, 14:98 Page 3 of 11
http://www.biomedcentral.com/1471-2105/14/1/98

one of the available data sets (some information about
these data sets can be found in Table 1). However, all of
these suffer from the other two mentioned problems.
Thus, we decided to approach the problem differently

in our pipeline: we want to make use of all available data
with the ability to easily retrain the model. To obtain the
largest possible data set available at any given moment, we
make use of the official mapping between PDB and BMRB
entries provided by the BMRB.
Former approaches to NMR chemical shift prediction

typically rely on X-ray resolved structures as input while
neglecting NMR resolved ones. This might seem unin-
tuitive at first: if we have access to experimental shift
information for a given protein, we typically also find a
protein structure that was resolved using NMR, based on
exactly those shifts under the exact same experimental
conditions. This structure, though, is typically ignored in
training a shift prediction method, and instead replaced
with an alternative X-ray resolved one for the same – or,
more typically, a highly homologous – protein. The main
reason for this choice is structure quality: if both, X-ray
and NMR structures exist for the same protein, the X-ray
resolved ones typically feature better resolution, which is
considered crucial for shift prediction.
On the other hand, the physico-chemical conditions in

a protein crystal differ strongly from those encountered
in the NMR experiment in which the chemical shifts were
measured. In fact, there is evidence for statistically signifi-
cant deviations betweenNMR andX-ray structures for the
same protein that often exceed experimental uncertainties
and RMSDs within the NMR ensemble [33]. In addition,
proteins are often modified for crystallisation purposes,
including amino acid mutations. In many instances, the
sequence of the protein studied in the NMR experiment
differs from that used during crystallisation.
Hence, the usage of X-ray resolved structures in com-

bination with experimental chemical NMR shifts as a
training set for a prediction technique is at least debat-
able: while X-ray typically yields higher general structure
quality and resolution, the crystallized conformation may

differ from the one seen in the NMR experiment by an
amount exceeding the difference in resolution.
An automatic framework such as the one described in

this work is obviously ideally suited to study questions
such as these: the modular design allows to exchange
the protein data source, such that the user can eas-
ily switch between X-ray and NMR-resolved structures,
can compare the generated models, or evaluate models
trained on the one set on the other. As a first step, and
a proof-of-concept, we hence decided to study whether
NMR-derived data sets support the training of predic-
tors of comparable performance to those trained on X-ray
derived ones.
In addition to the intrinsic consistency, the choice

of NMR resolved structures relieves us from deducing
missing hydrogen positions in many cases. Hydrogen
placement not only affects and biases the hydrogen pre-
diction but also the predictions for other atom types,
since hydrogen atoms are present everywhere and form
hydrogen bonds, an important feature in most predic-
tion approaches. Instead of deducing them from other
algorithms, NMR resolved structures directly contain this
information.
An alternative source for the shift data with similar

advantages to the BMRB is the RefDB, which is essen-
tially a referencing-corrected version of the BMRB. As
discussed in [25], there is sufficient reason to believe that a
non-negligible percentage of chemical shifts in the BMRB
have been misreferenced, which can obviously lead to
spoiled shift prediction. To demonstrate the versatility of
our framework, we decided to train a model on both,
raw and reference corrected data. The model trained on
raw data can help to assess how well automated predictor
generation from non-rereferenced data can perform as a
lower bound for the achievable accuracy. By comparison
to the results on referenced data, our framework can then
additionally be employed to study the influence of refer-
ence correction on prediction quality, or to analyze the
question of potential bias in the reference corrected data.
Comparative studies such as these are greatly simplified by

Table 1 Summary and comparison of data sets used by different hybrid shift prediction approaches

Approach Year Size of training set Size of test set X-ray/NMR resolved Homolog

Files (shifts) Files (shifts) Exclusion

Meiler [15] 2003 292 (n. a.) 30 (n. a.) mixed N

Sparta [17] 2007 200 (n. a.) 25 (n. a.) X-ray N

CamShift [18] 2009 n. a. (224,036) 35 (n. a.) X-ray N

ShiftX2 [21] 2010 197 (206,903) 61 (n. a.) X-ray Y

NightShift 2012 515 (326,652) 344 (217,768) NMR, X-ray, or mixed Y

The third and fourth columns show the size of the data set, measured as the number of proteins contained within. The CamShift publication reported only the overall
number of shifts, which we denote in parentheses. Note that for the NightShift set, we already excluded homologous proteins. The table only includes methods for
which these numbers could be reliably determined.
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the modular design of our pipeline, where the data down-
load step can be easily adapted to query the data from
varying sources.

Restricting the data
To create a reasonable data set from the primary data
sources, we apply two types of filters: type-1 filters restrict
the initial BMRB to PDB mapping, while type-2 filters
evaluate individual molecule files.
When creating a protein-only model, we want to skip all

PDB entries containing additional ligands or DNA (Night-
Shift in principle allows the creation of other kinds of
prediction models, too (c.f. [34]), but this is out of scope
of this work). To reliably decide whether a PDB entry
contains a ligand before downloading and parsing the file
itself, we query the PDB RESTful web service (http://www.
rcsb.org/pdb/software/rest.do) to parse its results.
Furthermore to exclude mismatches, mutations, and

improbable structural data we demand an alignment score
of 100% between the residue sequence in the BMRB and
the PDB file. To this end, we employ ClustalW [35].
To avoid overfitting through homolous structures in test

and training set, we cull the mapping by sequence similar-
ity with a cutoff of 10% by applying the standalone PISCES
package provided by the Dunbrack group [36].
To restrict the data set to reasonable and trustworthy

data, we apply type-2 filters, namely the structure’s Amber
energy [37] with a default cutoff value of 1000 kJ/mol.

Data mapping
Reading the BMRB data correctly can be challenging.
For mapping atomic to experimental data we follow a
two step procedure. First we employ ClustalW [35] to
map the residues between PDB and BMRB, followed by
BALL’s PDB-to-NMRStar name converter to identify cor-
responding atoms. While computing the atom mapping
we encountered the following problems: first, both data
bases employ different naming and index conventions and
second, both use non-unique chain identifiers.
We solve the problem of non-unique chain identifiers by

using the results of our alignment procedure to re-index
the chains. If multiple chains can be matched with equal
best alignment score, we simply choose the first match.

Choice of statistical models
This work focuses more on the creation of a pipeline for
automated predictor generation than on fine-tuning the
parameters of the resulting predictors themselves. Hence,
we relied on former research for the choice of a statistical
model.
[16,21] studied different learning techniques for protein

NMR chemical shift prediction based on sequential and
structural features, and both suggested bagging learners.
We thus decided to apply Random Forests [38], which

combine bagging with feature selection and belong to
the class of bootstrap aggregating machine learning tech-
niques. A key feature of random forests is the randomized
generation of subset training data for each tree in the for-
est, which protects the final model from suffering high
error variance. Thus, the random forest method is a vari-
ance reduction technique and as such considered to be
resistant to overfitting.
For training the prediction models, we decided to use R

[31], the de-facto standard for open source statistical com-
puting. Random forests were trained using the R package
randomForest [39] with 500 trees to grow and all variables
sampled as candidate at each split. mtry was determined
using the recommended tuning procedures.

Separation of models by atom type
A final decision before training the models concerns the
handling of different atom types. As extreme cases, all
atom types could be collected into one large model that
contains the type as one additional feature, or different
models could be trained for each atom type for which
a significant number of experimentally determined shifts
are available.
The first option is, to the best of our knowledge, never

used in chemical shift prediction: the physico-chemical
processes that govern the influence of features (such as
torsion angles or sequence neighbourhood) on an atom’s
shift value differ too widely to combine them into a sin-
gle formula. The other extreme, on the other hand, might
lead to the risk of overfitting the models, in particular for
the hydrogens, which can be classified into many different
atom types. Using Amber [37] atom types, for instance,
we would end up with 32 individual models for all protein
H, N and C atoms. For comparison, the ShiftX2 approach
employs 6 backbone and 34 side chain models.
In our study, we decided for an intermediate approach.

We thus designed the concept of atom super classes,
which cluster force-field based atom types to form sub-
sets of comparable size whenever possible. This clustering
can be either defined by the user or automatically gener-
ated by the framework based on the data set at hand. In
our experiments, we found a set of 10 types to be suitable,
for which we then trained and evaluated separate models.
The final atom super classes are given in Table 2. Please
note that the sizes for each super class in the table were
taken from the ‘raw’ BMRB set, but do not vary strongly
on the RefDB-set.

Performance evaluation of the models
The careful analysis and evaluation of the generated
model is arguably the most crucial step in predictor
generation. We hence decided to include functionality
for automated conservative evaluation directly into the
pipeline. To this end, we first choose an independent test

http://www.rcsb.org/pdb/software/rest.do
http://www.rcsb.org/pdb/software/rest.do
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Table 2 Definition and number of data points for our atom super classes using notation borrowed from the Amber force
field

Atom super class Description Shifts

N Backbone nitrogen 65,246

CA Alpha backbone carbon 66,579

CB Beta backbone carbon 60,353

C Backbone carboxy carbon 48,442

H Backbone hydrogens attached to the backbone nitrogen 68,461

HA Side chain hydrogens on alpha positions (HA, 1HA, 2HA) 71,066

HB Hydrogens on beta positions (HB, 1HB, 2HB) 62,106

HD Hydrogens on delta positions (2HD, HD1, HD2, 1HD1, 1HD2, and 2HD2) 37,514

HG Hydrogens on gamma positions (HG, 1HG1, 1HG2, 2HG, 2HG1, HG1) 43,221

HEHZ Remaining hydrogens (HE, HE1, HE2, HE3, 2HE, 1HE, 1HE2, 2HE2, HH2, HZ, 1HZ, HZ2, HZ3) 21,532

set at random from the input data set, which is removed
from the training set. In a data rich situation as the one
described in this work (c.f. Table 2), such a complete sep-
aration of training and test set is typically prefered to
alternative approaches for approximating the generaliza-
tion error, such as cross validation or bootstrapping [40].
For a conservative evaluation, it is greatly advisable to per-
form homology restriction in the pipeline, as described
earlier in this work. Comparison to state-of-the-art tech-
niques was performed by applying the stand-alone version
of ShiftX2 on our test data set (c. f. Table 3).
The test errors of our models can be estimated from the

root mean square error (rmse) and Pearson’s Correlation
Coefficient (corr):

rmse =

√√√√√
n∑

i=1

(
δ
exp
i − δ

pred
i

)2
n

(1)

corr = 1
n − 1

n∑
i=1

(
δ
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exp
i

sδexp

) (
δ
pred
i − δ̂

pred
i

sδpred

)
(2)

with δexp denoting the experimentally measured chemical
shift of an atom, δpred the predicted chemical shift, and n
the number of predictions made. δ̂exp(δ̂pred) denotes the
mean of the experimentally measured (predicted) shifts
and sδexp(sδpred) its standard deviation.

Results
The two main results of this work are the pipeline and
the generated data sets. In the following, we present these
in more detail. In addition, we discuss – as a proof-of-
concept – a new shift prediction model (called Spinster
– Single ProteIn NMR Shift deTERmination) that was
automatically generated by the pipeline.

Pipeline
Our key goals in developing NightShift were its automiza-
bility, flexibility, robustness, and simple extensibility –
goals that can easily become contradictory if they are not
carefully addressed. By comparing several manual NMR
chemical shift prediction approaches, we identified the
following steps: (a) creation of an initial mapping between
NMR and structural data, (b) filtering and restriction to

Table 3 Performance (correlation coefficients and rmse) of our models in comparison to ShiftX2 using the test set created
by our pipeline

Prediction N correlation CA correlation CB correlation C correlation H correlation

Method (rmse) (rmse) (rmse) (rmse) (rmse)

Spinster 0.817 (2.977) 0.956 (1.425) 0.992 (1.582) 0.731 (1.524) 0.593 (0.505)

ShiftX2 0.554 (5.606) 0.953 (1.475) 0.984 (2.238) 0.711 (1.65) 0.534 (0.583)

Training / test size 39,147 / 26,099 39,947 / 26,632 36,211 / 24,142 29,065 / 19,377 41,076 / 27,385

Prediction HA correlation HB correlation HD correlation HEHZ correlation HG correlation

method (rmse) (rmse) (rmse) (rmse) (rmse)

Spinster 0.997 (2.889) 0.82 (0.559) 0.994 (0.324) 0.981 (0.375) 0.86 (0.365)

ShiftX2 0.517 (5.998) 0.721 (1.033) 0.012 (0.706) 0.816 (0.505) -0.147 (0.967)

Training / test size 42,639 / 28,427 37,263 / 24,843 22,508 / 15,006 12,919 / 8,613 25,932 /17,289

The size is measured in the number of available atomic shifts.
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a high-quality and non-homologous subset, (c) linking
the NMR information to individual atoms, (d) comput-
ing the proposed features and storing them in a format
that can be easily queried, and (e) training and evaluating
the proposed statistical model. Figure 1 shows our pro-
posed workflow. We now describe the pipeline in more
detail.

Creating an initial experiment-to-structuremapping
The very first task in our pipeline is the construction
or selection of a reasonable BMRB to PDB mapping. As
described in section “Data sources”, the BMRB is regu-
larly updated, is the largest of the possible sets, provides
unbiased data and high consistency between structural
and chemical shift information. We thus decided for the
BMRB mapping as inital mapping.
To automatize data set creation, which allows retrain-

ing as soon as new data becomes available, the pipeline
starts with a Python script that automatically queries the
BMRB for its mapping and parses the results to yield
a PDB-ID to BMRB accession number mapping. This
step can be easily adapted to use different sources of
chemical shift data. In our experiments, e.g., we also
used reference-corrected shifts as deposited in the RefDB.
Since this data base also offers its content in the form
of NMRStarFiles, adapting the pipeline was trivial and
mainly consisted in changing a single URL. This ini-
tial mapping then forms the input for the next step of
our pipeline.

Filtering the experiment-to-structuremapping
The initial mapping needs to be further restricted with
respect to the exclusion of homologs, the application of
quality criteria, and the limitation to single protein entities
measured in the experiment.
The pipeline first applies type-1 filters: the user can

select to focus on pure protein instances and apply a user
defined homology criterion, e.g., maximally 10%.
If a homology filter is not desired by the user, it can

simply be skipped. Similarly, it is easily possible to extend
the filtering procedure by user generated scripts. If fil-
tering is required at a later point in the pipeline, special
filter columns can be added to the created data base by a
provided Python script.
The type-2 filters, the limitation to high-quality data,

cannot be adressed at this point since they require the
download and parsing of PDB and BMRB input data and
are thus handled in a later step.
The input for the next step is then the resulting filtered

mapping file.

Download of PDB data, BMRB data, and creation of the
shift-to-atommapping table
The goal of this step is to automatically download all PDB
and BMRB files specified in the mapping file, to find a
mapping between PDB atoms and BMRB atoms, to per-
form referencing error correction, if so desired, and to
store the resulting atom mapping for the later feature
computation. This functionality is covered in our pipeline

Figure 1 Our NightShift pipeline for data set generation and training of NMR chemical shift prediction models.
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by a Python script as well, which starts by automati-
cally downloading all files (PDB and BMRB) from their
respective web interfaces.
The pipeline then continues by identifying first corre-

sponding residues, then atoms and shifts. In this stage,
we store the residue alignment and its alignment score –
which can be later used for quality filtering – in a
mapping-related table.
In addition, for each PDB–BMRB chain pair we store

general information that is related solely to the PDB or
BMRB entity: NMR experimental information like avail-
ability of H, C or N NMR chemical shifts, the NMR
spectrometer used in the experiment, the experimen-
tal conditions like solution, pH, temperature, and pres-
sure. The NMR information is parsed via BALL’s Python
interface, PDB information can be taken from the PDB’s
RESTful web service.
Now, finally having access to the NMR file, further

shift re-referencing through external programs could be
added to the pipeline. This step can be skipped if re-
referencing is not desired, or if the data has been taken
from an intrinsically reference-corrected source, such as
the RefDB.

Choice of input features
The choice of features to be provided to the statistical
model is governed by a feature definition file. Besides
some background descriptors needed for administrative
issues (PDB id, chain id, residue id, Amber atom name,
and experimental shift) we offer a large number of fea-
tures as input for the prediction model. Our framework
currently provides sequential (current, pre- and succes-
sor amino acid types, sequence length, alignment score),
structural (torsional angles and secondary structure ele-
ments, explicit backbone distances, solvent accessible
surface contributions, atomic densities, hydrogen and
disulfide bonds), force field based (atom types, Amber
energies) and experimental features (presence of H, C or
N shifts, temperature, pH, pressure, solution, NMR spec-
trometer) as well as semi-classical contributions (Random
coil effect, Ring current effect, Electric field effect, and
Hydrogen bond effect). A detailed definition of each fea-
ture can be found in the Additional file 1. A number of
these features is already known to the community, but
we developed new features as well. Performances of all
features are described in the Additional file 1 as well.
By commenting out lines in this feature definition

file, pre-defined features can be easily excluded. Fea-
ture implementation is greatly simplified by BALL, which
offers data structures and pre-implemented functionality
for such tasks. In our pipeline, each feature is represented
by a string that can be easily added to the list of features to
compute. A C++ class connects these strings to functions
that compute these features.

Computation of an atomic property table
For each matched atom, the experimental NMR chemi-
cal shift has to be linked to the corresponding structural
atom data and to the atom’s features to allow for training
a prediction model. To this end, the pipeline parses the
previously downloaded BMRB and PDB files for the rel-
evant information to compute and store all features, and
to assign the experimental chemical shifts to PDB atom
entities.
Based on the mapping table, the corresponding PDB

and BMRB files (in PDB and NMRStar format, respec-
tively) are read in and a name converter is used to
identify corresponding atom entities. When addressing
the assignment of experimental chemical shifts to PDB
atoms, we face some technical problems since BMRB
files are hard to parse correctly and in some cases,
the files contain serious syntax errors or inconsisten-
cies. We thus designed a fault-tolerant NMRStarFile
parser, which we included into the BALL library, as
well as data structures and algorithms for mapping and
assignment.
The output of this step is a SQLite data base with two

tables, one for the PDB chain to BMRB mapping and
related information, the other for the atoms and their
shifts and properties.

Training and evaluation
Finally, the NightShift pipeline reads the SQLite data base
into an R-data frame and automatically trains a random
forest model for each atom super class separately. The
underlying R training script automatically and randomly
splits the provided shift data set into a training and test
sets according to a user defined ratio (we used a ratio of
60:40) and calls the statistical model’s training method.
The training method is given the training data subset
defined by predefined feature columns and the column to
train against, and returns a vector of models, one for each
atom super class.
Finally, our script automatically stores the created mod-

els in “R.data” format.
For evaluation purposes, the resulting prediction mod-

els are automatically applied to the test set and for each
atom super class, the root mean square error (rmse) and
Pearson’s Correlation Coefficient (corr) between experi-
mentally measured and predicted values are computed.

Application of themodel
The framework additionally offers an interface to apply
the createdmodels to proteins given in PDB format. Given
the feature definition file, this script applies the prepa-
ration steps used for generating a query sqlite data base
containing the specified features, and applies a provided R
model. The output is a csv file.
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Extensibility
The presented pipeline can be easily extended in several
different directions:

• Re-training the models: Given new data in the
BMRB, only the PDB to BMRB mapping is needed as
input to generate a new random forest model.

• Using alternative data sets: Modifying the pipeline to
use different data sources is typically simple, in
particular if the data comes in a form already
understood by BALL. For instance,
reference-corrected shift data can be used by either
downloading the NMRStar files from a re-referenced
data base, such as the RefDB, or by applying a
re-referencing tool to the downloaded data as a step
in the pipeline. Similarly, a change from NMR- to
X-Ray - derived structures can be achieved by using
the PDB’s query functionality to find the most similar
(and highest-resolution) X-Ray derived entry for a
given NMR structure.

• Adding a feature: For adding a feature, the user has to
choose a feature name string, to add the feature name
string to the feature definition file, and to add a
method that computes the feature value(s). The
feature value(s) will then automatically be included in
a column named accordingly and is made available to
the training procedures.

• Adding a model: For testing a new statistical model,
the user only has to include the corresponding R
package and to wrap the correct prediction method
to meet our interface definition of training methods.

Data set
For reasons of simplicity, this section only describes
the data set generated from the ‘raw’ BMRB; the num-
bers for the data set based on the RefDB are very
similar.
The original mapping downloaded from the BMRB con-

tained 2,029 NMR resolved PDB–BMRB pairs. Within
this set, some PDB files contained multiple chains, in total
236, yielding 2,265 PDB chain–BMRB pairs. After per-
forming a 10% homology restriction via PISCES [36], we

arrived at 890 different PDB–BMRB mappings, account-
ing for 898 PDB chain–BMRB pairs in our data base.
Interestingly, the setting chosen for the proof-of-

concept analysis performed in this work turned out to
simplify matters significantly in this step: building the
data set from NMR resolved structures instead of X-
ray resolved ones increased the consistency of the data
set considerably. For X-ray resolved PDB files, the corre-
sponding sequence in the BMRB file often differs consid-
erably from the one in the PDB file, while in our data set,
this was only rarely the case. In fact, after pruning the
non-identical pairs, the data set still contained 859 PDB
chain–BMRB pairs – the minimal protein size in the set is
40 residues, the maximum 370 residues – with a total of
544,520 shifts.
Comparing this to the number of features in our model,

we currently use up to 44 (c.f. Table 4), this is a data rich
scenario. Table 4 shows the number of shifts and features
provided and actually used for each atom super class in
our Spinster model.

Prediction model - Spinster
Based on the given data set and the chosen atom super
classes, we trained a random forest model, which we
call Spinster - Single ProteIn NMR Shift deTERmina-
tion. We evaluated Spinster on a randomly chosen test set
which was excluded from the training set and compared
our model with the state-of-the-art NMR shift predictor
ShiftX2. Training and evaluation are performed automat-
ically in the pipeline without manual intervention.
Table 3 shows the results for the non-reference cor-

rected test set, Table 5 for data taken from the RefDB.
As clearly demonstrated by the evaluation, the auto-

matically generated models Spinster and Spinster-ref per-
form at least very comparably to the established ShiftX2
approach. In the case of non-reference corrected data, the
model Spinster even performs slightly better than ShiftX2
in all cases. Please note that ShiftX2 performs significantly
worse on the non-reference corrected data set than on the
reference corrected one. While this is not unexpected per
se, the fact that it is possible to train and evaluate a model
on non-reference corrected data (where training and test

Table 4 Number of shifts and features of the data set per atom super class, evaluated on the ‘raw’ BMRB data set

N CA CB C H HA HB HD HEHZ HG

Orig num shifts 65,440 66,870 60,761 48,686 68,496 71,243 62,116 37,523 21,548 43,227

Orig num features 111 111 111 111 111 111 111 111 111 111

Final num shifts train 39,147 39,947 36,211 29,065 41,076 42,639 37,263 22,508 12,919 25,932

Final num shifts test 26,099 26,632 24,142 19,377 27,385 28,427 24,843 15,006 8,613 17,289

Final num features 44 40 39 44 44 44 38 43 38 38

Maximum identity between proteins in test- and training data set was below 10%. The first two lines show the numbers for the raw data set before applying the training
procedure, lines three and four show the number of shifts, and the last line shows the number of features used by the models (numbers for the RefDB are similar).
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Table 5 Performance of models (correlation coefficients and rmse) in comparison to ShiftX2 using a RefDB-based test set
created by our pipeline

Prediction N correlation CA correlation CB correlation C correlation H correlation

Method (rmse) (rmse) (rmse) (rmse) (rmse)

Spinster-Ref 0.847 (2.426) 0.97 (1.161) 0.996 (1.093) 0.794 (1.146) 0.563 (0.393)

ShiftX2 0.844 (2.53) 0.972 (1.122) 0.995 (1.133) 0.817 (1.114) 0.578 (0.44)

Training / test size 20,038 / 13,359 17,953 / 11,969 28,742 / 19,162 12,844 / 8,563 37,912 / 25,276

Prediction HA correlation HB correlation HD correlation HEHZ correlation HG correlation

method (rmse) (rmse) (rmse) (rmse) (rmse)

Spinster-Ref 0.998 (2.218) 0.963 (0.232) 0.997 (0.212) 0.993 (0.24) 0.94 (0.192)

ShiftX2 0.998 (2.314) 0.964 (0.227) 0.995 (0.227) 0.992 (0.244) 0.903 (0.199)

Training / test size 20,915 / 13,944 34,521 / 23,015 15,530 / 10,354 7,962 / 5,309 21,264 /14,177

The size is measured in the number of available atomic shifts.

set are kept well separated) with very comparable qual-
ity to those on reference corrected ones at least warrants
further investigation.
In addition to the prediction task, the random forest

models implicitely perform a feature selection. In the case
of the BMRB-derived data set, e.g., out of the 111 pro-
vided features, the forests evaluate up to 44 as important.
The individual importance measures are shown in the
Additional file 1. Traditional features like amino acid type
and torsional angles are within the top ten scored features
as expected. Some of our new features also appear in the

top ten, e.g., the ‘residue SAS’ – the surface accessible area
of the atom’s residue – for atom super classes C, HB, HD
and HEHZ.

Web-interface
To simplify the usage of our pipeline, we have created a
set of tools for the ballaxy service – a web-based workflow
toolkit for structural bioinformatics built on the Galaxy
Workflow engine [41-43]. A manuscript on ballaxy is cur-
rently in preparation. This integration allows the user to
easily generate his own prediction models for his own

Figure 2 NightShift workflow via the web-interface.
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choice of parameters (data source, filters, features) from
the browser, or to apply existing ones. Through Galaxy’s
powerful workflow functionality, a user can even gener-
ate his own pipeline on demand or integrate NightShift
into arbitrarily complex workflows. Figure 2 shows the
web-interface.

Discussion and conclusion
Chemical shift prediction from candidate structures plays
an important role in many application scenarios in struc-
tural bioinformatics. Hence, the problem has received
considerable attention in the literature. But despite
tremendous advances in the field in recent years, there is
still considerable room for improvement. On the one side,
there is obviously the challenge to further improve the
prediction quality. On the other, there is strong interest
in extending the applicability to protein-DNA or protein-
ligand complexes.
Unfortunately, though, the initial barrier to create a new

prediction technique, potentially introducing novel fea-
tures or new statistical models, is enormously high. The
problems range from the seemingly trivial, but practically
difficult, error-tolerant implementation of NMR file for-
mats to the challenges in computing novel descriptors
from three-dimensional structure representations.
With this work, we have contributed a framework that

allows researchers not only simple access to the required
data, but also a wide variety of molecular features to
choose from. In addition, our reliance on open-source
software packages, such as the BALL library, the R frame-
work for statistical computing, and the SQLite data base
engine, greatly magnifies the extensibility of our approach.
Should a user, for instance, want to extend NMR chemical
shift prediction to protein-DNA complexes, he can simply
make use of the large number of molecular features avail-
able in BALL, or program his own extensions, which he
can then easily feed into our pipeline.
Using our pipeline, we automatically generated exem-

plary data sets for training and evaluating shift predic-
tion models based on the ‘raw’ BMRB as well as on
the reference-corrected RefDB. These sets have unprece-
dented size and can easily grow if new data becomes
available. In contrast to alternative current data sets, they
have been constructed exclusively from NMR resolved
structures, leading to great consistency between molec-
ular structures and NMR shift information. Due to the
unclear relative influences of structure quality and reso-
lution on the one side, and consistency between structure
and shifts on the other, the framework also allows to gen-
erate data sets based exclusively on X-ray structures, or
to freely mix the two kinds. Evaluating the differences
in shift prediction due to this choice will be the topic
of future work, which will be greatly simplified by the
NightShift-framework.

In addition to preparing the data sets, we exemplarily
trained prediction models on them, again in a completely
automatic fashion without any fine-tuning to further to
optimize performance. Even without such optimizations,
the performance of the model is surprisingly good. In
fact, we find that it can easily compete with state-of-
the art techniques, as tested by comparison to the well-
established ShiftX2-method. First results indicate that our
method seems to be particularly robust against lowly
resolved structures and against the presence of wrongly
referenced shifts, but further work is required before
this question can be conclusively answered. Such robust-
ness would be highly desirable for application scenarios
such as molecular docking, where the input structures
are merely candidates, instead of highly resolved, precise
configurations.
In summary, we have demonstrated that the creation of

chemical shift predictionmodels can be greatly simplified,
and to a large extent automatized, without spoiling pre-
diction quality. The models we presented will further
improve over time with each new structure-shift pair
deposited to the BMRB and RefDB and each new fea-
ture developed. Our own future work will focus on
adding feature sets that are suitable for protein-ligand
and protein-DNA complexes to extend the applicability
of NMR chemical shift prediction to a whole new set of
problems.
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Additional file 1: Supplementary material.
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